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Abstract

The Jarque-Bera normality test verify if the residues ui = Yi−A0−
k∑

j=1
AjX

(i)
j of

the regression hyper–plane Y = A0 +
k∑

i=1
AiXi are normal random variables.

We can prove that if Yi are normal then ui are also normal random variables. If
the Jarque-Bera test fails, we have to use a transformation Zi = G (Yi) such that Zi

are normal, we find the regression hyper-plane Z = A0 +
k∑

i=1
AiXi, and from here we

obtain the regression Y = G−1

(
A0 +

k∑
i=1

AiXi

)
.

For this we consider the case when we know the pdf, the cdf and the inverse of
the cdf for the random variable Y (example: the exponential distribution), the case
when we know only the first two elements (example: Erlang distribution) and the
case when we know only the pdf (example: the gamma distribution).

We consider also the case when we do not know even an analytical formula for
the pdf. In this case we will estimate the pdf using some known kernels (see section
2).
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1 Introduction

Consider n points in Rk+1, X(1), ..., X(n), where X(i) =
(
X

(i)
1 , X

(i)
2 , ..., X

(i)
k , Yi

)
.

The regression hyper–plane used in (Ciuiu 2007a) to classify patterns has the equation
(Saporta 1990)

H : Y = A0 +
k∑

i=1

AiXi such that (1)

n∑
i=1

u2
i is minimum, (1’)

where the residues ui have the formula
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ui = Yi − A0 −
k∑

j=1

AjX
(i)
j . (1”)

For the computation of Ai from (1) we have to solve the system (Saporta, 1990)

k∑
j=0

Xi ·Xj · Aj = Xi · Y , i = 0, k, (2)

where X0 ·Xi = Xi and X2
0 = 1.

The obtained estimators of Ai using (2) and of the residues ui have the following
properties (Jula 2003, Voineagu et all 2007):

1. The estimators of Ai are linear.

2. The estimators of Ai are consistents.

3. The estimators of Ai are unbiased.

4. The estimators of Ai have the minimum variance.

5. The estimators of Ai have the maximum likelihood.

6. The estimators of ui have the expectation 0 and the same variance (homo–scedasticity).

7. The estimators of ui are normal.

In (Jula 2003) there is presented a test for the normality of ui. First we compute the
skewness:

S =
u3(
u2
) 3

2

, (3)

and the kurtosis:

K =
u4(
u2
)2 . (4)

The Jarque—Bera statistics is

JB = n

(
S2

6
+

(K − 3)2

24

)
. (5)

For the normal distribution of ui we have S = 0, K = 3 and JB = 0. JB has in fact
the distribution χ2

2 (χ2 with two degrees of freedom), hence we accept the null hypothesis
H0 : S = 0 and K = 3 with the error ε if and only if JB < χ2

2;ε.
If the number of points is large enough we can use the central limit theorem to obtain

the residues assimptoticaly normals. Even the eigenvalues from the MCA (Multiple Cor-
respondence Analysis) are assimptoticaly normals (Saporta and Ben Ammou 1998). But
if we have only 25 points these results cannot be applied, as we can see in section 3.
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2 Making normal residues

In this section we consider the case when the Jarque—Bera test fails. Because when
we solve the linear system 2 by the Cramér method we can notice that all the estimators
are linear in Y1,...,Yn, we have the following proposition.

Proposition 1 If Yi have a normal distribution then the residues ui have a normal distri-
bution.

In (Jula 2003) there are presented two method to treat the case when the residues are
not normal. The first method consist in the identification of the distribution of ui, and to
apply a nonlinear regression. The second one is to transform Yi and/or X

(i)
j to eliminate

the non–normality.
We will use the second method and the proposition 1: we transform Yi to obtain normal

variables. Suppose the pdf of Yi is f , the cdf of Yi is F and the inverse of the cdf is F−1.
When we know analytical formulae for f , F and F−1 we make the substitution

Zi = Φ−1 ◦ F (Yi) , (6)

we compute the regression hyper–plane (1) with Z instead of Y , and we obtain the regres-
sion

Y = F−1 ◦ Φ

(
A0 +

k∑
i=1

AiXi

)
. (7)

The pdf of a normal random variable N (0, 1) is denoted by φ (x) and the cdf is Φ.
When we do not know an analytical formula for F−1 (as in the normal case F = Φ) we

estimate F−1 (x) by the Monte Carlo method as follows.
First we generate 100 random variables uniform on [0, 1]. For each of the generated

values y we define Ψ (y) = F (− ln y) if F (0) < x, respectively Ψ (y) = F (ln y) if F (0) > x.

In both cases a primitive of F (y)− x is Ψ̃ (y) = −x · y −
1∫
y

Ψ (t)dt. From these values we

take F−1 (x) = ỹ such that

−Ψ̃ (y) = x · y +

1∫
y

Ψ (t)dt (8)

has its minimum in ỹ if F (0) < x, respectively its maximum if F (0) > x. Of course, if
F (0) = x we have F−1 (y) = 0. The integral from (8) is computed by the Monte Carlo
method: we generate 100 uniform random variables Zi in [y, 1] and we use the estimation

1∫
y

Ψ (t)dt =

100∑
i=1

(1− y) Ψ (Zi)

100
. (8’)

When we know only an analytical formula for the pdf f we generate first 100 random
variables Ui on [0, 1] and we estimate
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F (x) =

x∫
−∞

f (t)dt =

1∫
0

f (x + ln u)

u
du =

100∑
i=1

f (x + ln Ui)

100 ∗ Ui

. (9)

For the estimation of Φ−1 in (6) we use (8) and for the estimation of Φ in (7) we use
(9).

The estimation (9) is used to estimate the cdf if the support of the random variable is
R. If this support is [0,∞) we generate also 100 uniform random variables on [0, 1], but
we use the estimation

F (x) =

x∫
0

f (t)dt =

1∫
0

x · f (x · u)du =

100∑
i=1

x · f (x · Ui)

100
. (9’)

This is the case of the Gamma distribution. In fact we do not know the pdf because in

f (x) =
xα−1 · e−

x
β

Γ (α) · βα
. (10)

we do not know Γ (α). But we use the estimation

Γ (α) =

∞∫
0

tα−2 · e−tdt =

∑1000
i=1 Zα−1

i

1000
, (10’)

where Zi are 1000 random variables with the distribution exp (1).
In fact in the case of the Gamma distribution we estimate only once Γ (α): we use

Γ (α) · f (x) instead of f (x), Γ (α) · F (x) instead of f (x) and F−1 (Γ (α) · x) instead of
F−1 (x).

When we do not know even the pdf f we can estimate this pdf using some kernels
(Văduva 1968, Văduva and Pascu 2003). If we have the n–size sample X1, ..., Xn we
estimate the pdf f in x by

f (x) =
1

n · bn

·
n∑

i=1

K

(
x−Xi

bn

)
, (11)

where K is the kernel and bn is the window bandwidth.
There are some kernel functions K = Kj used in literature:

K0 (x) = χ− 1
2
, 1
2
(x) =

{
1 if |x| ≤ 1

2

0 if |x| > 1
2

K1 (x) = 1√
2π

e−
x2

2

K2 (x) = 3
4
√

5

(
1− x2

5

)
χ−
√

5,
√

5 (x)

K3 (x) = (1− |x|) χ−1,1 (x)
K4 (x) = 4

3
(1− x2) χ−1,1 (x)

K5 (x) = 15
16

(1− x2)
2
χ−1,1 (x)

, (12)

where K0 is the rectangular kernel, K1 is the Gaussian kernel, K2 is the Epanechnikoff
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kernel, K3 is the triangular kernel, K4 is the Bartlett—Priestley—Epanechnikoff kernel
and K5 is the biquadratic kernel.

The Epanechnikoff kernel K2 minimizes the MISE (Min Integrated Square Error)

MISE
(
ĥ
)

=

∞∫
−∞

MSEx

(
ĥ
)
dx, (13)

where MSEx

(
ĥ
)

is the mean square error (Văduva 1968, Văduva and Pascu 2003):

MSEx

(
ĥ
)

= E

{(
ĥ (x)− h (x)

)2
}

. (13’)

The window bandwidth must be choosed such that lim
n→∞

bn = 0 and lim
n→∞

n · bn = ∞
(Văduva 1968, Văduva and Pascu 2003). In our C + + program we take bn = 1√

n
and we

obtain

f (x) =
1√
n
·

n∑
i=1

K
(√

n (x−Xi)
)
. (11’)

Sometimes we have a shortcut for obtaining Zi in (6). For instance, if the distribution
of Y is log–normal we can do the substitution

Zi = ln Yi, (6’)

and (7) becomes

Y = exp

(
A0 +

k∑
i=1

AiXi

)
. (7’)

The integrals that appear in the estimation of the cdf (and its inverse) are computed
in the classical way by the Monte Carlo method, as the Neyman or the Neyman—Bayes
estimator of the parameter is computed by an integral formula (Ciuiu 2007b). The centil of
the χ2 distribution with two degrees of freedom is computed by the formula χ2

2;ε = −2 ln ε,

because the χ2
2 distribution is identical to the exp

(
1
2

)
distribution (Ciuiu 2005, Ciuiu 2006).

3 Application

Consider the following consumer behavior model with 25 customers, where X1 repre-
sents the advertisement, X2 represents the prices and Y represents the sales (Jula 2003):

X1 3 2 0.8 2.5 2 1.4 2.5 2.5 3 1.4 1 1.2 1.6
X2 1.3 2.8 1.5 0.2 1.8 4 1.8 2 0.5 2.8 3.2 2.5 1.3
Y 2 0.5 1.5 3 1 0 2.1 1.8 3 0.7 0.5 1 1.4

X1 1.8 1 2.8 3.5 2.6 2.4 3.4 1.6 1.9 3.5 1.6 3
X2 2.2 3.5 1.1 0 0.2 2 1.2 3 3 0.6 3.2 0.3
Y 1.2 0.8 2.3 3.5 3.8 1.8 2.6 0.8 1.2 4.2 0.8 2.5

The regression hyper–plane is Y = 1.98362 + 0.44053X1 − 0.63867X2, the skewness is
S = 0.57887 and the kurtosis is K = 3.65375. Because the Jarque Bera statistics is JB =
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1.8414 and the χ2 cenil of the error 0.05 is χ2
2;0.05 = 5.99146, we have 1.84140 < 5.99146,

hence we accept that the residues are normal. these results are also obtained in (Jula
2003).

The goal of a regression is to estimate the value of Y if we know the values of X1,...,Xk.
For instance if X1 = 5.25 and X2 = 1.33 we obtain Y = 3.44695.

If the Jarque—Bera test fails we can conclude that neither Y is normal. In this case
we denote by U = F (Y ) the obtained uniform random variable and by Z = Φ−1 (U).

Suppose that Y has an exponential distribution and the following values obtained by
simulation: (2.67216, 6.10767, 0.16366, 9.09858, 0.44079, 3.37261, 0.75242, 1.99623, 1.85102,
0.38951, 0.45893, 0.09252, 0.79938, 1.81434, 0.19946, 0.88753, 3.34587, 1.17205, 6.8799,
0.8957, 11.29056, 4.1833, 0.336, 0.89712, 5.29434). The regression hyper–plane is
Y = −0.14080 + 0.90549X1 + 0.43511X2, the skewness is S = 1.62411 and the kurtosis is
K = 4.87035. Because the Jarque Bera statistics is JB = 14.63450 we have 14.6345 >
5.99146, hence we reject that the residues are normal. The uniform variables U are:
(0.63998, 0.90319, 0.06065, 0.96915, 0.15508, 0.72456, 0.24998, 0.53382, 0.50721, 0.13836,
0.16092, 0.03475, 0.26333, 0.50025, 0.07342, 0.28774, 0.72173, 0.36115, 0.92794, 0.28996, 0.98665,
0.79797, 0.12055, 0.29035, 0.86789). The normal variables Z are: (0.38946, 4.25514,−1.46483,
1.85666,−0.83021, 1.14454,−0.89828, 1.34244, 0,−1.02412,−1.0231,−1.86904,−0.47772, 0,
−1.85315,−0.27203, 0.79859,−0.38663, 2.38615,−0.23645, 0.3253, 2.73142,−1.46893, .
−0.60055, 0.67497). We obtain the regression Y = F−1◦Φ (−3.30458 + 1.07879X1 + 0.60564X2),
where F (x) = 1− e−λx (the exponential cdf) and Φ is the cdf of the standard normal dis-
tribution. The new skewness is S = 0.85063, the new kurtosis is K = 3.55469 and the new
Jarque Bera statistics is JB = 3.33535. Because 3.33535 < 5.99146 we accept now that
the new residues are normal. If X1 = 2.5 and X2 = 1.67 we obtain Y = 3.07021.

If Y has Erlang distribution with the values (2.96613, 6.48113, 4.08712, 3.89862, 9.03531,
4.17294, 4.20856, 0.4176, 2.77439, 0.86518, 3.54838, 1.27318, 4.09422, 0.66227, 1.37381,
2.57038, 2.301, 4.47228, 1.0578, 2.63542, 4.46888, 2.00138, 2.14516, 2.69531, 2.65117) we ob-
tain the regression hyper–plane Y = 2.87639 + 1.15495X1 + 0.70305X2, the skewness
S = 1.57764 and the kurtosis K = 6.80432. Because the Jarque Bera statistics is
JB = 25.4465 we have 25.4465 > 5.99146, hence we reject that the residues are normal.
The uniform variables U are: (0.76045, 0.59577, 0.35627, 0.42475, 0.57767, 0.04391, 0.82315,
0.86564, 0.73634, 0.81381, 0.43409, 0.5787, 0.76926, 0.04632, 0.9632, 0.99731, 0.75557, 0.5703,
0.7628, 0.19752, 0.80786, 0.94658, 0.5907, 0.63524, 0.50501). The normal variables Z are:
(0.82679, 0.5443,−0.35593,−0.07781, 0.63623,−1.09636, 0.64865, 1.75972, 0.80662, 0.11085,
−0.19447, 3.34705, 0.83808,−2.36028, 1.7295, 2.19251, 1.66568, 3.68058, 0.75272,−0.57019,
0.4333, 3.68665, 0.43424, 0.28145, 0.04798). If we denote by F the cdf of the Erlang distrib-
ution, we obtain the regression Y = F−1 ◦ Φ (1.09421− 0.00690X1 − 0.15684X2), the new
skewness S = 0.45896 and the new kurtosis K = 3.3914. Because the new Jarque Bera
statistics is JB = 1.03726 we have 1.03726 < 5.99146, hence we accept that the residues
are normal. If X1 = 7.5 and X2 = 2.25 we obtain using the above regression Y = 4.24444.

If Y has a Gamma distribution with the values (0.59245, 0.12004, 0.41625, 0.43813, 6.84824,
0.74769, 0.25507, 1.29952, 0.87027, 9.33513, 10.64632, 0.25897, 6.29302, 6.57701, 13.60256,
18.23679, 1.15156, 0.57335, 0.11935, 6.59902, 8.98237, 9.64063, 0.11099, 0.83072, 0.59731) we
obtain the regression hyper–plane Y = 3.11599 − 0.47429X1 + 1.14901X2, the skew-
ness S = 1.20115 and the kurtosis K = 4.81751. Because the Jarque Bera statistics is
JB = 9.45247 we have 9.45247 > 5.99146, hence we reject that the residues are normal.
The uniform variables U are: (0.2, 0.07184, 0.16171, 0.17124, 0.70923, 0.22844, 0.12229,
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0.33659, 0.24844, 0.79108, 0.79108, 0.11887, 0.78608, 0.75107, 0.791, 0.8, 0.35172, 0.19326, 0.07132,
0.75337, 0.79108, 0.79108, 0.06911, 0.26843, 0.20799). The normal variables Z are: (−1.34396,
−1.16078,−0.94806,−0.8641, 0.28339,−0.77506,−1.37933,−0.87488, 0.13259, 1.02073,
1.04595,−1.08383, 1.99092, 0.79554, 0.51645, 0.33609,−0.12237,−0.67827,−2.80078, 0.09764,
1.09563, 0.27315,−1.78141,−0.79649). If we denote by F the cdf of the Gamma distrib-
ution we obtain the regression Y = F−1 ◦ Φ (1.22080− 0.58973X1 − 0.14010X2), the new
skewness S = −0.25517 and the new kurtosis K = 2.43605. Because the new Jarque Bera
statistics is JB = 0.60259 we have 0.60259 < 5.99146, hence we accept that the residues
are normal. If X1 = 2.25 and X2 = 3.14 we obtain using the above regression Y = 0.85029.

If the pdf of the random variable Y is unknown we use the same data as in the case of
the exponential distribution, hence we reject first the normality. For the rectangular kernel
we obtain the uniform variables (0.74256, 1, 0.08428, 0.07175, 0.172, 0.89306, 0.31327,
0.4615, 0.56391, 0.17807, 0.2052, 0.02922, 0.44244, 0.65745, 0.08622, 0.4619, 0.67617, 0.50883,
1, 0.42426, 0.58903, 1, 0.12203, 0.44248, 1) and the normal variables (0.64697, 6.38671,−1.38233,
−1.55841,−1.05078, 4.59092,−0.57953,−0.09035, 0.16386,−0.97852,−0.9208,−3.65163,
−0.15038, 0.53152,−1.66153,−0.1049, 0.49897, 0.00335, 4.36347,−0.20497, 0.25379, 2.28768,
−1.26589,−0.15907, 4.87802). The regression becomes Y = F−1◦Φ (−5.52184 + 1.74946X1

+1.18307X2) with the new skewness S = 1.01127, the new kurtosis K = 3.40948 and the
new Jarque Bera statistics JB = 4.43579. Therefore we accept that the residues are normal
because 4.43579 < 5.99146. If we take X1 = 1.25 and X2 = 3 we obtain using the above
regression Y = 1.3844.

For the Gaussian kernel we obtain the uniform variables (0.73093, 0.89068, 0.07445,
0.11027, 0.24439, 0.55138, 0.3344, 0.64391, 0.49156, 0.15477, 0.21829, 0.06058, 0.36889,
0.53458, 0.11761, 0.43847, 0.59584, 0.46749, 0.20761, 0.39841, 0.07033, 1, 0.16865, 0.43483,
0.69935) and the normal variables (0.90005, 1.46789,−1.93828,−1.24249,−0.73297, 0.11938,
−0.46527, 0.35026,−0.02663,−1.15884,−0.90466,−2.29383,−0.30879, 0.14237,−0.996,
−0.1637, 0.30081,−0.0756,−1.03623,−0.24585,−2.15782, 2.92437,−0.88029,−0.15409,
0.5808). The regression becomes Y = F−1 ◦ Φ (−3.57654 + 1.05118X1 + 0.53597X2) with
the new skewness S = 0.72574, the new kurtosis K = 4.53733 and the new Jarque
Bera statistics JB = 4.65644. Therefore we accept that the residues are normal because
4.65644 < 5.99146. If we take X1 = 4.5 and X2 = 2.25 we obtain using the above regression
Y = 3.00951.

For the Epanechnikoff kernel we obtain the uniform variables (0.689, 0.38222, 0.08727,
0.71996, 0.21662, 0.80481, 0.39366, 0.54299, 0.55838, 0.16742, 0.21597, 0.05918, 0.3584,
0.61796, 0.10216, 0.40666, 0.72927, 0.48629, 0.69491, 0.42013, 0.07246, 0.55466, 0.1875,
0.39567, 0.59211) and the normal variables (0.57115,−0.34765,−1.60459, 0.6327,
−0.81905, 1.03572,−0.2772, 0.10761, 0.14342,−1.04711,−0.76504,−1.53142,−0.43606,
0.26439,−1.31213,−0.24027, 0.85928,−0.03952, 0.6869,−0.21434,−2.19226, 0.12365,
−0.8131,−0.23626, 0.21729). The regression becomes Y = F−1◦Φ (−2.02022 + 0.67981X1

+0.14265X2) with the new skewness S = −0.27616, the new kurtosis K = 3.54591 and
the new Jarque Bera statistics JB = 0.6282. Therefore we accept that the residues are
normal because 0.62820 < 5.99146. If we take X1 = 2 and X2 = 3.75 we obtain using the
above regression Y = 1.09615.

For the triangular kernel we obtain the uniform variables (0.55864, 1, 0.08007, 0.22144,
0.22309, 0.64824, 0.31701, 0.56918, 0.59285, 0.21256, 0.22223, 0.02085, 0.33645, 0.483,
0.08317, 0.40398, 0.59495, 0.44167, 0.23361, 0.40534, 1, 0.87282, 0.12986, 0.47971, 1)
and the normal variables (0.1888, 1.70783,−1.46731,−0.84107,−0.84048, 0.43218,−0.47812,
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0.20582, 0.18546,−0.80444,−0.92568,−2.47714,−0.45085,−0.04064,−1.20328,−0.26797,
0.28383,−0.16019,−0.73053,−0.21772, 2.00289, 2.86874,−1.04085,−0.04609, 1.99734). The
regression becomes Y = F−1 ◦Φ (−3.24280 + 0.96121X1 + 0.58793X2) with the new skew-
ness S = 0.79678, the new kurtosis K = 3.32667 and the new Jarque Bera statistics JB =
2.75639. Therefore we accept that the residues are normal because 2.75639 < 5.99146. If
we take X1 = 1.5 and X2 = 1.75 we obtain using the above regression Y = 0.44912.

For the Bartlett—Priestley—Epanechnikoff kernel we obtain the uniform variables
(1, 0.33857, 0.13812, 0.12596, 0.44539, 0.73052, 0.5933, 1, 1, 0.25732, 0.34066, 0.07253, 0.68407,
0.90392, 0.13608, 0.81143, 1, 0.84355, 0.48027, 0.90592, 0.16949, 0.89472, 0.27181, 0.83611,
0.22518) and the normal variables (3.17017,−0.47278,−1.14953,−1.36666,−0.12689, 0.62876,
0.27496, 2.6231, 3.25374,−0.68632,−0.36865,−1.60882, 0.39331, 4.46687,−1.08116, 1.8969,
3.03824, 0.82114,−0.05247, 2.68604,−1.0866, 2.09657,−0.62238, 1.11741,−0.77158). The
regression becomes Y = F−1 ◦Φ (−3.51351 + 1.52175X1 + 0.49427X2) with the new skew-
ness S = 0.57828, the new kurtosis K = 3.66344 and the new Jarque Bera statistics JB =
1.85185. Therefore we accept that the residues are normal because 1.85185 < 5.99146. If
we take X1 = 1 and X2 = 3.14 we obtain using the above regression Y = 0.47805.

For the biquadratic kernel we obtain the uniform variables (0.46534, 0.45856, 0.05495,
0.84543, 0.15733, 0.46435, 0.2533, 0.50861, 0.58318, 0.20579, 0.2491, 0.03261, 0.30475, 0.64295,
0.06771, 0.4374, 0.57995, 0.52029, 1, 0.45258, 0.0677, 0.23793, 0.14287, 0.40738, 0.14171) and
the normal variables (−0.07511,−0.09869,−1.70286, 1.79589,−1.28617,−0.09582,−0.70913,
0.01464, 0.28983,−0.84288,−0.68003,−3.5665,−0.4849, 0.41251,−2.10384,−0.17375, 0.18491,
0.03588, 1.66149,−0.12889,−1.55505,−0.78461,−0.95044,−0.23288,−1.0972). The regres-
sion becomes Y = F−1 ◦ Φ (−1.97926 + 0.66020X1 + 0.03603X2) with the new skewness
S = −0.02359, the new kurtosis K = 3.8186 and the new Jarque Bera statistics JB =
0.70035. Therefore we accept that the residues are normal because 0.70035 < 5.99146. If
we take X1 = 2.33 and X2 = 1.67 we obtain using the above regression Y = 1.1542.

If the random variable Y is log–normal with the values (7.38906, 1.64872, 4.48169,
20.08554, 2.71828, 1, 8.16617, 6.04965, 20.08554, 2.01375, 1.64872, 2.71828, 4.0552, 3.32012,
2.22554, 9.97418, 33.11545, 44.70118, 6.04965, 13.46374, 2.22554, 3.32012, 66.68633, 2.22554,
12.18249) we obtain the regression hyper–plane Y = 8.02697 + 6.34842X1 − 5.69431X2,
the skewness S = 2.06867 and the kurtosis K = 8.03926. Because the Jarque Bera sta-
tistics is JB = 44.28315 we have 44.28315 > 5.99146, hence we reject that the residues
are normal. The normal variables Z are the same as in the normal case (the log–normal
values were obtained by the exponential). Therefore we obtain the same skewness, kur-
tosis and Jarque—Bera statistics as in the normal case, but the new regression is Y =
exp (1.98362 + 0.44053X1 − 0.63867X2). If X1 = 3.5 and X2 = 1.25 we obtain using the
above regression Y = 15.28882.

4 Conclusions

When the Jarque—Bera test fails we have to transform the random variable Y in a
normal one using (6) and proposition 1. If we want to compute a new value of Y when we
know new values for the explanatory variables we do the inverse transformation.

If we know analytical formulae for the pdf f , the cdf F and the inverse of the cdf F−1

we use the formula (6). If some of the above elements are not known we use the estimators
from the second section.

Instead of the estimators obtained in this paper by the Monte Carlo method we can
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use numerical methods to compute the cdf F (numerical integrals) and the inverse of
F (numerical methods to solve nonlinear equations). An open problem is to create an
analogue C + + program using numerical methods.

The obtained normal variables Z are standard ones. Another open problem is to use
some other normal random variables (with other expectation and other variance).

References
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[6] Saporta, G., (1990), Probabilités, Analyse des Donées et Statistique, Editions Technip,
Paris.

[7] Saporta, G. and Ben Ammou S., (1998), ”Sur la normalité asymptotique des valeurs
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