Intelligent Systems in Business Introduction

Iulian Nastac

Intelligent system

- Can interpret information.
- Comprehends the relations between phenomena or objects.
- Applies the acquired information to new conditions.

History

- 1943 Warren McCulloch & Walter Pitts publish "A Logical Calculus of the Ideas Immanent in Nervous Activity"
 Artificial Neuron
- Arturo Rosenblueth, Norbert Wiener & Julian Bigelow coin the term "cybernetics" in a 1943 paper
- 1945 Vannevar Bush published "As we may think"
- 1950 A.M. Turing published "Computing Machinery and Intelligence"
 - Turing's Test a test of intelligent behavior
- 1950 Claude Shannon published detailed analysis of chess playing as search

History (cont.)

• 1955 - A PROPOSAL FOR THE DARTMOUTH SUMMER RESEARCH PROJECT ON ARTIFICIAL INTELLIGENCE

J. McCarthy, Dartmouth College M. L. Minsky, Harvard University N. Rochester, I.B.M. Corporation C.E. Shannon, Bell Telephone Laboratories

• 1956 - Demonstration of the first running AI program, the Logic Theorist (LT) written by Allen Newell, J.C. Shaw and Herbert Simon (Carnegie Institute of Technology, now Carnegie Mellon University)

History (cont.)

- 1964 Prof. Lotfi Zadeh started wondering, if there wasn't a better logic to use in machinery
 - Fuzzy Set Theory
 - Fuzzification
 - Fuzzy Quantification
 - Fuzzy Events
- 1975 John Holland
 - the beginning of the research of **genetic algorithms**

History (cont.)

- Many years elapsed with successes and failures
- 1997 IBM's Deep Blue Super computer played a fascinating game against Gary Kasparov in chess and won
 - The secret behind Deep Blue was a turbo expert system with very powerful search algorithms

2. Human/Artificial Intelligence

What is Human Intelligence?

- Not easy to define
- It is an open term
- It can include everything from logic ability and mathematical thinking to word understanding and creativity

What is Artificial Intelligence (AI)?

We can look at it from different perspectives:

- Research perspective
- Business perspective
- Domain perspective
- Intelligence perspective
- Programming perspective

Research perspective

• How do we classify research as AI?

Research perspective (cont.)

• "Artificial intelligence is the study of how to make computers do things which at the moment people do better" (Rich & Knight)

Business perspective

• AI is a set of very powerful tools, and methodologies that can solve difficult business problems

Domain perspective

• Formal tasks

- mathematics
- games
- Communications
 - perception
 - natural language
 - common sense reasoning

• Expert tasks

- financial analysis
- medical diagnostics
- robotics (movement)
- engineering
- scientific analysis etc.

Intelligence perspective

- Intelligence requires knowledge
- Expert problem solving – restricting domain to allow relevant knowledge

Programming perspective

- A study of symbolic programming, problem solving and search:
 - Symbols and numeric processing
 - Problem solving achieve goals
 - Search seldom access a solution directly
- Soft Computing
 - programming is replaced by learning

16

Man-Machine Interaction

Machine-centeredness → Human-centeredness

- A human-in-the-loop system (HiLS) (Bien 2003)
- The soft computing (SC) techniques play an important roles

Soft computing (SC) ~ Adaptive & Intelligent Systems

- Fuzzy systems
- Neural networks
- Evolutionary computing
- Probabilistic reasoning

3. Computational Intelligence

Computational intelligence refers to several computing paradigms within computer science:

- expert systems (ES)
- neural networks (NN)
- genetic algorithms (GA)
- fuzzy logic (FL)
- machine learning (ML)

Expert Systems

- Intelligence within expert systems is embodied in their knowledge base, for example in the form of rules and facts.
- Expert systems have proved their worth as assisting systems in diagnostics, planning and scheduling tasks in different disciplines.

Neural Networks

- Neural networks receive their intelligence through a learning procedure in which the network learns by examples.
- The method has proved its worth in several real-world problems where classification, pattern recognition, and forecasting is needed.

Genetic Algorithms

- Genetic algorithms refer to a family of computational models inspired by evolution.
- They receive their intelligence through selection, reproduction and mutation.
- Genetic algorithms have been successfully used in many difficult optimization problems.
- They can also be used as aid in building the rule base of an expert system and to find optimal neural networks.

Fuzzy Logic

- Fuzzy logic is a method of reasoning that allows for partial description of rules.
- The power of fuzzy logic resides in the capacity for evaluation of uncertain, conflicting and hazardous information, using a small number of very flexible rules.
- Knowledge in a fuzzy system is carried both in its rules and in fuzzy sets, which hold general descriptions of the properties of phenomena.

Machine Learning Algorithms

- Create rules and rule-trees by searching through data for statistical patterns and relationships
- Use information about the distribution of data to try to cluster records into specific categories
- Prove good models for prediction and classification
- Abstract clear rules from data
- Can explain the process that generated the data

4. Expert systems

An application that contains a knowledge base and a set of algorithms or rules that infer new facts from knowledge and from incoming data.

- Functional components
 - What the system does (rather than how)
- Structural components
- How the system works
- A mix of both

Functional Components

- Problem area – narrow problem area
- Problem difficulty – difficult enough to require expert knowledge
- Performance requirement – at a human level
- Explain reasoning
 - justify its own line of reasoning

Structural Components

- Use AI techniques
- Knowledge component
- Separate knowledge and control
- Inference procedures
- Model human expert

5. Human / Computer Reasoning How do people reason?

- They create categories
 - Cash is a current asset
 - A current asset is an asset
- They use specific rules
 - If A then B
 - If B then C
- They use heuristics – If the meal includes meat ... Red wine
- They use past experience

- Law cases

• They use expectations

Artificial Intelligence limitations

- AI is affected by errors (noise)
- Ex: an expert system language translator

"The flesh is weak, but the spirit is strong"

Proverb

 \rightarrow Translation to Russian

 \rightarrow Translate back to English

"The food was lousy, but the vodka was great"

How do computers reason?

- Translation problem \rightarrow program
 - Description of the problem
 - Encoding the knowledge
- Problem context
- Dimension of the problem
- Software tools
 - Classical programming
 - Soft computing
- Hardware tool

6. Intelligence density

- A measure of organizational intelligence and productivity
- A heuristic measure of the *army type* of intelligence
- How much of the chart, status report, financial statement or computer output do you have to examine before you can make a decision of a specified quality?
- Conceptually: ID = Quality / time

(Dhar & Stein, 1997)

30

System Quality

- Accuracy
 - how close the outputs of a system are to the correct or best decision
- Explainability
 - the description of the process by which a conclusion was reached
- Response speed
 - the time it takes for a system to complete analysis at the desired level of accuracy

How well is the system engineered?

- Scalability
 - the number of variables to the problem or the range of values that variables can take
- Compactness
 - how small the system can be made
- Flexibility
 - how easy it is to change the variables or modify the goals of the systems
- Embeddability
 - how easy it is to couple the system with ... or incorporate into the infrastructure of an organization
- Ease to use

Quality of available resources

- Tolerance for noise in data
 - the degree of the accuracy/ quality of the response when data are affected by noise
- Tolerance for data sparseness – incomplete or lack of data
- Tolerance for complexity
 - interactions among various components
- Learning curve requirements
 - become sufficiently competent at solving a problem or using a technique

Logistical Constraints

- Independence from experts
- Computational ease
- Development speed

7. Encoding the knowledge

- Production rules
 - Auditing, tax
 - The set of rules is called knowledge base or rule base
- Semantic Networks (cases)
 - Tax cases
 - The set of cases is called case base
- Frames
 - frame attributes called slots
 - each frame is a node

Production rules

- Building systems based on heuristic methods
- "if-then" rules
 - Empirical consequence of a given condition
 - The action that should be taken in a given situation

Semantic Networks

- A graphic notation for representing knowledge in patterns of interconnected nodes and arcs
 - philosophy
 - psychology
 - linguistics
 - computer implementations
 - artificial intelligence
 - machine translation

Frames

- Nodes in Semantic networks
- Attributes called *slots*
- Value can be stated explicitly
- Each frame is a node in a hierarchy
 - higher levels \rightarrow general concepts
 - lower levels \rightarrow specific aspects
 - unspecified value can be *inherited* from the more general node

8. Rule-based reasoning

Maybe the most common form of expert system

- User Interface
- Databases
- Inference machine
- Knowledge Base
- Uncertainty

User Interface

- Friendly
- Knowledge of how to present information
- Knowledge of user preferences ...possibly accumulate with use

Databases

- Contain some of the data of interest to the system
- maybe connected to online company or public database
- Human user may be considered a database

Inference engine

- General problem solving knowledge or methods
- Interpreter analyzes and processes the rules
- Scheduler determines which rule to look at next
- The search portion of a rule based system – takes advantage of heuristic information

Inference strategies

- Forward chaining
- Backward chaining

Example of rule base

If: Tax bracket = 50% and liquidity is greater than 100 000
Then: A tax shelter is indicated
If: A tax shelter is indicated and risk tolerance is low
Then: Recommend pulp and paper investments
If: A tax shelter is indicated and risk tolerance is high
Then: Recommend IT investments

Example (cont)

• Assume we know that the current client's tax bracket is 50%, his liquidity is greater than 100 000 and he has a high tolerance for risk

Example of rule base (forward chaining)

If: $Tax \ bracket = 50$
and liquidity is greater than 100 000
Then: A tax shelter is indicated
If: A tax shelter is indicated
and risk tolerance is low
Then: Recommend pulp and paper investments
If: A tax shelter is indicated
and risk tolerance is high
Then: Recommend IT investments

Example (cont.)

• Assume we only want to know whether IT investments are appropriate for the same client as before

Example backward chaining

If: Tax bracket = 50% (4) and liquidity is greater than 100 000 (5)
Then: A tax shelter is indicated (3)
If: A tax shelter is indicated

and risk tolerance is low

Then: Recommend pulp and paper investments

- If: A tax shelter is indicated (2) and risk tolerance is high (6)
- Then: Recommend IT investments (1)

Knowledge Base

- A collection of knowledge expressed using some formal knowledge representation language
- Rules are of the form IF condition THEN action
 - Condition portion of the rule is usually a fact (If some particular fact is in the database then perform this action)
 - Action portion of the rule can include
 - actions that affect the outside world (print a message on the printer)
 - test another rule
 - add a new fact

Knowledge Base (cont.)

- Rules can be specific
- Rules can be heuristics
- Rules can be chained

Uncertainty

- Mathematical expression of uncertainty is applied to data that cannot be assessed with high precision.
- Certainty factors
- Probabilities
- Fuzzv logic

9. Case-based reasoning

- A technique for problem solving which looks for previous examples which are similar to the current problem.
- This is useful where heuristic knowledge is not available.

Case-based reasoning (cont.)

- Uses past experiences
- Based on the premise that human beings use analogical reasoning or experimental reasoning to learn and solve complex problems
- Particularly evident in precedence-based reasoning – tax law or choice of accounting principles
- Useful when little evidence or information is available or incomplete
- Learning

Case-based reasoning (cont.)

- Cases consist of
 - information about the situation
 - the solution
 - the results of using the solution
 - key attributes that can be used for quickly searching for similar patterns or attributes

Case-based reasoning (cont.)

Elements in case-based reasoning:

- the case base
 - set of cases
- the index library
 - used to efficiently search and quickly retrieve cases that are most appropriate or similar to the current problem
- similarity metrics
 - used to measure how similar the current problem is to the past cases selected by searching the index library
 - how to use temporal information
- the adoption module
 - creates a solution for the current problem by either modifying the solution or creating a new solution using the same process as was used in the similar past case

10. Knowledge engineering

The discipline of building expert systems

- Knowledge acquisition
 - the process of acquiring the knowledge from human experts or other sources (e.g. books, manuals)
 - can involve developing knowledge to solve the problem
- Knowledge representation

Why business is interested in intelligent systems?

Although intelligent systems applications are much more limited than human intelligence they are of interest to business for the following reasons:

- to preserve expertise
- to create organizational knowledge
- to create a mechanism that is not subject to human feelings
- to eliminate routine and unsatisfying job tasks
- to enhance the organizational knowledge

Areas where used

- Security
- Routing applications
- Retail Packing
- Failure Analysis
- Data Analysis
- Customer Service
- Management
- Manufacturing
- Finance (almost 20% of all applications)

Drawbacks

- Costly and time consuming to develop
- Difficult to obtain knowledge
- Lack of common sense

References

- Back, B., 2002, Course on "Intelligent Systems in Business", Lecture 2/19.9.02
- Bien, Z., 2003, Presentation on "Soft Computing Techniques are essential for Human-friendly Man-Machine Interaction", IAMSR, August 2003
- Brown, Carol E. and O'Leary, Daniel E., 1993, Introduction to Artificial Intelligence and Expert Systems. Lecture Notes
- Dhar, V. and Stein, R., 1997, Intelligent Decision Support Systems, Prentice Hall
- Luconi, F.L. & Malone, T.W. and Scott Morton, M.S., 1993, Expert Systems: The next challenge for managers, In Decision Support Systems, Putting Theory into Practice, ed. by Sprague, R.H. and Watson, H.J., Prentice Hall
- Rich, E. and Knight, K. 1991, Artificial Intelligence, NY:McGraw-Hill