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- Abstract - 
 
 
 
Standard economic theory tells that a command system, like the former eastern 
economies, allocates resources poorly due to the impossibility of accurate 
calculation. Therefore, once prices are freed and start to operate at quasi-
equilibrium (market-clearing) levels, the hidden inefficiencies come into the open 
and a possible massive resource reallocation would have to take place. More 
precisely, the issue refers to the possible and probable intensity of resource 
reallocation in view of constraints like the balance between exit and entry in the 
labour market, the size of the budget deficit and the means for its non-inflationary 
financing, social and political stability, etc.  
This paper tries to conceptualise the fact that the dynamics of unemployment and 
inflation are correlated not in a classical sense but in a very complicated mode that 
suggests the occurrence of some attractors when certain slow parameters are 
evolving in the neighbourhood of special threshold-values. The start is made with 
simple models that are based on empirical data and can show to us the traces to 
discover the steps of transition in eastern economies on the inflation-unemployment 
relationship space. Then, using economic theory combined with non-linear 
modelling more refined information is extracted from the statistical standardised 
data for to evaluate other faces of the eastern transition. 
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1. Introduction 
 
 The actual transition in eastern countries looks like a provocation for both 
economic theory and quantitative evaluations. Continuing to be poor the data on the 
transitional economies are increasing. That is more important is the fact that in an 
important measure they are remaining under a large degree of incoherence in the 
usual sense in economic literature. However, important steps have been made to 
model by econometric methods. At this point it is necessary to remark the advanced 
econometric studies on the transition in eastern countries achieved by a specialised 
group within the University of Leicester under the co-ordination of Wojciech 
Charemza. In this sense, a research on the transition coming from other point of 
view such as non-linear modelling would be as a modest additional step. Also, in 
economic research last years there is a trend to approach the same economic 
problem or phenomenon coming from the two apparently opposite directions.  
 One of the most important goals of the paper is to demonstrate that the 
actual transition in eastern countries is going to be integrated within a more general 
process of a long-run economic transition that also includes western countries. The 
main problem for eastern transition is if they must follow the same stages as 
western countries in the past or there are some possibilities to avoid some of them.  
 More implicitly, the transition is accompanied by an increasing strain in the 
economic system and surely the inflation-unemployment relationship has the leader 
role in this equation. In this idea, to research the conditions in which the speed of 
transition may be increased or to search that of occurrence of attractors is one of 
the best ways to describe the strain of the system. 
 The paper is organised in five sections. First focuses on the relevance of the 
advancing process in the transition way, based mainly on the statistical data 
support. Some rules to evaluate the speed of transition or the stage where it is 
placed in eastern countries are extracted by using several simple models. Also, a 
simple model derived from the potential-function technique is used to find if the 
inscription of eastern economies on a relative stable long-run way has been 
achieved. Second section concentrates on the possibility to apply some results of 
the so-called bifurcation theory for detecting the main features manifested in the 
long-run evolution of the unemployment and inflation respectively. A schedule of a 
methodology to detect the attracting zones in the inflation-unemployment-
production space is presented, including an application on a western country. More 
comparisons between countries are presented in case of a truncated bifurcation 
model. The last two sections deal with a promising model that demonstrates the 
possibility of emergence of a chaotic motion in three-dimensional systems and 
respectively with a discrete-time model of the modified Phillips curve. In section four 
is presented a model that can generate a spiral-type chaos in case of the inflation-
unemployment cycle. On this base we hope to capture, in case of applications, 
some important features of the type of transition. Section five includes several 
simulation results coming from the change of so-called state parameters in case of 
a discrete model including errors in expected inflation and a correcting factor in 
sense of adaptive expectations.  
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2. Intuitive transitions 
 
2.1. Some explanations of new trends 

 
 Empirical data demonstrate, on the background of business cycles, some 
major changes of trends in Western countries in the last 25 years. Among these we 
can mention an impressive decrease in inflation followed by a continuing growth of 
unemployment and general diminution of the growth rate of production (GDP). 
 An important question is if a smaller area of main macroeconomic indicators’ 
variation represents greater economic stability and, relatively, less strain.  
  In any case the evolution is from a period where the main symptom of strain 
was inflation toward one where unemployment became the principal symptom and 
factor of strain. On the other hand, this evolution means that on the unemployment-
side occurred a relaxation, higher levels of unemployment being viewed as normal 
but not the case for the inflation level.  
 A deeper analysis shows the possibility of some persistent trends and long-
run attractors. To demonstrate this assertion we present in Annex 1a the graphical 
representation of unemployment, inflation, and respectively inflation-unemployment, 
for the period 1970-1996, with one-year lag, in case of three western countries.   
 On the other hand, in Eastern European countries there was an opposite 
situation after 1989; open inflation rose rapidly in the region whereas unemployment 
did also rise but at a smaller pace.  Probably, the long-term trends will be similar to 
that registered in Western countries. The most important question is how long this 
transition period will be. In such context to estimate strain and to evaluate the costs 
of its diminution becomes an important topic for research. As example of the non-
structured time-series, less that of unemployment, in case of eastern countries, in 
Annex 1a is also presented the monthly evolution of the same indicators in case of 
Romania for about 50 months in the period 1990-1996.  
 To illustrate the occurrence of some limit cycles in case of western countries 
and the non-clear situation (taking into account the short period of reference) in 
eastern countries we plotted in polar coordinates the dynamics of unemployment 
and respectively of inflation in Annex 1b. 
 
 
2.2. Two simple models of transition 
 
 In this section we present two models that describe some possible ways from 
the actual situation of eastern economies to one minimal requested for the 
acceptance within the UE. 
 First model assumes a simple linear correlation between the registered rate 
of unemployment (x) and the yearly rate of the GDP change (vy). Also, the inflation 
rate by year (z) is expressed as a parabolic function related to the same yearly rate 
of GDP modification. The model is described by the following equations: 
 
 
x(vy) = a . vy + xn         (2.1) 
 
z(vy) = A . vy2 + C          (2.2)   
 
 
 



where a, A, C are constants, and xn is the “natural” level of unemployment. Also, 
replacing vy in the inflation function by separating it from the equation (2.1) we can 
write: 
 
z(x) = A . [ ( x – xn ) / a ]2 + C        (2.3) 
 
The results of applying the model on the disposable data for three western 
countries (Belgium, France, and UK) and for five eastern countries (Bulgaria, Czech 
Republic, Hungry, Poland, and Romania) are presented in Table 1. In case of 
western countries the period is 1970-1996 and in that of eastern countries is 1990-
1996. 
 
 

Table 1   
__________________________________________________________________________ 
aB 0.996   xnB 0.114     AB 2.468  CB 0.048  
aF 1.027   xnF 0.102     AF 3.024  CF 0.065  
aUK 0.068   xnUK 0.074     AUK 7.198  CUK 0.093  
aBULG 0.299  xnBULG 0.128    ABULG 156.982  CBULG 0.376  
aCZ 0.056   xnCZ 0.027     ACZ 22.073  CCZ 0.094  
aHUN 0.304   xnHUN 0.099    AHUN 7.891 CHUN 0.238  
aPOL 0.47   xnPOL 0.131    APOL 449.77           CPOL 0.776  
aR 0.352   xnR 0.08     AR 18.567  CR 1.253  
__________________________________________________________________________ 
 
 Despite the short period in case of the eastern countries it can be extracted 
some ideas from the table. So, it seems a convergence relating the natural rate of 
unemployment, some of the eastern countries (especially, Czech Republic) having 
even a smaller calculated natural rate of unemployment then western countries. 
The remaining problem of the transition in these countries is the high rate of 
inflation. The model was conceived supposing the so-called stagflation 
phenomenon, i.e., the simultaneous presence of inflation and zero growth rates of 
the GDP, coupled with nonzero and usually high unemployment rates. In literature, 
as attempt to model this phenomenon consists of modifying the original Phillips 
curve by introducing additional influences like, e.g., the expected inflation rate πe 
[1].  In a sense, in the context of the model, the parameter C can be viewed as the 
“expected” inflation rate. In Figure 1 it is shown the function of inflation in 
considered countries, from where the higher strain in case of the eastern group is 
evident. To extract the way of transition we present in parallel the inflation and the 
unemployment functions in two groups of countries in Figure 2. Without the 
differences between levels, the discrepancy is now clear: in western countries the 
line of unemployment intersects the inflation parabolas but in eastern countries this 
is not happened till the present. A possible way, so-called the transition in three 
stages, should be firstly to move down the inflation level simultaneous with an 
increasing in unemployment level (requested also by the economic restructuring in 
eastern group) till their intersection and then, in the future, to change the type of 
inflation parabola (like is the case in western group, from the situation of Belgium to 
that registered in France and UK).    
 The second model represents a development of the first model by 
reformulating the unemployment function, as following: 
 
 

 6 



x (vy) = a . vy2 + b . vy + c        (2.4) 
 
where b is also a coefficient. The computing data, resulted by applying the model, 
are presented synthetically in Table 2. 
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Figure 2 

 
 

Table 2   
__________________________________________________________________________ 
aB 29.989  bB 0.451  cB 0.11  AB 2.468   CB 0.048  
aF 35.51  bF 0.758  cF 0.089  AF 3.024   CF 0.065   
aUK 9.936  bUK 0.532  cUK 0.073  AUK 7.198   CUK 0.093  
aBULG 6.178 bBULG 0.235 cBULG 0.135 ABULG 156.982  CBULG 0.376  
aCZ 1.507  bCZ 0.093  cCZ 0.024  ACZ 22.073   CCZ 0.094  
aHUN 3.596  bHUN 0.645  cHUN 0.097  AHUN 7.891   CHUN 0.238  
aPOL 3.899 bPOL 0.281  cPOL 0.15  APOL 449.77  CPOL 0.776  
aR 0.055  bR 0.349  cR 0.08  AR 18.567   CR 1.253  
__________________________________________________________________________ 
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Figure 4 

 
 
 Again there are fundamental differences between the two groups of 
countries: since in western countries the two curves (x and z) are placed in a closed 
region of the map, in eastern countries the aria of distribution is large, existing no 
point of intersection. In this sense, we present in Figure 3 the map having as 
abscise the yearly changing rate of GDP and in Figure 4 the map of unemployment 
rate function relating to that of the yearly inflation level. 
 Coming from this model we should imagine five steps of the transition: 

1 – a severe decreasing of GDP, followed by an important growth of inflation, 
but a modest increasing of unemployment (the opposition of the former structure 
and the trust that the transition can be passed with a high level of occupation of 
labour force); 

2 – an explosion in the inflation level, followed by a smaller rate of GDP 
decreasing, and a severe increasing of unemployment till the genuine restructuring 
of the economy is achieved; 

3 – after the maximum level of unemployment (requested by restructuring), 
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and the stop of GDP decreasing it follows a re-improvement of production, a re-
absorption of an important part of unemployment (but on the base of the new 
economic structure), and a temporisation of inflation that although is situated at one 
high level; 

4 – the rate of increasing GDP rich the maximum level and then it come 
down with a small diminution of unemployment (that is near the minimum level), 
and, most important, an accelerate decreasing of inflation till the level registered in 
western countries 25 years ago (this stage corresponding to the stage of western 
economies at the end of 60’s); 

5 – the beginning of one new increasing of unemployment but in condition of 
a small and controlled level of inflation.      
 
2.3. Inflation-unemployment relationship derived from a potential function 
 
 Coming from some old papers (Albu, 1995; Daianu and Albu, 1996) we   
apply a simple model that can give us a measure of the stability-degree of inflation-
unemployment relationship in European economies. 

  Let S being the sum S of unemployment and inflation: 
 
S = u + p          (2.5)  
 
where u is unemployment rate and p is the inflation rate, and let P their product:  
 
P = u . p          (2.6)  
 
We write the shares of u and respectively p in S by x1 and respectively x2 as 
following: 
 
x1 = u / S   and    x2 = p / S       (2.7) 
 
and their product as: 
 
PP = ( u / S ) . ( p / S )        (2.8) 
 
 Now, let consider the generalised variable x representing shares of S such 
as the model can be expressed by the following system of equations: 
 
p(x) = x . S          (2.9) 
 
u(x) = S - p(x)         (2.10) 
 
From this it results the following expression of PP: 
 
PP(x) = x . ( 1 - x )         (2.11) 
 
 In order to investigate the behaviour of the system in time, let consider that 
the main equation of our model can be derived from an existing potential function V 
(x;m): 
 
dV / dx = 0          (2.12) 
 
where x is the rapid variable of the system and m - the slow or control variable (both 



are, implicitly, functions of time). In our case, we chose the following potential 
function: 
 
V ( x ; m ) = ( -  x3 ) / 3  +  ( x2 ) / 2  -  m . x     (2.13) 
 
to which it corresponds the following equation of potential surface: 
 
- x2  +  x  -  m  =  0         (2.14) 
 
Comparing this with the relation of PP already obtained it results that in terms of our 
model the slow variable m can be estimated by the following expression: 
 
m = P / ( S2 )          (2.15) 
 
Considering the analysis of the graph of function V, it results some threshold values 
of the parameter m. Therefore, for x having values among 0 and 1, there are the 
following cases: 
 when   0 < m <  3 / 16,  V has 3 real roots (0 and other two separated); 
 when         m =  3 / 16,  V has 2 real roots (0 and an other double root); 
 when    3 / 16 < m < 1,  V has only 0 as real root . 
The graph of function V is shown in Figure 5. 
 

M  
 

Rotation 50 (0 to 360) Tilt 10 (0 to 360) 
Vertical Scale 100 (1 to 100 magnifications) 

Figure 5 
 
 A very important threshold value of parameter m is 1/4, where the maximum, 
minimum, and inflexion points are confounded. Other important conclusions 
concerning evolution and stability of the system are: there are two equilibrium 
curves on the potential surface - a stable equilibrium curve (C1) and an unstable 
equilibrium curve (C2); for values of x smaller than (C2) the trajectories are 
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attracted to (C1) (the long-run effect); for value of x greater than (C2) the system is 
strong attracted in an intense troubled zone; a rich menu of alternatives can be 
deduced by investigation of the function V map moreover this can offer some larger 
possibilities of statistical data interpretation. 
 A decisive problem represents the estimation of m. If this were quantified we 
would adopt desired alternatives by knowing their consequences. The resulting 
decisive importance of quantifying m strongly contradicts the authors who consider 
unemployment-inflation relationship having insignificant or neutral influence on the 
entire economic system.  Consequently it must be ignored or both its factors must 
be strongly repressed simultaneously. When m equals 1/4 the system lost all 
equilibrium branches and u = p. However, the remaining question is how can one 
solve better the problem of stability within zone (0; 0.25). For this we present a short 
version of a discrete-time model as an alternative.  
 Considering parameter a as an essential parameter that assures the 
dynamics of the system in case of the discrete model, the equation will be: 
 
x t  =  a . x t -1 . ( 1 -  x t -1 )        (2.16) 
 
 This equation (which represents a canonical form of May's equation) 
possesses a wide range of dynamic behaviour, which is well known in the 
specialised literature (May, 1976). Limiting our attention to the initial conditions of 
the dynamics of x included in the interval [ 0; 1 ], the following "windows" of a were 
identified: 0 < a < 1, x moves monotonously towards the stationary solution x = 0; 1 
< a < 2,  x moves monotonously towards the stationary solution x = (a-1) / a;  2 < a 
< 3, x converges with a flattened oscillatory movement to the stationary solution x = 
(a-1) / a; 3 < a < 4, x demonstrates a complex of permanent oscillations. For a = 
3.57…, one can observe an infinite number of fixed points with different periodicity 
and an infinite number of different periodical cycles; there also exist innumerable 
combinations of initial conditions from which completely a-periodical, although 
bounded, trajectories begin; it is from this threshold that the chaotically region 
begins. For a > 4, the model explodes. 
 Introducing the values of parameter a derived from the discrete-time 
analysis, we obtained the following system of relations: 
 
m ( x )  =  - x2  +  x         (2.17) 
 
a ( x )  =   1 / ( 1 - x )        (2.18) 
 
Substitute x between the two equations, the relation among the two parameters can 
be written as: 
 
m    =    ( a - 1 ) / a2         (2.19) 
 
and the graphical representation is shown in Figure 6. On this graph, we can see 
three remarkable points of parameter a: for a lower than 1, the parameter m 
becomes negative (that is the value 1 represents the lower limit of parameter a in 
case of our model); for parameter a equals value 2, parameter m has a maximum 
value (that is, the well-known value 1/4); for parameter a equals value 3, the 
function of m has an inflexion point. But from it is known that for parameter a having 
the value greater than 3 the way to chaos is open. Thus, now we can affirm that for 
our model solely condition  m < 1/ 4 is not sufficient. Moreover, it must be doubled 
by this last restriction on the scale of parameter a. 



 Having this new information a deeper analysis on the continuous map of the 
potential function V demonstrates that for the value m = 2/9 the maximums' branch 
(curve (C2)) has an inflexion point on the potential surface. This is the image of 
inflexion point of function m(a) in the potential  function representation (in our 
graphical representation this inflexion point on V surface does not appear too clear). 
Only introducing parameter a in analysis permitted its discovery. So, a rise of 
unemployment within S in the proximity or over a value of 2/3 provokes firstly 
multiple-cycles and then emergence of a chaotic behaviour of the system. A similar 
situation occurs when the share of inflation within S equals the value 2/3. 
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Figure 6 
  

 Certainly, considering new parameters can further refine the analysis based 
on the simple model. Moreover, we note that in many cases the behaviour of the 
model in discrete-time version may be different comparing with its continuous 
version. Unfortunately, new developments introduce complicated deformations in 
the model, new non-linearity, and surely the model must be fundamentally changed. 
But the solution will be also to analyse the relations and variables grouped 
separately by considering simultaneously only two or, under special conditions, 
three of them. In terms of the models derived from our existing economic theory this 
is the manner of restriction [2]. Our results may be considered as an interlocution in 
the chaos/chance debate. In fact, the non-linear estimate is one that is confirmed in 
several fields. But the irregularities are explained by the stochastic, not the 
deterministic component, inasmuch as the control parameter reaches either the 
chaotic or the oscillatory bifurcation. 

In Annex 2a are presented the estimates for parameter a (only the largest 
values “a2” are significant for our model) in case of unemployment-inflation plan for 
some western economies and in Annex 2b the situation in selected eastern 
countries. The figures represent the estimate values for the period 1970-1996 in 
case of the first group of countries and for the period 1990-1996 in case of the 
second group. On graphic representations the interval that signifies the transition 
from stability to chaos is delimited by the values aL1 = 3 and respectively aL2=4. 
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We can conclude, at this stage of the paper, that, when the estimated value 

of a is within the chaotic zone, the strain in economic system is larger. As we 
stressed the symptoms of strain are unemployment and inflation. In the Western 
countries there was a specific transition during the last 25 years: unemployment 
replaced inflation as the main symptom of strain. Moreover, it would seem that such 
long periods of experiencing high unemployment might have infused a larger 
acceptance by the system of relative large unemployment. This must be viewed in a 
direct connection with a continuous development of social security programmes in 
western countries. But such an inference needs to be buttressed by judging the 
evolution of other variables such as: the dynamic of budget deficits and their 
sustainability, number of strikes, etc. In Eastern countries it seems that the 
acceptance of large unemployment is smaller at least during the present transition 
period. Moreover, in these countries the development of social security 
programmes is only in an incipient phase. It should be underlined, nonetheless, that 
an increasing underground sector developed as a valve for absorption of a large 
part from open unemployment. 

For Romania, the trends for unemployment and respectively for inflation are 
presented in Figure 7, where monthly data cover the period 1990-1995. Also, in 
Figure 8 is presented the estimated evolution of parameter a for the unemployment-
inflation plan. Here the monthly inflation rate was replaced by a yearly equivalent 
rate. Trends can be observed that seem to be toward the long-run trends in other 
European countries, but more relevant continue to be the proper yearly evolution, 
presented in Annex 2b, where the situation looks different. However, a special 
research would be necessary to evaluate the distance from the situation existing in 
other economies and from the minimum levels requested by the integration within 
European Union. 
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2. 4. Fractal dimension  

 
 Another methodology to estimate trends in economic series and to 
appreciate their type is that based on fractal dimension. In our study we chose the 
method called Hurst exponent. According to statistical mechanics, the Hurst 
exponent (H) should equal 0.5 if the series is a random walk. In other words, the 
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range of cumulative deviation should increase with the square root of time. When H 
differed from 0.5, the observations were not independent. Each of these carried a 
“memory” of all the events that preceded it. This is not a short-term memory, which 
is often called Markovian. This memory is different: it is long-term. More recent 
events had a grater impact than distant events, but there was still residual influence. 
On a broader scale, a system that exhibits Hurst statistics is the result of a long 
stream of interconnected events. Time is very important. Inclusion of a time arrow is 
not possible in standard econometrics, which supposes series are invariant with 
respect to time [3].  
 There are three distinct intervals for the Hurst exponent: (1) H = 0.50, (2) 0 < 
H < 0.50, and (3) 0.50 < H < 1.00. First case denotes a random series. Events are 
random and uncorrelated. The present does not influence the future. Its probability 
density function can be normal curve. The standard statistics assume that nature 
follows the normal distribution, but H is typically greater than 0.5 for numerous 
series. The second type of system is an antipersistent, or ergodic, series. If the 
system has been up in the previous period, it is more likely to be down in the next 
period. In the third case we have a persistent, or trend-reinforcing, series. If the 
series has been up (down) in the last period, then the chances are that it will 
continue to be positive (negative) in the next period. The closer H is to 0.5, the 
noisier it will be, and the less defined its trends will be. Persistent series are 
fractional Brownian motion, or biased random walks. The strength of the bias 
depends on how far H is above 0.50. Persistent time series are plentiful in nature, 
as are probably many economic time series. Persistent time series are fractal 
because they can also be described as fractional Brownian motion. The Hurst 
exponent describes the likelihood that two consecutive events are likely to occur. 
Because each point is not equally likely (as it is in a random walk), the fractal 
dimension of the probability distribution is not 2; it is a number between 1 and 2. 
Mandelbrot (1972) has shown that the inverse of H is the fractal dimension. Note 
that a random walk is truly 2-dimensional and would fill up a plane. 
 To estimate H and fractal dimension for the plan u-p and for global surface 
(u-p-y), we propose the following dynamic series: 
 

doupt u%t
2 p%t

2
        (2.20) 

 

dot u%t
2 p%t

2 y%t
2
      (2.21) 

 
In Annex 3 we present some applications obtained by using an own methodology 
(Daianu and Albu, 1996). 
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3. Local bifurcations in continuous-time dynamical systems  
    and transitions in European countries 
 
3.1. Using the potential functions to spatial representation of  
       inflation-unemployment relationship 
 

Every time, in economic literature the graphical representation of models is 
very useful to understand the intimate relations between variables. Till the PCs era 
and the development of some adequate software, only the graphical representation 
in 2-D was disposable for economists. A decisive role in the achievement of some 
sophisticated software to build 3-D representation of our models had the so-called 
theory of the potential-functions. Today, it is also integrated within the Catastrophe 
Theory, or more general Theory of Structural Stability, that cover the continuous-
time models. At its turn, this high-level theory is going to be integrated with the so-
called Deterministic Chaos Theory, constituting together a mega-theory named the 
General Theory of Discontinuities. 

In this section of the paper, we present how it looks in 3-D the time-evolution 
of relation between inflation and employment and the so-called contour-plot map in 
some European countries. These pictures are very useful to understand how they 
are the long-run trends and to obtain preliminary information about the existence of 
some eventually attractors. We build all the graphs with the support of the theory of 
potential functions and using the MathCAD-Professional 6 Plus soft. 

First group of graphs represents the dynamics in the three-dimensional 
space of the relation: rate of GDP growth (y) – GDP per capita, in constant prices 
(ylc) – unemployment rate (x). They are presented in figures from Annexes 4a, 4b, 
and 4c for three western countries and, respectively, in Annex 5 for five eastern 
countries. On the potential-surface we can see some small black zones, which 
means the existence of attractors. For instance, in case of Belgium (Annex 4a), 
there are three such zones around the points of coordinates (5.0; 14.0; -1.5), (10.8; 
16.0; -0.9), and respectively (13.0; 19.5; -1.7). Also, we can identify the years when 
they are occurred: 1975-76, 1981-82, and respectively 1993-94. The significance of 
these remarkable points is that they are points of some fundamental changes of 
trends. The evolution below and the evolution after these points are quite different. 
One important conclusion for western countries is that the unemployment level that 
corresponds to an attraction zone, i.e., the stabilisation level, is growing once the 
GDP per capita level is increasing. In case of eastern countries, due to the short 
period (the graphs in Annex 4 are based only on the data for period 1990-95) within 
one free-market economy system, it is difficult to conclude. However, we can affirm 
that the sign of one more structured economy is the occurrence of the mentioned 
attractors already existing in western countries. 
 Second group of graphs refers to the dynamics in the three-dimensional 
space of the following relation: rate of GDP growth (y) – GDP per capita, in constant 
prices (ylc) – yearly inflation rate (z). They are presented in figures from Annexes 
6a, 6b, and 6c for three western countries and, respectively, in Annex 7 for five 
eastern countries. In case of western countries, the conclusion is that the attractor 
in case of inflation is situated at one smaller level, even near zero value. In contrast 
with this situation, in eastern countries the mentioned attractor seams to be placed 
at very high level of inflation. 
 In order to achieve a more rigorous analysis we called the last results 
obtained within the integrated theory of bifurcations.            
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3.2. The prototype of the pitchfork bifurcation and its application  
        to investigate the unemployment dynamics   
 
 Coming from the empirical data on the evolution of the unemployment in the 
western countries in last 25-30 years and from the hypothesis on the natural rate of 
unemployment existing in literature, we conceived a model that can be described by 
the following first-order differential equation: 
 
dy/dt = α [ xn (y) – x (y) ]        (3.1) 
 
where, y is the GDP per capita, xn – “natural” unemployment, x – actual 
unemployment, and α - a coefficient. Let ycr be the “natural” or “critical” level of 
GDP per capita, and formulate (3.1) in terms of the deviations from the appropriate 
xcr and xncr levels (we chose xcr = xncr): 
 
dY/dt = α [ Xn (y) – X (y) ]        (3.2) 
 
with Y = y – ycr, Xn = xn – xncr, and X = x – xcr. Also, the following relations 
between X and Y and respectively between Xn and Y were initial supposed: 
 
X (Y) = a Y + b          (3.3) 
 
Xn (Y) = A Y3 + B Y2 + c Y + D       (3.4) 
 
where, a, b, A, B, c, and D are coefficients. So, in points where the two curves are 
intersecting will be achieved the natural level of y. The described system seems to 
be like one that has behaviour of type pitchfork bifurcation. However, taking into 
account the condition of an odd function for dY/dt = f ( Y; µ ) with respect to Y, i.e.,       
f ( Y; µ ) = - f ( - Y; µ ), we chose the solution B = 0, and D = b. So, the equation 
(3.4) was replaced by: 
 
Xn (Y) = A Y3 + c Y + b        (3.4’) 
 
Now, after some operations, the expression of function f can be written as: 
 
f ( Y; µ ) = β ( µ Y – Y3 )         (3.5) 
 
with β = - α / A and µ = ( a – c ) / A.  
 Define µ0 as that parameter value for which the eigenvalue of (3.1) or in the 
new form (3.4) is zero, i.e., ∂f (y*, µ0) / ∂y = λ = 0. Then, the conditions of the 
existence theorem are fulfilled and a pitchfork bifurcation occurs at µ0.  The 
existence theorems for the main types of bifurcations are presented in Annex 8.  
 We applied this model to the case of Belgium, but using three different sets 
of critical points and µ0 parameters. The main conclusion is that for greater level of 
GDP per capita the impacts of unemployment and respectively that of the natural 
unemployment on the economic growth (represented by changes in GDP) are 
changing in sense that the natural unemployment response to the deviation from 
the natural GDP level is getting smaller. Coming from a point, at a high level of GDP 
per capita (around 20,000 dollars/inhabitant, in case of Belgium), the structure of 
the relations between unemployment, in general, and the increasing rate of 
production (GDP) changed dramatically. From that point, the dynamics of 



unemployment and natural unemployment became smaller and smaller related to 
the GDP dynamics, their evolution being more autonomous, governed by different 
own lows. However, the conclusion must be certificate by application on huge 
statistical data. Unfortunately, the achievement of one more efficient methodology 
still remains for our future research. The dramatic changes evaluated by the model 
are suggested graphical in Figures 9 and 10 (where the annual change of GDP, is 
denoted by vy and GDP per capita by ylc). 
 
 

4 2 0 2 4
20

0

20
vy1ABY1t

vy2ABY2t

vy3ABY3t

,,Y1t Y2t Y3t  

12 13 14 15 16 17 18 19 20 21
10

0

10

vy1ABY1t

vy2ABY2t

vy3ABY3t

ylct  
 
 

Figure 9 

 18 



 
 

 
 

0 5 10 15 20

0

5

10

15

20

100

0

100

200

,,x ylc vy1AB

1 0.5 0 0.5 1
1

0.5

0

0.5

1

150 100

100

50

50

50

0
0

0

0

0

0

0

  50

  50

,,x ylc vy1AB  

0 5 10 15 20

0

5

10

15

20

10

0

10

,,x ylc vy2AB

1 0.5 0 0.5 1
1

0.5

0

0.5

1

10
5

5

5
0

0

0

0

0

0

  5
  5  5

  5   10

,,x ylc vy2AB  

0
5

10
15

20

0
5

10
15

20

0

1000

2000

,,x ylcvy3AB

1 0.5 0 0.5 1
1

0.5

0

0.5

1

2000
1500

1500

1000

1000

500
500

500

0

0

0

,,x ylc vy3AB

 

 
 

Figure 10 
 
 
 
 
 

 19 



3.3. A truncated version of the pitchfork bifurcation model and applications 
 
 As a continuation of the model presented in section 2.3, we present here a 
kind of pitchfork bifurcation, in sense that while the conditions of theorem A8.3 (from 
Annex 8) for a pitchfork are fulfilled, including that of odd function, the condition to 
remain within the unit interval [0;1] is violated. However, the applications of the 
model in case of some countries permitted to capture several important features 
during a medium or even long transition. 
 Let z(x) be the general three-order equation of inflation with respect to 
unemployment (x), where z and x are evaluated in terms of shares within the 
mentioned sum S 
 
z (x) = a x3 + b a x2 + c x + d       (3.6) 
 
and the following three additional relations between coefficients: d = 1; a = 2(c+2); 
and b= - 3(c+2). These relations permitted to define other function z* as function of 
x and the parameter c 
 
z*(x;c) = 2 (c+2) x3 - 3 (c+2) x2 + c x + 1      (3.7)  
 
The function f resulting from the difference between (3.7) and (3.6) and written that 
z(x)=1-x is as following: 
 
f(x;c) = 2 (c+2) x3 - 3 (c+2) x2 + c (x + 1) x = 0     (3.8)  
 
and it would be viewed as potential surface. Also, using the same procedure we 
write the so-called potential function from which is derived f(x;c) 
 
V(x;c) = { [ (c+2) x4 ] / 2 } - (c+2) x3 + [ (c + 1) x2         (3.9) 
 
The remarkable values of c are -4 and -2. Thus, in fact, there are two parameters c* 
and c** that are governing the dynamics of the system. 
We applied the model to the data for Belgium, France, UK, and Romania. The 
results were too different, showing firstly if an economy is structured or not. In 
Figure 11 are presented the graphs of potential function against unemployment for 
the yearly data in period 1970-96 for the three western countries and for monthly 
data among 1990-96 for Romania. Probably, more interesting are the graphs 
representing the time-evolution presented in Annexes 9, when we can identify the 
hot moments and their effect on the stability plan. The form of curves changed 
when the slow parameter c varies. On the first group of graphs, the change from 
curves having one non-stable equilibrium to ones having a stable equilibrium and a 
large zone of attraction around this means the transition from older periods to the 
actual period. The type of curves is changing fundamental, in western countries 
when parameter c has a transition from positive values to negative values. The 
largest shocks are very well presented on graphs and also the bifurcation set as 
well as. The trend is clear in case of western countries; it means the transition to a 
more stable and quite zone, with less strain, while in eastern countries, like in 
Romania in this example, the restructuring of economy remains to be achieved. A 
general spatial picture can be viewed in the graphs where both the shares of 
inflation and unemployment are plotted together with the c parameter. The 
curvature of spatial lines and the intensity of plotted colours are correlated with the 
strain in the system (Figure 12).  
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4. Global bifurcations and spiral-type chaos in an  
     inflation-unemployment cycle model 
 
4.1. Theoretical context 
 
In connection with the Shilnikov theorem [4] on the fulfilment of the local conditions 
of stability and the demonstration of presence of a homoclinical orbit it was 
specified that some specific dynamical systems are known which posses a 
homoclinical orbit and allow the fulfilment of the local stability proprieties of the 
Shilnikov theorem to be easily verified. In a series of papers [5] it was demonstrated 
that the following two-differential-equations dynamical system 
 
d2x/dt2 + a ( dx/dt ) + x = z        
dz/dt = f µ ( x ),         (4.1) 
 
or, written as a third-order differential equation, 
 
d3x/dt3 + a (d2x/dt2) + dx/dt = f µ ( x )      (4.2)  
 
with a as a constant, exhibiting chaotic behaviour for appropriate forms of the one-
parameter family of functions f µ ( x ).  
 For instance, the specification f µ ( x ) = µ x ( 1 - x ), i.e., a logistic function, 
like that which we used already in the section 2.3, yields geometrical objects that 
resemble the diverse Rössler attractors. The motion is characterised by a screw-
type or spiral-type structure depending on the magnitude of the parameter µ [6]. 
Other forms of the function f µ with similar non-invertibilities lead to comparable 
results (Lorenz, 1989). A graphical representation of Rössler model can be found in 
Figure 13, obtained by using an own algorithm to transform the differential-equation 
model into one model with finite differences.  
 
4.2. Spiral-type chaos in a specific cycle of inflation-unemployment relation 
 
 In this part of paper we present a very simple economic example of the 
emergence of a chaotic motion in three-dimensional systems analogous to the case 
presented above. We where inspired by the modified macroeconomic business 
cycle model with inventories which in its discrete-time version was first approached 
by Metzler (1941). Also, many improvements were coming from the Mundell’s 
analyse within his so-called supply-side economics (1990). Our model is very 
closed to that studied by Gandolfo (1983) and presented by Lorenz (1989). 
 Let y denote the GDP and assume that output adjust according to 
discrepancies between the desired (or expected) and actual inflation rate, i.e., 
 
dY/dt = α [ Xn (t) - X ( t ) ],  α > 0,       (4.3)  
 
with Xn ( t ) as the natural and X ( t ) as actual unemployment at t. We suppose also 
that the actual unemployment changes when disequilibria prevail on the goods 
market, i.e., on the inflation-side  
 
(dX/dt) (t) = λ [ Z ( t ) - Zn ( t ) ], λ > 0,       (4.4) 
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where Z ( t ) is the actual inflation and Zn ( t ) - the expected rate of inflation, 
respectively. The natural unemployment is assumed to depend linearly on the 
expected output, Ye ( t ), in t 
 
Xn ( t ) = h Y e ( t ),  h > 0,        (4.5) 
 
implying that 
 
(dXn/dt) (t) = h [(d Y e /dt) ( t ) ].         (4.6)  
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The expected output is determined according to a modified hypothesis of adaptive 
expectations which considers only the rate of change of current output but which 
also includes the changes in this rate: 
 
Y e ( t ) = Y + k1[ (dY/dt) (t) ] + k2 [ (d2Y/dt2) (t) ]     (4.7) 
 
Thus, expected output changes according to  
 
(dY e /dt) ( t ) = [ (dY/dt) (t) ] + k1[ (d2Y/dt2) (t) ] + k2 [ (d3Y/dt3) (t) ]    (4.8) 
 
Differentiating (4.3) with respect to time and substituting for [(dXn/dt) (t)] and     
[(dX/dt) (t) ] yields the third-order differential equation 
 
[ (d3Y/dt3) (t) ] + { [ α h k1 - 1 ] / ( α h k2 ) } [ (d2Y/dt2) (t) ] + (1/k2) [ (dY/dt) (t) ] = 
 
   = [ λ / ( a k2 ) ] [ Z ( t ) - Zn ( t ) ]    (4.9) 
 
or, abbreviated, 
 
[ (d3Y/dt3) (t) ] + K1[ (d2Y/dt2) (t) ] + K2 [ (dY/dt) (t) ] = β [ Z ( t ) - Zn ( t ) ],   (4.10) 
 

 with β = λ / ( a k2 ). 
Gandolfo (1983) demonstrated that a equation like (4.10) is unstable when Z ( t ) is 
a linear function of output, e.g., in our case,  Z ( t ) = ( 1 - c ) Y ( t ) - Z0, 1≥ c > 0, 
when Zn is autonomous, i.e., Zn ( t ) = Zn0, Zn0 > 0, and when K1 < 0.  
 The linearity of the inflation rate and expected inflation functions is assumed 
only for technical convenience. However, there is no convincing reason why these 
linear functions should constitute the only economically relevant forms. Once the 
linearity assumption is abandoned, it can be shown that the modified model has the 
form (4.2) with a noninvertible function f µ ( . ). 
 Define y*, zn*, z*, x*, and xn* as the equilibrium values of output, expected 
and actual inflation rate, unemployment and natural unemployment, respectively, 
and consider the deviation from these equilibrium values, i.e., y=Y - y*, zn=Zn - z*, 
z=Z - z*, x=X - x*, and xn=Xn - xn*. 
 Equation (4.10) then becomes  
 
[ (d3y/dt3) (t) ] + K1[ (d2y/dt2) (t) ] + K2 [ (dy/dt) (t) ] = β [ z ( t ) - zn ( t ) ]   (4.11) 
 
Assume that both actual and expected inflation are nonlinear function of output. 
Possible shapes of the functions that exhibit two points of intersection of the actual 
inflation and expected inflation can be supposed. The difference ( z(y) - zn(y) ) 
therefore describes a one-humped curve similar to the logistic function f µ ( x ) = µ x 
( d - x ), used by Ameodo et al. (1981) for the case d=1. 
 
 Assumption 4.1 
 
 (i) K1 > 0 and K2 close to unity. 
 (ii) β [ z µ ( y ) - zn µ  ( y ) ] is one-humped function f µ ( y ) with a critical   value 
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ycr > 0, the slope of which can be controlled by a single parameter µ. 
Under Assumption 4.1, our model (4.11), also being similar to the Metzlerian model, 
is nearly identical with equation (4.2). The Lie derivative (the divergence) of (4.11) is 
negative because of K1 > 0 [7]. The system is therefore volume contracting and 
possesses an attracting invariant set. The dynamic behaviour of (4.11) is not 
essentially different from that of (4.2) and it can see that (4.11) possesses a 
Shilnikov-type structure for the assumed values of K1, β, and the slope of the 
excess supply function. In contrast to logistic, one-dimensional difference 
equations, rather flat shapes of the one-humped curve are sufficient to encounter 
chaotic motion (Arneodo et al., 1982). It can be expected that several other 
modifications of the model are possible which still imply the emergence of a 
Shilnikov-type attractor when the excess supply function is noninvertible. The main 
remaining problem, including for our future research, is how we should capture 
these types of attractors from the actual set of existing statistical data. 
 
 
5. A discrete-time non-linear model to investigate transitions  
    to chaos in a modified Phillips curve system 
 
 As we showed in section 2.2, the stagflation phenomenon was relatively 
recent added to the problematic of inflation-unemployment relationship (Santeremo 
and Seater, 1978). Also, we mention that early empirical investigations indicated an 
inverse non-linear relationship (Phillips, 1958; Lipsey, 1960). An attempt to model 
the stagflation phenomenon has included through introduction of some additional 
factors in explaining actual inflation, such as the expected inflation rate (Friedman, 
1968). One more complete approach to model the stagflation is provided by Fischer 
and Jammernegg (1986) who conceived a dynamical system based on the 
catastrophe theory approach (Lorentz, 1989). Among studies that incorporated the 
Phillips curve we mention here those of Goodwin (1967), Pohjola (1981), and 
Soliman (1996).  
 Our model consists in the following system of three equations: 

 
π t

π et 1

ut 1

g ut
.h1 π et

π et
.h2 π t π et

.h3 π et 1 π t ut  
 

where πt and πet are the actual inflation and expected inflation rates in period t 
respectively and ut is the level of unemployment in period t. The incorporation of 
inflationary expectations into actual inflation is represented by the parameter h1(0 
≤ h1 ≤ 1). The second equation expresses the fact that the inflationary expectations 
are adaptive expectations in our case. The parameter h2 (0 ≤ h2 ≤ 1) represents the 
degree that errors made in predicting actual inflation are corrected. The 
unemployment dynamics is expressed by the last equation of system, which 
includes the assumption that the next unemployment rate will be influenced by the 
difference between expected inflation and actual inflation. The extent of this 
influence is governed by the elasticity of unemployment with respect to real 
monetary growth, therefore parameter h3 (h3 > 0). 
 Although there is theoretical justification for non-linear inflation-
unemployment in literature, there is no agreement with respect to its functional 
form. In our model we considered the following functional form: 
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where k1, k2, k3, k4, k5, and lcr are parameters. We mention that this functional 
form represents the result of another model used by us for the determination of the 
critical level of unemployment, ucr (ucr = 1 - lcr), under the condition of a Cobb-
Douglas function of production with respect to the employment level.  
 The simulations obtained with the model demonstrate a very complex 
dynamics of inflation-unemployment relationship and the existence of attractors in 
case of some critical values attributed to parameters as well. Also, the great 
sensibility to the small differences in the initial values is evident. In Figure 14 are 
presented several functioning regimes in the (πt – ut -1)-space varying with two sets 
of data attributed to parameters, but many others regimes can be extracted from the 
model simulation. The values of fixed parameters are lcr = 0.71; k1 = 3; k2 = 0.8; k3 
= 6; and k4 = 4. As initial set of values for π, u, and πe, we chose π0 = 0.08, u0 = 
0.09, and respectively πe = 0.08. The parameters that change are h1 (0.1; 0.2; 0.3; 
0.5), h2 (0.1; 0.3; 0.45), and h3 (0.6; 0.5; 0.7; 0.9).    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 27 



  

0.05 0.1 0.15
0

0.1

0.2

π t

u

0.08 0.09 0.1 0.11 0.12
0.05

0.1

0.15

π t

u

0.08 0.09 0.1 0.11
0.06

0.08

0.1

0.12

0.14

π t

ut 1 t 1 t 1

  

0.08 0.09 0.1 0.11 0.12
0.05

0.1

0.15

π t

u

0.06 0.08 0.1 0.12
0

0.05

0.1

0.15

π t

u

0.08 0.09 0.1 0.11
0.06

0.08

0.1

π t

ut 1 t 1 t 1

 
 

0.088 0.09 0.092 0.0940.096
0.08

0.085

0.09

0.095

π t

ut 1

0 0.1 0.2 0.3
0.2

0

0.2

0.4

π t

ut 1

0.2 0 0.2 0.4
0.2

0

0.2

0.4

π t

ut 1

 

 
 

Figure 14 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 28 



 
6. Conclusions 
 
 In summary we have illustrated several phenomena exhibited by the 
investigation of the inflation-unemployment relationship and its attached strain 
induced in economic systems.  
 Our goal was to demonstrate, and we hope that at least partially we issued, 
that the actual transition in eastern countries represents only a stage within a long-
run wave evolution on the economic development scale. Also, it was demonstrated 
an relative important transition process including in western countries, namely to a 
higher natural level of employment and to a period in which the unemployment 
become more and more autonomous relating to the dynamics of GDP. On the 
unemployment-side occurred a strong relaxation, higher levels of unemployment 
being viewed as normal in contrast to the situation on the inflation-side.  

On the other hand, in Eastern European countries it seems to exhibit a 
mirrored-situation: relative small levels of unemployment, relating to the severe 
structural crisis that is manifesting after 1989, and huge inflation rates. Despite of 
these differences the signs of an imminent converging process were emerged. To 
accelerate the process, the immediate and urgent solution, especially for countries 
as Romania, is to finish the great privatisation doubled by a huge effort oriented to 
one process of profound economic restructuring. In terms of the inflation-
unemployment relationship this means higher unemployment and controlled 
decreasing inflation. In such hot period it is important that the government to benefit 
of the population support and in Romania this is the case after November 1996.  

Important for the actual transition in eastern countries is that the converging 
process does not suppose necessarily a repetition of the western evolution coming 
from the ‘60s. In chapter two is suggested that changing the parameters of curves 
in the inflation-unemployment –space (that reflects in fact the structural changing) 
can be assured a more rapid transition as a veritable jump. A first modality to 
discover in which zone is placed an economy from the long-run viewpoint is offered 
by the model derived from the three-degree potential-function doubled by the 
estimation of fractal dimension. 

The bifurcations models facilitate a deeper analysis. Moreover, a pitchfork 
model like that used in section 3.3 can indicate the actual stage of an economy 
relating to a so-called non-structured degree. Aside of the traditional methods, a 
developed model in this sense would be an additional tool for the economic policy 
makers. 

Some promising results seem to emerge from the more complicated models 
like spiral-type model and respectively Rössler-type model. In this sense, to build 
variants of models more adapted to include the actual statistical data continuing to 
remain in our duty for the future research projects. However, this kind of models 
together with the non-linear discrete-time model of the modified Phillips curve give 
us, and would have to give to the policy makers, an important alarm-signal, namely 
that the structure of apparently simple classic models may exhibit a large 
behavioural menu and that the chaotic regimes can emerge when the actual values 
of some special parameters are evolving near certain threshold-values. Additionally, 
the named regimes may remain hidden in the context of some traditional models 
usually applied by the policy makers.  
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Notes 
 
[1] The modified Phillips curve can explain the simultaneous presence of high 
inflation and unemployment if inflationary expectations are high. An alternative way 
of modelling the stagflation phenomenon was provided by Woodcock and Davis 
(1979) based on the catastrophe theory. Also, Fischer and Jammernegg (1986) 
applying a cusp model on the US economy obtained better results then in case of 
the classic model.   
 
[2] The conclusions may be result from our limited possibilities to model, from the 
limits of our present science and our existing mathematical apparatus, from our own 
power of understanding reality (the scientists from other disciplines as physics, for 
instance, had already the power to affirm frankly their own limits in investigating and 
understanding, but some economists have yet reticence to affirm this). Maybe, the 
main preoccupation of research would be only to register the evidence of facts, 
even when they refuse to come into our existent models.  Using the recent results 
of Chaos Theory and its close Fractal Geometry and respectively Catastrophe 
Theory can develop also the investigation of some economic time series or 
constructing some models including up to 4 or even 5 slow parameters. But 
frequently the explanations will be beyond those accepted by standard economic 
theory. Consequently, the partisans of standard economics will contest many of 
these studies. 

 
[3] For details see Peters (1991). 
 
[4] Many dynamical systems in continuous time as well as in discrete-time (n ≥ 2), 
for which chaos has been established either theoretically or numerically possess 
horseshoes and transversal homoclinic orbits. However, it is usually difficult to 
establish the existence of horseshoes for an arbitrary dynamical system. A theorem 
of Shilnikov provides sufficient conditions for the existence of horseshoes in the 
Poincare map of a three-dimensional, continuous-time system (Guckenheimer and 
Holmes, 1983; Arneodo, Coullet, and Tresser, 1981).    
 
[5] For details see Arneodo, Coullet, and Tresser (1981, 1982), Glendinning and 
Sparrow (1984), Lorenz (1989), and de Vilder (1995). 
 
[6] A geometrical description of the dynamical behaviour in these spiral-type 
attractors can be found in Berge et al. (1986).   
 
[7] The calculated Lyapunov exponents for similar models, when the parameters 
are adequate selected, yield a positive and a negative exponent, in addition to zero 
exponent (see Lorentz, 1989 for details).  
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(continued) 
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(continued) 
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Annex 2b 
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(continued) 
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Annex 3 

 
By applying the methodology on data relating to the selected Western countries 

resulted the estimate values of H for the period 1970-1995 which are presented in 

the following table: 

____________________________________________ 
    Hdoup  Hdo 

____________________________________________ 
Belgium   0.861  0.841 

Denmark   0.889  0.897   

France   0.901  0.906   

Germany   0.773  0.677   

Greece   0.823  0.812  

Italy    0.943  0.938 

Ireland   0.739  0.747   

Netherlands   0.792  0.754   

Portugal   0.978  0.966   

Spain    0.909  0.907    

United Kingdom  0.885  0.856 

____________________________________________ 

 As a comparison, but less relevance because of the monthly data, for 

Romania the calculated value of Hdoup was about 0.895 for a period of about of 3 

year 1993-1996 (the monthly inflation rate was replaced by one yearly equivalent 

rate). 
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Annex 4b 
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Annex 4c 
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(continued) 
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Annex 6a 
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Annex 6b 
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Annex 6c 
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Annex 7 
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(continued) 
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Annex 8 

 
Some theoretical considerations on the local bifurcations in continuous-time 
dynamical systems 
 
In this section we consider useful to present briefly the general considerations on 
the local bifurcations in continuous-time dynamical systems, in the sense that only 
the behaviour of a system in the neighbourhood of a single equilibrium point is 
affected. 
 Consider the ordinary differential equation 
 
dx/dt = f(x,µ),  x ∈ R, µ ∈ R,       (A8.1) 
 
with µ as a parameter. Assume that (A8.1), for µ = µ0, has an equilibrium point 
(x*,µ0) such that 0 = f(x*,µ0). The eigenvalue of (A8.1) is given by λ = ∂f(x,µ)/∂x, and 
it is well-known that the equilibrium point is locally asymptotically stable as long as 
λ < 0 at (x*,µ0). Assume that at (x*,µ0) the eigenvalue is equal to zero. It follows from 
the implicit function theorem that the equilibria of (A8.1) for values of µ different  
from µ0 can be expressed as a smooth function x = x(µ). The function x(µ) is called 
a branch of equilibria. If at (x*,µ0) several branches of equilibria come together, the 
point (x*,µ0) is said to be a bifurcation point. The presentation of branches of 
equilibria in (x – µ) - space is called a bifurcation diagram. The value of µ at which 
the bifurcation occurs is called the bifurcation value of µ. If no bifurcation occurs at 
an equilibrium (x*,µ0), the equilibrium is said to be hyperbolic. 
The bifurcation phenomenon can be related to the notion of structural stability. A 
dynamical system is called structurally stable if the qualitative dynamical properties 
of the system persist with small variations in its structure, i.e., when varying the 
parameters or considering small perturbations of the system. Assume that a 
dynamical system possesses a unique and asymptotically stable equilibrium then 
the structural stability implies that the equilibrium is unique and asymptotically 
stable for different parameter values as well. In other words, a dynamical system is 
structurally stable if the flow of a slightly varied system is topologically equivalent to 
the original flow, i.e., if the two trajectories stay close together.  
We present briefly, as following, the three types of bifurcation for the one-
dimensional case, respectively fold, transcritical and pitchfork bifurcations though 
these bifurcations can occur in higher-dimensional system as well. 
 
Fold Bifurcation 
 
Consider the differential equation (A8.1) and let (x*,µ0) = (0,0) for simplicity. 
 
 Theorem A8.1  (Fold Bifurcation) 
 
Let f in (A8.1) be C2 and assume that there is an equilibrium point (x*,µ0) = (0,0). If 
 (1)  [∂f(0,0) / ∂x] = λ = 0, 
 (2)  [∂2f(0,0) / ∂x2] ≠ 0, 
 (3)  [∂f(0,0) / ∂µ] ≠ 0, 
 

  i) then, depending on the sign of the expressions in (2)  
   and (3), there are 
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(continued) 

 
  ii) no equilibria near (0,0) if µ < 0 (µ > 0), and 
  iii) two equilibria near (0,0) if µ > 0 (µ < 0). 

 
The fold bifurcation is sometimes also called a saddle-node bifurcation. Conditions 
(2) and (3) are called transversality conditions. The prototype equation for the fold 
bifurcation is dx/dt = µ – x2. If the sign of the transversality conditions are negative 
and positive, respectively, and the parameter µ is lower than the bifurcation value µ0 
= 0, no equilibrium exists. For µ > µ0, two branches of equilibria emerge, one being 
stable and the other being unstable. Alternatively, if (3) has a negative sign, the 
bifurcation diagram would appear mirror-imaged with respect to the z-axis. If (2) and 
(3) are both positive, the stability of the two equilibrium branches is reversed.   
 
 Theorem A8.2  (Transcritical Bifurcation) 
 
Let f in (A8.1) be C2 and assume that there is an equilibrium point (x*,µ0) = (0,0). If 
 (1)  [∂f(0,0) / ∂x] = λ = 0, 
 (2)  [∂2f(0,0) / ∂x2] ≠ 0, 
 (3’)  [∂2f(0,0) / ∂µ∂x] ≠ 0, 
 
then, depending on the sign of the expressions in (2) and (3’), 
 
 i) the equilibrium x* is stable (unstable) for µ < 0 (µ > 0), and 
 ii) the equilibrium x* becomes unstable (stable) for µ > 0 (µ < 0) 
 
and a branch of additional stable (unstable) equilibria x(µ) emerges. 
 
The transcritical bifurcation is thus characterised by an exchange of stability of the 
origin. The prototype equation for the fold bifurcation is dx/dt = µx– x2 and the sign 
of the transversality conditions (2) and (3’) are negative and positive, respectively. 
For µ < µ0 = 0 the origin x = 0 is the only equilibrium point which is stable. If µ < 
µ0, the equilibrium x = 0 becomes unstable and a new equilibrium line x*(µ) emerges 
which is stable. Also, if the sign of (3’) is reversed, the bifurcation diagram would 
appear mirror-imaged. If (2) has a positive sign, the stability of the equilibrium for 
different µ would be reversed.   
 As economic examples we mention here only a partial-analytical model of  
the labour market in case of the fold bifurcation and a “neoclassical” growth model 
(including the incomplete Inada conditions) in case of the transcritical bifurcation.  
A final example of a bifurcation of an equilibrium into two or more stable and 
unstable equilibria is the so-called pitchfork bifurcation. This bifurcation can occur in 
dynamical systems of the form (A8.1) with the additional assumption that the 
function f is an odd function with respect to x, i.e., f(x,.) = -f(-x,.). When f is an odd 
function, then the sufficient conditions for a transcritical bifurcation are not fulfilled 
since condition (2) in Theorem A8.1 will be violated for at least one x. Condition (2) 
will be replaced by the requirement that the third partial derivative with respect to x 
is different from zero. 
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(continued) 

 
 

 Theorem A8.3  (Pitchfork Bifurcation) 
 
Let f in (A8.1) be C3 and assume that there is an equilibrium point (x*, µ0), = (0,0). If 
 (1)  [∂f(0,0) / ∂x] = λ = 0, 
 (2’)  [∂3f(0,0) / ∂x3] ≠ 0, 
 (3’)  [∂2f(0,0) / ∂µ∂x] ≠ 0, 
 
then, depending on the sign of the expressions in (2’) and (3’), 
 
 i) the equilibrium x* is stable (unstable) for µ < 0 (µ > 0), and 
 ii) the equilibrium x* becomes unstable (stable) for µ > 0 (µ < 0) and two 
branches of additional stable (unstable) equilibria x(µ) emerges. 
The prototype equation in case of the pitchfork bifurcation is dx/dt = µx– x3. The 
sign of the transversality condition (2’) and (3’) in Theorem A8.3 are negative and 
positive, respectively, such that a so-called supercritical pitchfork bifurcation occurs 
with the bifurcating branches representing stable equilibria. As in case of the 
transcritical bifurcation, the bifurcation diagram in mentioned figure would appear 
mirror-imaged if the sign of (3’) were reversed. If (2’) were positive, then the two 
emerging additional equilibria would be unstable. In that case, a subcritical pitchfork 
bifurcation would occur.  
 As application in economics, we mention an abridged version of the Kaldor 
model with an S-investment function and under the assumption that investment is 
independent of the capital stock.  
 All three types of bifurcation presented can occur also in higher-dimensional 
continuous-time dynamical systems. Then the requirement λ = 0 has to be replaced 
by the condition that out of the n eigenvalues a single eigenvalue is zero while k 
eigenvalues are positive and n – k – 1 eigenvalues are negative. Furthermore, the 
conditions on the single partial derivatives must be replaced by the appropriate 
matrix expressions.  
There is also the so-called Hopf bifurcation in continuous time, but this requires an 
at least two-dimensional system. The presentation of the Hopf bifurcation is too 
large and it is not the topic of this paper. Here, we mention only the prototype 
equations: 
 
dx/dt = - y + x ( µ - ( x2 + y2 ) )         
 
and 
 
dy/dt = x + y ( µ - ( x2 + y2 ) )          
 
 As economic applications we refer only to a transformed version of the same 
Kaldor model (which serves as a prototype model in nonlinear dynamical 
economics) and to an augmented IS-LM business cycle model. 
In general, under some specific conditions, the presented types of bifurcations  
occur also in the discrete-time dynamical systems.  
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Annex 9 
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(continued) 
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