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Abstract. To accurately forecast non-linear economic time series with 

small data sets, the weighted non-linear grey Bernoulli model (WNGBM) is built in 

this paper. Through the optimization of the power index and weights for 

accumulative generation, WNGBM can more actively adapt to non-linear 

fluctuations in the raw data than NGBM. A typical case of topological rolling 

prediction verifies that the WNGBM exhibits better non-linear prediction 

capabilities than other grey models. Furthermore, the forecasting performance of 

WNGBM is compared with that of Holt-Winters, Support Vector Regression (SVR), 

and BP Neural Network (BPNN) based on the Shanghai Stock Exchange(SSE) 

Composite Indices. Results indicate that WNGBM shows the best ability to fit non-

linear data from small sample sizes, while it has a slightly higher error in the 

prediction of out-of-sample data for the SSE Composite Index than that of BPNN. 

The extreme values mean that the prediction curve of the Holt-Winters method 

generally deviates from the actual data, which leads to a greater prediction error. 

Keywords: grey systems theory; time series prediction; non-linear grey 

Bernoulli model; small data sets; stock exchange composite index. 
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1. Introduction 

Compared to classical statistical prediction methods, the grey forecasting 

(Deng, 2002) is a novel prediction method based on grey theory. The advantage of 

this method is that it is efficient in modeling and forecasting raw sequences with 

sparse data (at least four sample points are required). In grey theory (Deng, 2002; 

Liu & Lin, 2006), most real-life systems are regarded as “generalized energy 

systems”, these include: agricultural systems, industrial systems, ecosystems, etc. 

Any non-negative smooth discrete sequence produced by these systems can be 

converted into a sequence based upon the grey exponent law through the 

application of an accumulative generation operator (AGO). Then, a grey 

differential equation is constructed to describe this exponent law and used to 
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forecast the sequence produced by AGO. Finally, the final forecast values can be 

derived by reducing the forecast results through inverse accumulative generation 

operators (IAGO).  

The most widely used grey forecasting model GM (1,1) – a first-order one-

variable grey differential equation – is proposed based on the aforementioned 

principle (Deng, 2002). Its modeling principle does not depend on distribution 

information from the raw data, but on the application of a first order accumulative 

generation operator (1-AGO), so as to make the generated sequence display the 

approximate exponential growth tendency. Based on this, a first-order grey 

differential equation is constructed and solved. The forecast values are then derived 

from the first order inverse accumulative generation operator (1-IAGO). Due to 

GM (1,1) can be constructed without a large sample, and it is easy to be built and 

calculated, GM (1,1) and its improved variant models, have been widely used (Li 

et al, 2003; Wang & Hsu, 2008; Wang et al., 2014).  

The non-linear grey Bernoulli model (NGBM) is a type of grey forecasting 

model based on Bernoulli equation (Chen, 2008). Because its form and forecasting 

function are non-linear, it can effectively forecast time sequence data exhibiting 

non-linear fluctuations, while traditional GM (1,1) models cannot. Similar to 

traditional grey models, the prediction precision was improved by the particle 

swarm optimization algorithm (Zhou et al., 2009), Nash equilibrium based 

optimization method (Chen et al., 2010).Though NGBM is better than traditional 

grey models at forecasting non-linear economic time series, for wildly fluctuating 

raw data, its prediction precision is not currently high as will be later demonstrated 

in the study of test-cases.  

In fact, the data at different time points play different roles in the output 

forecast, which should be taken into consideration especially for the modeling of 

raw data with obvious fluctuations as this can provide an effective description, and 

record, of such random variations. 

This study applies different weights to data at different time points in the 

process of the accumulative generation operator on the raw data, thereby enhancing 

the flexibility of NGBM and its ability to fit a fluctuating economic time series. 

The improved NGBM is named as a weighted non-linear grey Bernoulli model 

(WNGBM). Moreover, traditional forecasting methods such as Holt-Winters (Xu, 

2005) and intelligent forecasting algorithms such as SVR (Li et al., 2013; 

Suganyadevi&Babulal, 2014) and ANN (Ren et al., 2014) can also be applied to 

forecast non-linear economic time series with small data sets. This work will 

attempt to compare those methods with the proposed WNGBM (Wang et al., 

2016). 

The rest of the paper is structured as follows: Section 2 presents the 

construction process of WNGBM. Section 3 proves the advantage of the WNGBM 

over the NGBM and explains the reasons by a classical case. Section 4compares 

the forecasting performance of WNGBM, Holt-Winters, SVR, and BPNN using 
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the non-linear time series of SSE Composite Index. Finally, the paper concludes 

with some comments in Section 5. 

 

2. Methodology 

For the prediction of the non-linear time series with small sample sets, an 

NGBM’s performance is better than that of traditional grey forecasting models, but 

it still cannot adapt to volatile non-linear time series. In this section, the main 

methodology for building a WNGBM (Wang et al., 2016) is presented. 

2.1 The constrained first order weighted generation operators 

In grey forecasting theory, accumulative generation operator, and its 

inverse, are two basic operators applied to mine the raw data and reduce (simplify) 

the original appearance of the data. To reflect the importance of data at different 

time points, the weighted accumulative generation operator and its inverse are now 

introduced. 

Definition 1. Assume that (0)X  is a sequence of raw data and D a sequence 

operator satisfying: 

 (0) (0) (0) (0)(1), (2), , ( )X x x x m ,       (1) 

 (1), (2), , ( )m    ,       (2) 

and 

 (0) (0) (0) (0)(1) , (2) , , ( )X D x d x d x m d ,             (3) 

where (0) (0)

1

( ) ( ) ( )
k

i

x k d i x i


 , 1,2, ,k m , 
1

( )
m

j

j m


 , 0 ( )j m  , for 

1,2, ,k m . Then the sequence operator D is a constrained first-order weighted 

accumulative generation operator of (0)X , denoted 1-CWAGO. 

Assuming the total weight is a constraint on m, the data are endowed with 

time-variant weights in 1-CWAGO. This indicates that the data at different times 

can play different roles in the forecasting process. Since, according to the 

accumulating generation operator described by Liu & Lin (2006), the weight 

values obtained by (1-AGO) are 1, it is unable to distinguish the importance of data 

at different times. This shows the difference between 1-CWAGO and 1-AGO. 

Definition 2. Assume that (0)X  is a sequence of raw data and D is a 

sequence operator such that: 

 (0) (0) (0) (0)(1), (2), , ( )X x x x m ,               (4) 

 (1), (2), , ( )m    ,                (5) 

and 

 (0) (0) (0) (0)(1) , (2) , , ( )X D x d x d x m d ,          (6) 
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where (0) (0)(1) (1) (1)x d x  , (0) (0) (0)( ) ( ) ( 1) ( )x k d x k x k k     , 
1

( )
m

j

j m


 , 

0 ( )j m  , for 1,2, ,k m . Then D is a constrained weighted first-order inverse 

accumulative generation operator of (0)X , denoted 1-CWIAGO. 

1-CWIAGO is an inverse operator corresponding to 1-CWAGO. 1-

CWAGO sequences which are forecasted by the grey model constructed by the 

sequences generated by 1-CWAGO are not the actual sequence. Therefore, the 

function of 1-CWIAGO is to convert the direct output results of the grey model 

into the forecast values of actual data by reduction. Compared with 1-AGO, as 

described by Liu & Lin (2006), 1-CWIAGO is able to perform more accurate 

reduction based on the weights of the data at different times. It is noted that 1-AGO 

is a special case of 1-CWIAGO: in the case of ( ) 1, 1,2, ,k k m   , 1-CWIAGO 

degrades to 1-AGO. 

2.2 Weighted non-linear grey Bernoulli model (WNGBM) 

Based on the 1-CWAGO and 1-CWIAGO, the traditional non-linear grey 

Bernoulli model proposed by Chen (2008) can be extended to a weighted non-

linear grey Bernoulli model (WNGBM). The modeling process is summarized as 

follows. 

Step1: assuming the original series of raw data contains m entries: 

 (0) (0) (0) (0)(1), (2), , ( )X x x x m ,                     (7) 

where x(0) (k) represents the behavior of the data at time k  for k =1,2, ,m . 

Step 2: construct (1)X  by applying a one-time weighted accumulative 

generation operator (1-CWAGO) to (0)X : 

 (1) (1) (1) (1)(1), (2), , ( )X x x x m ,                      (8) 

where (1) (0)

1

( ) ( ) ( )
k

i

x k i x i


 ， 1,2, ,k m . 

The stepwise ratio of 1-AGO sequence (1)X is given by: 

   
   

   

       
   

 
1 0 1

1

1 1

1
1

1 1

x k x k x k
k k

x k x k
 

 
   

 
         (9) 

where  
   

   

1

1
1

1

k

i

x k
k

x i









; 2,3, ,k m  . 

According to the properties of a non-negative smooth sequence (Liu & Lin, 

2006), we obtain: 
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   
   

   

1

1

1
[1,1.5)

1

x k
k

x k
  


          (10) 

Hence, it is found that (1)X  is fit for constructing the grey differential equation. 

Step 3: the shadow equation of  WNGBM has the following form: 
(1)

(1) (1)ˆ ( )
ˆ ˆ( ) ( )

ndx t
ax t b x t

dt
     ,                        (11) 

where  represents the grey forecast value. When 0n  , the solution reduces to the 

weighted GM (1, 1) equation, when 2n  , the solution reduces to the weighted 

grey Verhulst equation. The corresponding particular solution of Eq. (11) is: 

x̂(1)(k +1) =
b

a
+ x(0)(1)( )

1-n

-
b

a

é

ë
ê

ù

û
úe

-(1-n)ak
ì
í
ï

îï

ü
ý
ï

þï

1

1-n

,  1, 1,2,3,n k            (12) 

Step 4: the structural parameters a and b can be solved by discretization of Eq. 

(11). The grey derivative for the first-order grey differential equation, with 1-

CWAGO, is conventionally represented by: 
(1)

(1) (1) (0)
ˆ ( )

( 1) ( ) ( 1) ( 1)
dX t

X k X k k x k
dt

            (13) 

and the background value of 
(1)ˆ ( )dX t

dt
 can be defined as: 

(1) (1) (1)( 1) 0.5 ( 1) 0.5 ( )z k x k x k           (14) 

The discretedifferential equation then can be obtained: 
(0) (1) (1)( ) ( ) ( )

n

x k az k b z k                     (15) 

From Eq. (13), the structural parameters a and b  can be evaluated by least 

squares method, as follows: 

a,b( )
T

= BTB( )
-1

BTY ,                 (16) 

where 

(1) (1)

(1) (1)

(1) (1)

(2) (2)

(3) (3)

( ) ( )

n

n

n

z z

z z
B

z m z m

     
 

    
 
 
     

and 

(0)

(0)

(0)

(2) (2)

(3) (3)

( ) ( )

x

x
Y

m x m







 
 
 
 
 
  

. 

Step 5: apply the 1-CWIAGO to (1)ˆ ( )x k  and obtain the simulation and 

forecasting value: 
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(0) (1) (1)ˆ ˆ ˆ( 1) ( 1) ( ) ( 1)x k x k x k k       for 1,2,3,k  .    (17) 

Based on this description, the grey predictor composed of 1-CWAGO, 1-

CWIAGO, and WNGBM can be constructed by: 
(0) (0)ˆ ( 1) CWIAGO NGBM CWAGO ( )x k x k         (18) 

Step 6: analyze the modeling error using both the relative and average 

relative errors. For the forecast from models derived from datasets with more than 

four samples, users are to apply topological rolling error analysis to test the 

forecasting errors. The specific process and NGBM modelling procedure are 

identical to the last step of the design process. 

Step 6: the residual error test is adopted to compare the actual value with 

that forecast. The residual error at k and average residual error of the grey 

forecasting are usually defined as: 

Relative error
(0) (0)

(0)

ˆ ( ) ( )
( ) 100%

( )

x k x k
k

x k



   , 2,3,4,k m , (19) 

and 

Average relative error
2

1
( ) ( )

1

m

k

avg k
m

 


 

 , 2,3,4,k m . (20) 

If the number of raw data points m  is greater than 4, a WNGBM 

topological rolling model can be constructed. Then topological rolling error 

analysis is applied to test the one-step prediction error of other data apart from that 

in the sample.  

Firstly, a WNGBM is constructed on the basis of the first four entries in 

the dataset  (0) (0) (0) (0) (0)(1), (2), (3), (4)X x x x x , and the value of the next point

(0)ˆ (5)x  is forecast. Then, WNGBM is built using the first five entries in the dataset

 (0) (0) (0) (0) (0) (0)(1), (2), (3), (4), (5)X x x x x x to predict the value of the sixth point

(0)ˆ (6)x . This procedure is repeated until the end of the sequence. The topological 

rolling error is defined as: 
(0) (0)

(0)

ˆ ( 1) ( 1)
( , 1) 100%

( 1)

x k x k
tp k

x k


  
  


， 4,5, , 1k m  .   (21) 

The average topological rolling error is: 
1

4

1
( , ) ( , 1)

4

m

k

tp avg tp k
m

 




 



.
      (22) 

 

2.3 Parameter optimization based on Nash equilibrium 

The traditional NGBM model has only one unknown parameter, namely its 

power index n  which can be easily optimized by computer program. In the 
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WNGBM model (Wang et al., 2016),m weights ( ), 1, 2, ,i i m   are unknown, 

apart from power index.  

Supposing the initial condition value of the power index is 0n  and the 

initial condition of the weights is ( ) 1, 1,2, ,i i m   : the optimization model is 

built from the viewpoint of Nash equilibrium (Chen, 2010)to minimize the 

forecasting error. Under the condition of giving the raw data sequence (0)X , the 

minimization of average relative error is the objective of the optimization as stated 

in Eq. (23). 

 (0)

, ( )
2

1
Min , ( ) | Min ( )

1

m

n k
k

n k X k
m

  


 
  

 
                (23) 

where the power index n  is a real number (n ≠ 1), and 
1

( ) (0, ), ( )
m

k

k m k m 


  . 

Based on Eq. (23) and assisted by the operations research software, 

LINGO, the optimal Nash solution *

Nn  and * ( )N k  for 1,2, ,k m can be reached. 

The optimization process is as follows: 

   

  
   

* (0)

0 ( ) 0

* (0) *

1 0( )

** (0)

( )

* (0) *

1 ( )

* (0

( )

Arg Min | , ( ) 1, 1,2, , ,

( ) Arg Min ( ) | , , 1, 2, , ,

Arg Min | , ( ) , 1, 2, , ,

( ) Arg Min ( ) | , , 1, 2, , ,

Arg Min |

n

k

i n i

i ik

N n

n n X k k m

k k X n n k m

n n X k k m

k k X n n k m

n n X





 

  

 

  





    

    

 

    

   
   

*)

* (0) *

( )

, ( ) , 1, 2, , ,

( ) Arg Min ( ) | , , 1, 2, , .

N

N Nk

k k m

k k X n n k m




  



    

     (24) 

In Eq. (24), the process for solving *

Nn  and * ( )N k  can be described as a 

numerical application of the generalized Nash equilibrium algorithm. The 

generalized Nash equilibrium problem refers to a non-cooperative game. Its 

strategy sets and loss functions for each competitor are obtained by relying on 

other competitors. Based on Eq. (24), the power index n and weight ( )k  are 

regarded as two competitors. The loss function (referring to the optimized 

objective function) is  (0), ( ) |n k X  . The generalized Nash equilibrium algorithm 

has been proved to be globally convergent. Thus, the algorithm described by Eq. 

(24) exhibits global convergence. Salient inequalities are proved as follows: 
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  
  

  
  

  
 

** (0)

** (0)

1

** (0)

1

** (0)

** (0)

0 1

* (0)

0 0

, ( ) |

, ( ) |

, ( ) |

, ( ) |

, ( ) |

, ( ) |

N N

N N

i i

i i

n k X

n k X

n k X

n k X

n k X

n k X

 

 

 

 

 

 



















   (25) 

The further modeling process for future weights * *ˆ ˆ( 1), ( 2),N Nm m    can be 

abbreviated to: 
* *ˆ ( 1) IAGO NGBM AGO ( )N Nk k    

.
  (26) 

 

3. Validation of the weighted non-linear grey Bernoulli model –a case 

of Chinese recruits to higher education 

The example to validate the effectiveness of NGBM is based on a study by 

Deng & Guo (1996) of the numbers of students recruited into higher education in 

certain provinces in China from 1984 to 1990. Due to the effect of many uncertain 

factors affecting higher education institution admissions in China, the data during 

the time period present all the hallmarks of non-linearity. The original data are {0, 

2.413, 6.159, 3.671, 3.582, 4.853, 3.821, 3.163} (× 10,000 recruits). Topological 

analysis was performed on these data: during the time period, five topological sub-

sequences were used to build the topological rolling grey model (0)ˆ (1: 4)x , (0)ˆ (1: 5)x , 
(0)ˆ (1: 6)x , (0)ˆ (1: 7)x , (0)ˆ (1: 8)x . The forecast results of traditional grey models and 

NGBM on five sub-sequences showed that the prediction precision of NGBM was 

significantly better than that of traditional models(Chen, 2008). Even so, the 

average errors of NGBM were still greater than 10%, at: 12.79%, 11.96%, 20.05%, 

16.90%, and 14.93%.  

3.1The forecast results of NGBM and WNGBM 

This case study was re-analyzed by NGBM and WNGBM and Table 1 lists 

the grey modeling results with relative, and average relative, errors of five sub-

sequences using NGBM and WNGBM, respectively. Table 1 and Table 2 indicate 

that the average relative errors of WNGBM forecast on five sub-sequences are all 

below 5%, while those of NGBM are greater than 10%. It can be seen that 
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WNGBM greatly decreases the average forecasting errors of NGBM through 

additionally optimizing the weights of accumulating generation. 

 

Table 1.Forecast comparison: NGBM and WNGBM applied to the five 

topological sub-sequences 

ˆ (0)
x (1: 4)  k=1 k=2 k=3 k=4     

NGBM 
ε(k)%  

WNGBM 
*

N
λ (k)  

ε(k)%  

0 

0 

0 

1.602 

0 

2.425 

0.00 

2.413 

1.171 

0.00 

4.914 

20.19 

6.159 

0.459 

0.00 

4.336 

-18.17 

3.671 

0.769 

0.00 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ˆ (0)
x (1: 5)  k=1 k=2 k=3 k=4 k=5    

NGBM 
ε(k)%  

WNGBM 
*

N
λ (k)  

ε(k)%  

0 

0 

0 

0.779 

0 

2.441 

0.00 

2.413 

0.583 

0.00 

4.813 

-21.84 

5.038 

0.758 

-18.21 

4.554 

24.28 

3.671 

1.376 

-0.01 

3.519 

-1.72 

3.582 

1.504 

-0.01 

   

(0)ˆ (1: 6)x  k=1 k=2 k=3 k=4 k=5 k=6   

NGBM 
ε(k)%  

WNGBM 
*

N
λ (k)  

ε(k)%  

0 

0 

0 

0.975 

0 

2.445 

0.00 

2.413 

1.341 

0.00 

4.313 

-30.06 

5.679 

0.707 

-7.49 

4.694 

28.05 

3.671 

1.115 

0.00 

4.495 

25.63 

3.582 

1.107 

0.00 

4.053 

-16.53 

4.877 

0.756 

2.42 

  

ˆ (0)
x (1: 7)  k=1 k=2 k=3 k=4 k=5 k=6 k=7  

NGBM 
ε(k)%  

WNGBM 
*

N
λ (k)  

ε(k)%  

0 

0 

0 

1.274 

0 

2.413 

0.00 

2.413 

0.511 

0.00 

4.237 

-31.21 

6.159 

0.450 

0.00 

4.675 

27.36 

3.254 

1.157 

-11.37 

4.563 

27.38 

3.582 

1.240 

0.00 

4.202 

-13.41 

4.853 

1.010 

-0.01 

3.743 

-2.04 

3.821 

1.358 

0.00 

 

ˆ (0)
x (1: 8)

 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 

NGBM 
ε(k)%  

WNGBM 
*

Nλ (k)  

ε(k)%  

0 

0 

0 

1.747 

0 

2.413 

0.00 

2.415 

1.024 

0.07 

4.240 

31.16 

6.132 

0.522 

-0.44 

4.677 

27.40 

3.394 

1.011 

-7.56 

4.562 

27.35 

3.600 

0.978 

0.51 

4.199 

13.49 

4.885 

0.724 

0.66 

3.737 

2.20 

3.852 

0.912 

0.81 

3.256 

2.93 

3.193 

1.083 

0.96 



 

 

 

 

 

 

 

Zheng-Xin Wang 

______________________________________________________________ 

 

178 

 
 

 

N.B The calculation results listed above have been handled in accordance with 

mathematical rounding rules, so the sum of the optimal weights for analysis by 

WNGBM does not precisely equal m , 4,5, ,8m . 

Table 2. The average relative errors of NGBM and WNGBM 

Topological 

sub-

sequences 

ˆ (0)
x (1: 4)  ˆ (0)

x (1: 5)  ˆ (0)
x (1: 6)  ˆ (0)

x (1: 7)  ˆ (0)
x (1: 8)  

NGBM 12.79% 11.96% 20.05% 16.90% 14.93% 

WNGBM 0.00% 4.56% 1.98% 1.90% 1.57% 

 

3.2 Explanation of the forecast results 

To analyze the reasons why 1-CWAGO improves the modeling precision 

of NGBM, topological sequence (0)ˆ (1: 6)x  was used as an example to illustrate this. 

As shown in Figure1, the curve shapes of the 1-AGO sequence (1) (1: 6)x of the raw 

data, the 1-AGO sequence forecasted by NGBM, and the 1-CWAGO sequence 
(1)ˆ (1: 6)x predicted by WNGBM are in good agreement. However; after the 

corresponding reduction of 1-IAGO and 1-CWIAGO, the differences between the 

final prediction sequences (0)ˆ (1: 6)x of NGBM and WNGBM become obvious. The 

curve shape of the final prediction sequence (see Figure2) of WNGBM (0)ˆ (1: 6)x  

and that of the raw data (0) (1: 6)x  are very close, while NGBM cannot effectively 

track the non-linear fluctuations in the raw data. From the modelling procedures of 

both NGBM and WNGBM it is found that the only step that makes (1)ˆ (1: 6)x  

change to (0)ˆ (1: 6)x  is inverse transformation. Therefore, the reason for this 

phenomenon is believed to be enshrined in the fact that the accumulative 

generation and its inverse transform of WNGBM at different times use different 

optimal weights, while that of NGBM take the same optimal weights throughout 

(as shown in Figure3). 
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Figure 1.1-AGO predictions by: actual value, NGBM, and 1-CWAGO 

prediction by WNGBM 

 

 

Figure 2.Final forecast curves: actual value, NGBM, and WNGBM 
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Figure 3.The weights curve of NGBM and WNGBM 

 

Topological error analysis can test the one-step prediction ability of grey 

models on other data. The results of topological error analysis using NGBM and 

WNGBM are given in Table 3: the average topological rolling errors of NGBM 

and WNGBM are 18.8% and 9.35% respectively. From the topological prediction 

curve (see Figure4) of NGBM and WNGBM on (0) ( ), 5,6,7,8x k k  , it become 

evident that the forecast results by WNGBM are closer to the actual values than 

those by NGBM. This proves that the one-step extrapolation prediction precision 

of other data is also better than that of NGBM. 

 

Table 3.Topological error analysis using NGBM and WNGBM 

 k=5 k=6 k=7 k=8 δ(tp,avg)%  

Topological sub-

sequence 
(0) (1: 4)x  

(0) (1:5)x  
(0) (1: 6)x  

(0) (1: 7)x   

Actual value 

NGBM 

δ(tp,k)%  

3.582 

3.038 

-15.18 

4.853 

2.483 

-48.83 

3.821 

3.520 

-7.87 

3.163 

3.264 

3.18 

18.77 

WNGBM 

ˆ *

Nλ (k)  

δ(tp,k)%  

3.434 

0.822 

-4.13 

3.886 

1.335 

-19.93 

3.330 

1.054 

-12.85 

3.178 

1.685 

0.47 

9.35 
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Figure 4.Topological forecasting curves of NGBM and WNGBM 

 

4. Forecasting China’s Shanghai Stock Exchange Composite Index  

The Shanghai Stock Exchange (SSE) Composite Index is a typically 

important index in the Chinese financial sector. It can reflect, as a whole, the basic 

situation of Chinese stock market developments and as a result, is often the 

decision-making basis for government macro-control and security investors. 

Influenced by several factors such as policy control, business cycle and so on, the 

Chinese stock market has changed by a relatively large margin in recent years. 

Therefore, the SSE Composite Index presents all the most obvious characteristics 

of non-linear fluctuation.  

4.1 Data set 

This section interprets the fluctuating data of the closing values of the 

SSE’s Composite Index during the period 2002 to 2014 and studies the prediction 

precision of WNGBM, Holt-Winters, SVR, and BPNN. The data were acquired 

from the National Bureau of Statistics of The People’s Republic of China 

(http://www.stats.gov.cn/). The data from 2002 to 2011 were used to build models, 

and data from 2012 to 2014 were applied to test the extrapolation prediction 

precision. 

4.2 Modeling results and discussion 

By taking minimization of MPAE from 2002 to 2011 as a target, the 

optimized results indicated that: the MPAE of WNGBM is minimized in the case 

of the Nash solution for power index * 0.7739Nn  ; when smoothing coefficient 

2
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0.17, 1   , the MPAE of Holt-Winters is minimized; using SVR to conduct 

standardization of the data over the range [0, 1], the optimum regression 

parameters c  and   are obtained by using an ε-SVR model and a radial basis 

function kernel based on the cross-validation method; while BPNN applies a single 

hidden layer with five nodes. Its nodal transfer function and training function use 

tansig and trainlm respectively. The parameters are set as follows: the training time 

is 100; the training target MAPE is 0.00001, and the learning rate is 0.1. The 

dimensions of phase space using SVR and BPNN are 3, 4, and 5. The MAPE and 

RMSE are used to measure the in-sample (2002 - 2011) and out-of-sample (2012 - 

2014) performance of WNGBM, Holt-Winters, SVR, and BPNN: the results are 

presented in Table 4 in which m denotes the dimension of the particular phase 

space. 

Table 4 Comparison of errors: Shanghai Stock Exchange composite index 

data with WNGBM using Holt-Winters, SVR, and BPNN. 

 
WNGB

M 

Holt-

Winte

rs 

SVR BPNN 

m=3 m=4 m=5 m=3 m=4 m=5 

MAPE 

(%, 2002-

2011) 

0.07 56.69 29.68 6.91 
11.5

4 
54.58 17.55 89.61 

RMSE(20

02-2011) 
4.09 

1341.9

2 

1261.

95 

741.

32 

863.

61 

1582.

07 

1338.

77 

2905.

50 

MAPE 

(%, 2012-

2014) 

8.37 24.56 16.65 
23.7

7 

21.6

4 
6.32 10.31 9.54 

RMSE(20

12-2014) 
215.99 622.35 

410.4

4 

545.

74 

502.

70 

197.8

3 

296.0

9 

293.9

9 

 

As shown by the in-sample forecast error in Table 4, the error when 

forecasting the Shanghai Stock Exchange Composite Index between 2002 and 

2011 using WNGM is smaller than in the other three methods. The MAPE and 

RMSE are 0.07% and 4.09 respectively. The MAPE and RMSE using Holt-

Winters are significantly larger at 56.69% and 1341.92, respectively. This shows 

that the Holt-Winters method fails to deal with the non-linear fluctuations of the 

Shanghai Stock Exchange Composite Index. When the dimensions of the phase 

space are 3, 4, and 5, the MAPEs of SVR are 29.68%, 6.91%, and 11.54%. Actual 

values and the forecast curve are shown in Figure5. As shown, the SVR is the most 

suitable for predicting the Shanghai Stock Exchange Composite Index when the 
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dimension of the phase space is 4. The error is acceptable. Similar conclusions can 

also be obtained using RMSE. As seen from Figure6, when the dimension of the 

phase space is 3 or 5, the curve forecast by BPNN deviates significantly from the 

actual values. Its MAPEs reach 54.58% and 89.61% respectively. In the case of 

four-dimensional phase space, the error decreases significantly and the MAPE is 

17.55%: compared with RMSE, the same conclusions can be drawn. 

 

Figure 5. The SVR forecast curve for different dimensions of phase space on 

the Shanghai Stock Exchange Composite Index 

 

Figure 6. The BPNN forecast curve for different dimensions of phase space on 

the Shanghai Stock Exchange Composite Index 
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According to the comparison of forecasting error for out-of-samples, the 

MAPE and RMSE of WNGBM are 8.37% and 215.99; the MAPE and RMSE of 

BPNN are 6.32% and 197.83 in the case of a three-dimensional phase space: these 

are smaller than those of NGBM. However the in-sample forecasting errors of 

BPNN reach 54.58% and 1582.07 for three-dimensional phase space 3. So, the 

WNGBM exhibits better robustness than BPNN. It is difficult to judge whether or 

not SVR is superior to BPNN, or vice versa. This is because although the in-

sample forecasting error of SVR is smaller than that of BPNN, the forecasting 

MAPE for out-of-sample data exceeds 15%, which is higher than that of BPNN. 

Compared with the other three methods, the forecasting error of Holt-Winters is 

the greatest: its MAPE and RMSE are 24.56% and 622.35. Although there are 

slight differences among the four methods with regard to the forecasting precision 

for the Shanghai Stock Exchange Composite Index data from 2012 to 2014, the 

forecasting curve and actual values exhibit similar trends. 

To demonstrate the aforementioned results further, Figure7 shows the 

forecast curve and the actual values for: WNGBM, Holt-Winters, SVR (m = 4) and 

BPNN (m = 4). The Shanghai Stock Exchange Composite Index reached 2675 in 

2006, increased to 5262 in 2007, and decreased to 1821 in 2008, which indicated a 

nadir. To fit the extreme value in 2007, the whole curve had to be shifted upwards 

when Holt-Winters was used to smooth the raw data. This led to a higher 

forecasting error. Meanwhile, SVR and BPNN failed to forecast the extreme value 

accurately, which influenced the MPAE and RMSPE to a certain extent. However 

the forecast results for the data from other years using SVR and BPNN are not 

influenced in that fashion. Figure7 shows that WNGBM is able to identify the 

fluctuation in 2007 and provide a good fit to data in other years. 

 

 

Figure 7. Forecast Shanghai Stock Exchange Composite Index curves using 

the four methods 
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5. Conclusions and future work 

In this study, a WNGBM is built and compared with NGBM, Holt-

Winters, SVR and BPNN. The results show that: 1) the occurrence of an extreme 

value causes the Holt-Winters forecast curve to deviate from other data. When 

using SVR and BPNN, the extreme value does not influence the forecast from 

other years although it fails to be precise. Besides, the WNGBM is capable of 

fitting all data including the extreme value. 2) when forecasting the Shanghai Stock 

Exchange Composite Index with its innate volatility, there are significant 

differences found between SVR and BPNN forecasts in the case of different phase 

space dimensions and in particular, the difference is more apparent around extreme 

values. 3) the models with better fitting performance do not necessarily exhibit 

good forecasting precision. The in-sample forecasting error of SVR is smaller than 

that of BPNN, however the out-of-sample forecasting error of BPNN is smaller 

than that of SVR. Therefore, for SVR and BPNN, it is difficult to identify which 

performs better. The MAPE of a WNGBM in-sample forecast is 0.07%, this is 

smaller than that found with the other three methods. The forecasting MAPE for 

out-of-sample data is 8.37%, which is slightly greater than the 6.32% for BPNN 

(m = 3). 

Although NGBM has been widely applied in the simulation and prediction 

of non-linear time series, existing grey models rarely employ complex 

mathematical theory due to the simplicity of such system’s modeling principles. 

Future research may prove fruitful in building upon this combination of 

mathematical, and grey system, theories to help to enhance the reliability and 

precision of future grey models and their application(s). 
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