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Abstract. Nature-inspired metaheuristics for optimization have proven 

successful, due to their fine balance between exploration and exploitation of a 

search space. This balance can be further refined by hybridization. In this paper, 

we conduct experiments with some of the most promising nature-inspired 

metaheuristics, for assessing their performance when using them to replace 

backpropagation as a learning method for neural networks. The selected 

metaheuristics are: Cuckoo Search (CS), Gravitational Search Algorithm (GSA), 

Particle Swarm Optimization (PSO), the PSO-GSA hybridization, Many 

Optimizing Liaisons (MOL) and certain combinations of metaheuristics with local 

search methods. Both the neural network based classifiers and function 

approximators are evolved in this way. Classifiers have been evolved against a 

training dataset having bankruptcy prediction as a target, whereas function 

approximators have been evolved as NNARX models, where the target is to predict 

foreign exchange rates. 
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1. NATURE-INSPIRED METAHEURISTICS FOR OPTIMIZATIONS 
Heuristics are strategies using readily accessible, though loosely 

applicable, information to solve particular problems ([7]). In contrast to heuristics, 

meta-heuristics designate some form of stochastic computational approach to an 

optimization problem, and consist of iteratively searching for a solution that is 

“good enough” (with regard to a given measure of quality), over a very large set of 

candidate solutions. Although metaheuristics are general-purpose methods, they 

still need some fine-tuning of their behavioral parameters in order to adapt the 

technique to the problem at hand. 

The trade-off between the collection of new information (exploration) and 

the use of existing information (exploitation) is the key issue of any metaheuristic. 

It ensures the identification of new promising regions in the search space to escape 
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being trapped in local solutions, as well as the use of promising regions locally, to 

search for eventually reaching the global optimum. However, a common drawback 

of any metaheuristic is to not be as fast as local-search techniques, when it comes 

to exploitation, suffering from low convergence rate in the last stage of 

approaching the solution. It is these complementary strengths that inspired the use 

of hybridization for achieving a good balance between exploration and 

exploitation. Hybridization has been first advocated in a paper of Eiben and 

Schippers ([1], 1998) and, since then, it became more and more influential, leading 

to the development of numerous hybrid metaheuristics, in hoping that the hybrids 

perform better than the individual algorithms. Exploration is sometimes associated 

with diversification, whereas exploitation is associated with intensification. 

Usually, an equilibrium is insured by favoring exploration at the beginning of the 

search (when it is desirable to have a high level of diversification) and favoring 

exploitation at the end (when the algorithm is close to the final solution and 

intensifying the local search is more suitable). 

Certain predictive machines have been proven to be universal 

approximators; among them, multilayer perceptrons (Hornick et al., 1989) and 

fuzzy systems (Kosko, 1992) are the most notorious.  

It is worth noticing that feedforward neural networks achieved their status 

of universal approximators due to the introduction of Back-Propagation (BP) as a 

training method. The standard version of the algorithm looks for the minimum of 

the error function in the weight space using the gradient descent method. The 

combination of weights which minimizes the error function is considered to be a 

solution of the learning problem. However, the success and speed of training 

depends upon the initial parameter settings, such as architecture, initial weights and 

biases, learning rates, and others. Actually, this need for an ex-ante specification of 

the NN architecture and various initial parameters is one of the main drawbacks of 

BP. Imposing the differentiability condition on transfer functions is another one. 

Such drawbacks have motivated an increasing interest in alternative 

methods, able to automatically evolve feedforward neural networks under less 

restrictive conditions than training the network with back-propagation.  

By their very nature as global optimization tools, metaheuristics can be 

seen as good replacements for back-propagation, because of the large size, 

nondifferentiability, complexity, and multimodality of the search space involved in 

training the network. The idea of evolving NN by evolutionary algorithms, as an 

alternative to BP, can be traced back to the late 1980s, when the emphasis was put 

on Genetic Algorithms (GAs). They have been used for evolving the connection 

weights with fixed network architecture, or for selecting the right network 

architecture.  Occasionally, they have been used for more than one purpose  for 

example, evolving the network weights and the topology (structure) 

simultaneously. Different approaches have been used to encode the weights into 

the chromosome of a GA, including direct encoding schemes, in which each 

weight is explicitly represented in the chromosome, and indirect schemes, in which 

a compression scheme is used that requires an expansion of the chromosome to 
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derive the individual weights. Using GAs versus BP proved to have advantages 

and disadvantages. BP takes more time to reach the neighborhood of an optimal 

solution, but then reaches it more precisely. On the other hand, GAs investigate the 

entire search space. Hence, they reach faster the region of optimal solutions, but 

have difficulties to localize the exact point. 

 Meanwhile, a large number of nature-inspired metaheuristics have been 

proposed, and there has been an increasing interest in investigating the synergic 

effects of their hybridization. As general-purpose, global optimization algorithms, 

metaheuristics give rise to new opportunities, since they can address a variety of 

tasks and goals that cannot be achieved by BP. One such goal is to evolve, 

simultaneously, all the characteristics of a neural network. For example, in addition 

to the network weights and/or topological characteristics, one can also evolve the 

parameters of transfer functions. More precisely, given a sigmoidal transfer 

function, y = 1/(1 + e -kinput ), the parameter k can be evolved along with the other 

characteristics of interest. One can also consider neural networks with 

nondifferentiable (even discontinuous) transfer functions, or with different transfer 

functions, for different neurons in the same layer. As for the fitness function of the 

evolved neural architecture, it can be specifically defined, in a way appropriate for 

the problem. It can thus incorporate variables helping to adjust the speed of 

learning, or the topological complexity of the network. Furthermore, there is the 

possibility of using a secondary metaheuristic (often called meta-evolution, or 

hyper-heuristic) as a meta-optimization procedure, in view of finding good 

performing behavior parameters for the primary metaheuristic. This parameter 

tuning stage is attempted to improve the ability of the primary metaheuristic to 

approach the global optimum when training the network. 

NNs are well suited for both the classification and function approximation. 

This paper aims at assessing the performance of some of the most promising 

nature-inspired metaheuristics when using them to evolve classifiers as well as 

function approximators. The metaheuristics involved in our experiments are: 

Cuckoo Search (CS), Gravitational Search Algorithm (GSA), Particle Swarm 

Optimization (PSO), the PSO-GSA hybridization, Many Optimizing Liaisons 

(MOL) and certain combinations of metaheuristics with local search methods. The 

evolved NNs are then applied to predicting bankruptcy and foreign exchange rates. 

 

2. METAHEURISTICS AND HYBRIDIZATIONS OF INTEREST 
2.1. The Cuckoo Search Algorithm 

Cuckoo search (CS) is a nature-inspired metaheuristic algorithm for 

optimization, developed by Yang and Deb ([13], 2009). It was inspired by 

cuckoos’ breeding behavior, which typically consists of brood parasitism and nest 

takeover and may include the eviction of host eggs by recently hatched cuckoo 

chicks. CS was enhanced by the so-called Lévy flight behavior associated with 

some birds. In the meantime, a balanced combination of a local random walk with 
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permutation and the global explorative random walk is used, as a refined survival 

mechanism. 

CS is a population-based algorithm, in a way similar to GAs and PSO, but 

it uses some sort of elitism and/or selection. Like other population-based 

algorithms, CS use reproduction operators to explore the search space. Each 

individual (i.e., egg) represents a solution to the problem under consideration. If 

the cuckoo egg mimics very well the host’s, then it has the chance to survive and 

be part of the next generation. Exploring new and potentially better solutions is the 

main objective of the algorithm. The randomization in CS is more efficient as the 

step length is heavy-tailed, and any large step is possible. Another important 

characteristic of this heuristic is that it dependents only on a relatively small 

number of parameters. Actually, the number of parameters in CS to be tuned is 

fewer than in GA and PSO.  

Recent experiments suggest that CS has the potential of outperforming 

PSO and GA in terms of predictive power. Moreover, given that each nest can 

represent a set of solutions, CS can be also extended to the type of meta-population 

algorithms. 

Since animals search for food in a random or quasi-random manner, their 

foraging path is effectively a random walk: the next move is based on the current 

location or state and the transition probability to the next location. The flight 

behavior of some birds or fruit flies has demonstrated the typical characteristics of 

Lévy flights, which are a form of flight that manifest power law-like 

characteristics. In this case, the landscape is typically explored by using a series of 

straight flight paths punctuated by sudden turns. Such behavior has been applied 

for optimization and optimal search with promising results. 

The CS heuristic can be summarized in three idealized rules: 

 Each cuckoo lays one egg at a time and dumps it in a randomly chosen nest. 

 The best nests with high-quality eggs will be carried over to the next 

generations. 

 The number of available host nests is fixed, and the egg laid by a cuckoo is 

discovered by the host bird with a probability )1,0(ap . In this case, the host 

bird can either get rid of the egg or simply abandon the nest and build a 

completely new nest. 

When generating new solution )1( t
ix  for, say, a cuckoo i, a Lévy flight is 

performed as 

 t
i

t
i xx )1( Lévy   . (1) 

where α > 0 is the step size which should be related to the scales of the problem of 

interests. In most cases, α = 1 is used. This equation is the stochastic equation for 

random walk. In general, a random walk is a Markov chain whose next location 

depends only on the current location and the transition probability. The product   
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means entrywise multiplications. The Lévy flight essentially provides a random 

walk while the random step length is drawn from a Lévy distribution 

Lévy ~  = t,  (1 <   3), (2) 

which has an infinite variance with an infinite mean. Here the steps essentially 

form a random walk process with a power law step length distribution with a heavy 

tail. The algorithm can also be extended to more complicated cases where each 

nest contains multiple eggs (a set of solutions). The algorithm can be summarized 

as in the following pseudo code: 

1. begin 

2.    The objective function f(x), x  (x1, …, xd); 

3.    Generate an initial population of  n  host nests (solution vectors),  namely  xi   

      (i 1, 2, ..., n); 

4.    while (t < Max iterations) and (termination condition not achieved) 

5. Generate a new solution vector xnew via Lévy flight and evaluate its    

fitness, say Fnew ; 

6. Randomly select a vector (say, xj) from the current population and compare 

the function values f(xj) and f(xnew); 

7.        if (f(xnew)< f(xj)), 

8.             replace xj by xnew; 

9.        end if 

10. A fraction ( ap ) of the worse nests are abandoned and new nests are 

generated; 

11.       Keep the best solutions (or nests with quality solutions); 

12.       Rank the solutions and find the current best solution vector; 

13.    end while 

14.    Post process results and visualization. 

15. end 

 Mantegna’s algorithm  

Mantegna’s algorithm ([6]) produces random numbers according to a 

symmetric Lévy stable distribution. It was developed by R. Mantegna. The 

algorithm needs the distribution parameters [0.3, 1.99], c > 0, and the number 

of iterations, n. It also requires the number of points to be generated. When not 

specified, it generates only one point. If an input parameter will be outside the 

range, an error message will be displayed and the output contains an array of NaNs 

(Not a Number). The algorithm is described in the following steps: 

1
y

x
v  , (3) 

where x and y are normally distributed stochastic variables and 
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The resulting distribution has the same behavior as a Lévy distribution for 

large values of the random variable  0v . Using the nonlinear transformation 

  veKw
Cv

11)(
)(/
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 , (5) 

the sum 
n
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11
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 quickly converges to a Lévy stable distribution. The 

convergence is assured by the central limit theorem. The value of )(K  can be 

obtained as 
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(6) 

Also,  C  is the result of a polynomial fit to the values obtained by 

resolving the following integral equation: 
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(7) 

The required random variable is given by cnzCz /1 . 

 Simplified version of the algorithm  

Mantegna’s algorithm uses two normally distributed stochastic random 

variables to generate a third random variable which has the same behavior as a 

Lévy distribution for large values of the random variable. Further it applies a 

nonlinear transformation to let it quickly converge to a Lévy stable distribution. 

However, the difference between the Mantegna’s algorithm and its simplified 

version used by Yang and Deb ([13]) as a part of cuckoo search algorithm is that 

the simplified version does not apply the aforesaid nonlinear transformation to 

generate Lévy flights. It uses the entry-wise multiplication of the random number 

so generated and the distance between the current solution and the best solution 

obtained so far (which look similar to the Global best term in PSO) as a transition 
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probability to move from the current location to the next location to generate a 

Markov chain of solution vectors. However, PSO also uses the concept of Local 

best. Implementation of the algorithm is very efficient with the use of Matlab’s 

vector capability, which significantly reduces the running time. The algorithm 

starts with taking one by one solution from the initial population and then replacing 

it by a new vector generated using the steps described below:  

stepsize = 0.01  v  (s  current best), 

newsoln = oldsoln + stepsize  z, 

(8) 

where v is the same as in Mantegna’s algorithm above with x  calculated for α = 

3/2, while  z is again a normally distributed stochastic variable. 

 

2.2. Particle Swarm Optimization (PSO) 

PSO has been originally proposed by Kennedy and Eberhart ([4], 1995). It 

is behaviorally inspired and belongs to Evolutionary Computation, whose main 

purpose is the emergence of complex behaviors from simple rules. In the specific 

case of PSO, the strategy of searching the problem hyperspace for optimum was 

developed out of attempts to model the social behavior of bird flocking or fish 

schooling. 

PSO consists of a swarm of particles. Each particle resides at a position in 

the search space. The fitness of each particle represents the quality of its position. 

Initially, the PSO algorithm chooses candidate solutions randomly within the 

search space. The particles fly over the search space with a certain velocity. The 

velocity (both direction and speed) of each particle is influenced by its own best 

position found so far and the best solution that was found so far by its neighbors. 

Eventually the swarm will converge to optimal positions. 

Let },,1{ Ni  , n
ix   and n

iv   be a particle, its position and its 

velocity, respectively. Now, consider a fitness function nf : . Candidate 

solutions ix  are initially placed at random positions in the search-space and 

moving in randomly defined directions. The direction of a particle is then gradually 

changed to move in the direction of the best found positions of itself and its peers, 

searching in their vicinity and potentially discovering better positions.  

The pseudo-code of PSO is given below: 

1. Initialize all particles i with random positions in the search space: 

 uploi bbUx ,~0 , where lob  and  upb  are the lower and upper boundaries of the 

search-space. 

2. Set each particle’s best known position to its initial position: 00
ii xpBest  .  

3. Initialize each particle’s velocity to random values:  ddUvi ,~0  , where 

d = loup bb  . 
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4. Set the initial swarm’s best known position 0gBest  to the 0
ipBest  for which 

f( 0
ipBest ) is lowest. 

5. repeat 

6.     for all Particle i  in the swarm do  

7.         Pick two random numbers: p , g U~ (0, 1) . 

8.         Update the particle’s velocity: 

)()(1 t
i

t
gg

t
i

t
ipp

t
i

t
i xgBestcxpBestcvwv    (9) 

where w is a parameter, called inertia weigth, cp is the so-called self 

adjustment coefficient, cg is the so-called social adjustment coefficient, 
t
ix  is the current position of particle i at iteration t, t

ipBest  is the best 

position in the current neighborhood, and gBest is the best position so far. 

9.            Compute the particle’s new position:  

11   t
i

t
i

t
i vxx . (10) 

10.            if    t
i

t
i pBestfxf 1  then  

11.                Update the particle’s best known position: 

 11   t
i

t
i xpBest . (11) 

12.            end if  

13.            if    tt
i gBestfpBestf 1  then  

14.                Update the swarm’s best known position:  

11   t
i

t pBestgBest  (12) 

15.            end if  

16.       end for  
17.  until termination criterion is met  

18.  return the best known position: gBest . 

The first term of (9), t
ivw  , is the inertia component, responsible for 

keeping the particle moving in the same direction it was originally heading. The 

role of the coefficient w is either to damp the particle’s inertia or to accelerate the 

particle in its original direction. Generally, lower values of w speed up the 

convergence of the swarm to optima, and higher values of w encourage exploration 

of the entire search space. 
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2.3. Gravitational Search Algorithm (GSA) 

Gravitational search algorithm (GSA) was originally proposed by Rashedi 

et al. ([9], 2009). In GSA, all particles are viewed as objects with masses. Based on 

the Newton’s law of universal gravitation, the objects attract each other by the 

gravity force, and the force makes all of them move towards the ones with heavier 

masses. Each mass has four characteristics: position, inertial mass, active 

gravitational mass, and passive gravitational mass. The first one corresponds to a 

solution of the problem, while the other three are determined by fitness function.  

Let us consider a system with N masses (agents), where the ith mass’s 

position is defined as follows: 

 n
i

d
iii xxxX ,,,,1  ,   Ni ,,2,1  . (13) 

The gravitational force acting on mass i from mass j at a specific time t is 

defined as follows: 

 )()(
)(

)()(
)()( txtx

tR

tMtM
tGtF d

i
d
j

ij

ajpid
ij 







, 

(14) 

where ajM   is the active gravitational mass related to agent j, piM   is the passive 

gravitational mass related to agent i, eriter/maxit-eGtG  
0)(  is a gravitational 

constant that is diminishing with each iteration,   is a small constant, and 

2
)()()( tXtXtR jiij   is the Euclidian distance between two agents i and j.  

For the purpose of computing the acceleration of an agent i, total forces 

(related to each direction d at time t) can be defined by 

 1,0~,)()(
,1

UtFtF j

N

ijj

d
ijj

d
i 



 . 
(15) 

Alternatively, to improve the performance of GSA by controlling 

exploration and exploitation, only the group Kbest of heavier agents is allowed to 

attract the others, where Kbest is decreasing over time.  

 1,0~,)()(
,

UtFtF j

N

ijKbestj

d
ijj

d
i 



 . 
(16) 

Thus, by lapse of iterations, exploration is fading out and exploitation is 

fading in. 

Given the inertial mass iiM  of the ith agent, we can now define the 

acceleration of the agent i, at time t, in the dth direction: 

)(

)(

tM

tF
a

ii

d
id

i  . 
(17) 



Vasile Georgescu 

14 

 

The ith agent’s next velocity and position can then be computed as: 

 1,0~,)()1( Uatvtv i
d
i

d
ii

d
i   , (18) 

).1()()1(  tvtxtx d
i

d
i

d
i  (19) 

Finally, after computing current population’s fitness, the gravitational and 

inertial masses can be updated as follows: 

)()(

)()(
)(

tworsttbest

tworsttfit
tm i

i



 ,        





N

j

j

i
i

tm

tm
tM

1

)(

)(
)( . 

(20) 

where fiti(t) is the fitness value of the agent i at time t; best(t) is the strongest agent 

at time t, and worst(t) is the weakest agent at time t; best(t) and worst(t) are 

calculated as: 

For a minimization problem:     
















).(max)(

),(min)(

},,1{

},,1{
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j
Nj

j
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
 (21) 

For a maximization problem:    
















).(min)(

),(max)(

},,1{

},,1{

tfittworst

tfittbest

j
Nj

j
Nj




 (22) 

The steps of implementing GSA can be summarized as follows: 

1.  Generate the initial population. 

2.  Evaluate the fitness for all agents. 

3.  Update the parameters G(t), best(t) and worst(t). 

4.  Calculate the gravitational and inertial masses mi(t) and Mi(t) and the total 

forces )(tF d
i  in different directions , for i = 1, 2, …, N. 

5.  Update the velocities d
iv  and the positions d

ix . 

6.  Repeat steps 2 to 5 until the stop criterion is reached. If a specified termination 

criterion is satisfied, stop and return the best solution. 

 

2.4. The PSO-GSA Hybrid Algorithm 

Hybridization itself is an evolutionary metaheuristic approach that mainly 

depends upon the role of the parameters in terms of controlling the exploration and 

exploitation capabilities. In principle, we can exploit synergically the mechanisms 

of control from two algorithms in order to form a hybrid with combined 

capabilities. This may be more likely to produce better algorithms. The critical 

parameters in PSO are pBest, whose role is to implement the exploration ability, 

and gBest, whose role is to implement the exploitation ability. The critical 
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parameters in GSA are G0 and , which determine the values of )(tG , i.e., 

eriter/maxit-eGtG  
0)( . They allow the fine tuning of the exploitation capability in 

the first stage and a slow movement of the heavier agents in the last stage. 

Numerical experiments have shown that PSO performs better in exploitation, 

whereas GSA performs better in exploration. However, the latter suffers from slow 

searching speed in the last iterations. A new hybrid algorithm, called PSO-GSA, 

has been developed by combining the mechanism of these two algorithms and the 

functionality of their parameters. It was recently proposed by Mirjalili et al. ([5], 

2010) and has been tested on twenty-three benchmark functions in order to prove 

its higher performance compared to standard PSO and GSA. The results shown 

that that PSO-GSA outperforms both PSO and GSA in most cases of function 

minimization and that its convergence speed is also faster. 

The main difference in PSO-GSA is the way of defining the equation for 

updating the velocity )(tVi : 

))(()()()1( 2211 tXgBestctacctVwtV iiii   , (23) 

where 1c  and 2c  are two adjustable parameters, w is a weighting coefficient, 1 , 

2 )1,0(~ U   are random numbers, aci(t) is the acceleration of agent i at iteration t, 

and gbest is the best solution so far. 

The way of updating the agent positions is unchanged: 

)1()()1(  tVtXtX iii . (24) 

By adjusting the parameters 1c  and 2c  via the updating procedure, PSO-

GSA has a better ability to balance the global search and local search. The agents 

near good solutions try to attract the other agents which are exploring the search 

space. When all agents are near a good solution, they move very slowly. By using a 

memory to store the best solution (gBest) found so far, PSO-GSA can exploit this 

information, which is accessible anytime to each agent. Thus the agents can 

observe the best solution and can tend toward it. 

 

2.5. Many Optimizing Liaisons (MOL) 

Here, we consider a metaheuristic derived from PSO, by simplifying its 

mathematical description in the following way: the particle's own previous best 

known position pBest is eliminated from equation (9), by setting pc  = 0. The 

velocity update formula now becomes: 

)(1 t
i

t
gg

t
i

t
i xgBestcvwv   , (25) 

where  is still the inertia weight, and g U~ (0, 1) is a stochastic variable 

weighted by the user-defined behavioral parameter gc . The particle's current 
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position is still denoted by t
ix  and updated as in the PSO method, and the entire 

swarm's best known position is known as gBest as well. The algorithm is also 

identical to that of the PSO, with the exception that it too can be simplified 

somewhat by randomly choosing the particle to update, instead of iterating over the 

entire swarm. This simplified PSO is called Many Optimizing Liaisons (MOL) to 

make it easy to distinguish from the original PSO ([8]). 

 

3. EXPERIMENTS WITH TRAINING CLASSIFIERS 
3.1. NN Architecture, Fitness Function and the Encoded Strategy 

The architecture of the evolved NN is determined by its topological 

structure and can be described as a directed graph in which each node performs a 

transfer function, typically a sigmoid: 

hj

e

sf
n

i jiij xw
j ,,2,1,

1

1
)(

1











   


, 

(26) 

where j

n

i iijj xws  1
, n is the number of the input nodes, ijw  is the 

connection weight from the ith node in the input layer to the jth node in the hidden 

layer, j  is the bias (threshold) of the jth hidden node, and xi is the ith input. 

The final output of the NN can be defined as follows: 

mksfwo k

h

j

jkjk ,,2,1,)(
1




 , (27) 

where kjw  is the connection weight from the jth hidden node to the kth output node 

and k  is the bias (threshold) of the kth output node. The architecture of a NN with 

2 inputs, 2 outputs and 3 hidden nodes is shown in Figure 1. 

Evolving NN with search heuristics consists of using that heuristic to find 

the parameters (weights and biases) of the NN as a solution of an optimization 

problem. 

As an encoding strategy we use a connection-based direct encoding of the 

NN parameters, such as the weights and biases, which are passed, as candidate 

solutions, to the fitting (objective) function of the population-based optimization 

algorithm. 
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Figure 1. The architecture of a NN with 2 inputs, 2 outputs and 3 hidden 

nodes 

The fitness function is defined in terms of the Mean Square Error (MSE) 

of the NN. Let us denote by q the number of training samples, by k
id   the desired 

output of the ith input unit when the kth training sample is used, and by k
io   the 

actual output of the ith input unit when the kth training sample is used. Then: 

,
1

2






q

k

k

q

E
MSE   where   




m

i

k
i

k
ik doE

1

22 . (28) 

3.2. Predicting Bankruptcy: Experimental Setup and Results  
We next discuss the experimental setup proposed in this section. Our 

purpose is to compare the performances of CS, PSO, GSA PSO-GSA and MOL 

metaheuristics, when using to evolve neural network classifiers for bankruptcy 

prediction. This is a hard classification problem, as data are high-dimensional, non-

Gaussian, and exceptions are common. 

A sample of 130 Romanian companies has been drawn from those listed 

on Bucharest Stock Exchange (BSE), with the additional restriction of having a 

turnover higher than one million EURO. Financial results for the selected 

companies were collected from the 2013 year-end balance sheet and profit and loss 

account. As predictors, a number of 16 financial ratios have been used in our 

models. The classification task consists of building classification models from a 

sample of labeled examples and is based on the search for an optimal decision rule 

which best discriminates between the groups in the sample. 

When evaluating the predictive performance of one or more models, one of 

the core principles is that out-of-sample data is used to test the accuracy. The 

validation method we used in our experiments is the holdout method. The data set 

has initially been split into two subsets; about 60% of the data have been used for 

training and 40% for testing. 

In binary classification, the accuracy is a statistical measure of how well a 

classifier correctly identifies if an object belongs to one of two groups. However, 

accuracy is not a reliable metric for the real performance of a classifier, because it 
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will yield misleading results if the data set is unbalanced. Unfortunately, this is the 

case with our dataset, where the number of samples in the two classes varies 

greatly: 104 solvent firms and 26 insolvent ones. Thus, a more detailed analysis 

than mere proportion of correct guesses (accuracy) is needed. Actually, the 

performance of the competing classifiers was evaluated using the Confusion 

Matrix and the Receiver Operating Characteristic (ROC) analysis. 

The NN classifiers evolved with CS, PSO, GSA, PSO-GSA and MOL 

have similar architectures: 16 inputs, 2 outputs (binary response) and 15 hidden 

nodes. The results for all search heuristics used to evolve NN classifiers for our 

application at hand (bankruptcy prediction) are summarized in table 1. Figure 2 

shows the learning performance of using PSO-GSA to evolve the NN. Figures 3-4 

show the confusion matrices and ROC curves for training and test datasets. Similar 

graphical representations can be obtained for the other metaheuristics. 

Table 1. In-sample and out-of-sample average classification error rates 

 PSO-GSA CS MOL PSO GSA 

In-sample 

classification rate 
98.7 % 96.2 % 93.6 % 92.3 % 91.0 % 

Out-of-sample 

classification rate 
90.4 % 88.5 % 88.5 % 86.5 % 84.6 % 

  

As we expected, the in-sample classification rates are better than the out-

of-sample classification rates for all algorithms. The hybrid metaheuristic PSO-

GSA outperforms all the standalone metaheuristics, either in case of already seen 

(training) data, or in case of unseen (test) data, showing that the hybridization is an 

effective approach. As for the standalone metaheuristics, the best-performing are 

CS and MOL.  

Further experiments are intended in order to evaluate repeatedly the 

performance of the three algorithms in terms of average classification rates, or to 

apply them on other databases.  

 

 

Figure 2. NN evolved with PSO-GSA: Learning performance  



 Using Nature-inspired Metaheuristics to Train Predictive Machines 

19 

 

            
Figure 3. NN evolved with PSO-GSA: Training confusion matrix and ROC 

curves 

          

Figure 4. NN evolved with PSO-GSA: Test confusion matrix and ROC curves 

4. EXPERIMENTS WITH TRAINING FUNCTION 

APPROXIMATORS 
4.1. NNARX models  

Feedforward Neural Networks offer a straightforward extension to the 

classical way of modeling time series. Namely, they can use a specific mechanism 

to deal with temporal information (a series-parallel architecture for one-step ahead 

prediction with respect to both delayed inputs and outputs, without feedback) and 

can thus extend the linear autoregressive model with exogenous variables (ARX) 

to the nonlinear ARX form: 

  tnbnktnktnattt XXyyFy   ,,,,,1   (29) 

where F  is a non-linear function, an  is the number of past outputs, bn  is the 

number of past inputs and kn  is the time delay. 
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 Nonlinear neural network ARX (NNARX) models are potentially more 

powerful than linear ones in that they can model more complex underlying 

characteristics of time series and theoretically do not have to assume stationarity. 

In a NNARX model, ty  is a function of its lagged values jty   and the 

lagged values of some exogenous variables, having the role of capturing 

extraneous influences. For example, extending the NNAR model to a NNARX one, 

by allowing the LEU/EURO exchange rate to additionally depend on some other 

exchange rate as an exogenous variable (say, the LEU/USD exchange rate) proved 

to ameliorate the overall forecasting performance. 

In principle, the output of the NNARX model can be considered as an 

estimate tŷ  of the output ty  of some nonlinear dynamical system and thus it 

should be feed back in the next stage to the input of the feedforward neural 

network. However, because the true previous outputs jty   are available at time t  

during the training of the network, a series-parallel architecture can be created, in 

which the true outputs jty   are used instead of feeding back the estimated outputs 

jty 
ˆ , as shown in Figure 5. This has two advantages. The first is that the input to 

the feedforward network is more accurate. The second is that the resulting network 

has a purely feedforward architecture, and the backpropagation or, alternatively, a 

metaheuristic, can be used statically for training. 

We adopted the standard approach for training and testing, that is, to 

evaluate a model by testing its performance on a validation set consisting of out-of-

sample data. 

 
Figure 5. A purely feedforward architecture of the NNARX(na, nb, nk) neural 

 Net 

 

4.2. Predicting Foreign Exchange Rates: Experimental Setup and Results  

 

Let us consider a NNARX(2, 2, 1) model: 

  tttttt xxyyFy   2121 ,,, , (29) 
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where the Romanian Leu to Euro exchange rate (denoted by ty ) is the endogenous 

variable, the Romanian Leu to US Dollar exchange rate (denoted by tx ) is the 

exogenous variable, 2an , 2bn  and 1kn . The additional information 

provided by tx  is intended to ameliorate the overall forecasting performance for 

ty . The neural network architecture associated with this model is depicted in 

Figure 4. The number of hidden neurons is 12. The dimension of the search space 

is 73 (4×12+12=60 weights, 12+1=13 biases). 

 

 

Figure 6. The NN architecture of the NNARX(2, 2, 1) model  

 

 The fitness function used to evolve the NNARX models over the training 

data, by means of each metaheuristic in turn, is defined as the Mean Square Error 

(MSE). MSE is also used to measure the predictive performances of the evolved 

models, for all datasets: training, validation and test. The results of our experiments 

are listed in table 2. The last 3 metaheuristics are hybridizations of CS, PSO and 

GSA with the Matlab local optimizer FMINCON. 

 

Table 2 

Metaheuristics Rank MSE-training MSE-validation MSE-test 

PSO-GSA 1 0.00024543 0.0000645492 0.000192541 

CS 3 0.00025360 0.0000716124 0.000070092 

MOL 4 0.00026799 0.0000730520 0.000134811 

PSO 6 0.00035111 0.0000795555 0.000085198 

GSA 8 0.00053956 0.0002893300 0.000286416 

CS-FMINCON  2 0.00024790 0.0000654016 0.000091281 

PSO-FMINCON 5 0.00027457 0.0000713060 0.000140976 

GSA-FMINCON 7 0.00036225 0.0001269550 0.000124204 

 It is worth to note the important role of hybridization in improving the 

predictive performance of the evolved models. The best-performing optimizers are 

two hybrid metaheuristics (PSO-GSA and CS-FMINCON) that are more effective 

while in tandem than working alone.  
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Figure 7. The PSO-GSA hybridization (PSO-GSA) 

 
Figure 8. Cuckoo Search (CS) 

 
Figure 9. Many Optimizing Liaisons (MOL) 
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Figure 10. Gravitational Search Algorithm (GSA) 

 

As for the standalone metaheuristics, the best-performing are, by far, 

Cuckoo Search and Many Optimizing Liaisons. 

A final note is about the remarkable generalization capability of all 

metaheuristics: the MSE for validation and test datasets are surprisingly good, even 

better than the MSE for training dataset. This emphasizes once again the very 

nature of metaheuristics as global optimizers.  

 

5. CONCLUSIONS 
The aim of this paper was to compare the performances of several nature-

inspired metaheuristics, when using alone, or synergically, as hybrid methods, for 

evolving Neural Network based classifiers and function approximators. Founded 

on a new computational paradigm, the optimizers in this category have been 

proposed in an attempt to overcome the weakness of gradient-based techniques. 

Backpropagation, the most popular technique for training NNs, is also based on 

gradient descent and thus suffers from the same drawbacks as the classical 

optimizers, including a low convergence rate, instability, the differentiability 

condition, the risk of being trapped in a local minimum and the possibility of 

overshooting the minimum of the error surface. Metaheuristics, instead, are 

gradient-free, have a high convergence rate and are able to perform notably well in 

complex task, such as training neural networks that generate complex error 

surfaces, with multiple local minima. 

 Hybridization has often proven to be a successful approach in many cases 

where, by combining the mechanism of two algorithms and the functionality of 

their parameters, we are able to find new ways of controlling the exploration and 

exploitation capabilities of the newly generated hybrid. The results reported here 

may be seen as another step in validating approaches of this kind. 
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