
Economic Computation and Economic Cybernetics Studies and Research, Issue 2/2016, Vol. 50

__

5

Professor Vasile GEORGESCU, PhD

University of Craiova

E-mail: vasile.georgescu@feaa.ucv.ro

USING NATURE-INSPIRED METAHEURISTICS TO TRAIN

PREDICTIVE MACHINES

Abstract. Nature-inspired metaheuristics for optimization have proven

successful, due to their fine balance between exploration and exploitation of a

search space. This balance can be further refined by hybridization. In this paper,

we conduct experiments with some of the most promising nature-inspired

metaheuristics, for assessing their performance when using them to replace

backpropagation as a learning method for neural networks. The selected

metaheuristics are: Cuckoo Search (CS), Gravitational Search Algorithm (GSA),

Particle Swarm Optimization (PSO), the PSO-GSA hybridization, Many

Optimizing Liaisons (MOL) and certain combinations of metaheuristics with local

search methods. Both the neural network based classifiers and function

approximators are evolved in this way. Classifiers have been evolved against a

training dataset having bankruptcy prediction as a target, whereas function

approximators have been evolved as NNARX models, where the target is to predict

foreign exchange rates.

Keywords: Nature inspired metaheuristics; Hybridizations; Training

Neural Networks with metaheuristics, instead of backpropagation; Classifiers;

Function Approximators; Bankruptcy prediction; Prediction with NNARX models.

JEL classification: C22, C45, C51, C53, C63 G17

1. NATURE-INSPIRED METAHEURISTICS FOR OPTIMIZATIONS
Heuristics are strategies using readily accessible, though loosely

applicable, information to solve particular problems ([7]). In contrast to heuristics,

meta-heuristics designate some form of stochastic computational approach to an

optimization problem, and consist of iteratively searching for a solution that is

“good enough” (with regard to a given measure of quality), over a very large set of

candidate solutions. Although metaheuristics are general-purpose methods, they

still need some fine-tuning of their behavioral parameters in order to adapt the

technique to the problem at hand.

The trade-off between the collection of new information (exploration) and

the use of existing information (exploitation) is the key issue of any metaheuristic.

It ensures the identification of new promising regions in the search space to escape

mailto:vasile.georgescu@feaa.ucv.ro

Vasile Georgescu

6

being trapped in local solutions, as well as the use of promising regions locally, to

search for eventually reaching the global optimum. However, a common drawback

of any metaheuristic is to not be as fast as local-search techniques, when it comes

to exploitation, suffering from low convergence rate in the last stage of

approaching the solution. It is these complementary strengths that inspired the use

of hybridization for achieving a good balance between exploration and

exploitation. Hybridization has been first advocated in a paper of Eiben and

Schippers ([1], 1998) and, since then, it became more and more influential, leading

to the development of numerous hybrid metaheuristics, in hoping that the hybrids

perform better than the individual algorithms. Exploration is sometimes associated

with diversification, whereas exploitation is associated with intensification.

Usually, an equilibrium is insured by favoring exploration at the beginning of the

search (when it is desirable to have a high level of diversification) and favoring

exploitation at the end (when the algorithm is close to the final solution and

intensifying the local search is more suitable).

Certain predictive machines have been proven to be universal

approximators; among them, multilayer perceptrons (Hornick et al., 1989) and

fuzzy systems (Kosko, 1992) are the most notorious.

It is worth noticing that feedforward neural networks achieved their status

of universal approximators due to the introduction of Back-Propagation (BP) as a

training method. The standard version of the algorithm looks for the minimum of

the error function in the weight space using the gradient descent method. The

combination of weights which minimizes the error function is considered to be a

solution of the learning problem. However, the success and speed of training

depends upon the initial parameter settings, such as architecture, initial weights and

biases, learning rates, and others. Actually, this need for an ex-ante specification of

the NN architecture and various initial parameters is one of the main drawbacks of

BP. Imposing the differentiability condition on transfer functions is another one.

Such drawbacks have motivated an increasing interest in alternative

methods, able to automatically evolve feedforward neural networks under less

restrictive conditions than training the network with back-propagation.

By their very nature as global optimization tools, metaheuristics can be

seen as good replacements for back-propagation, because of the large size,

nondifferentiability, complexity, and multimodality of the search space involved in

training the network. The idea of evolving NN by evolutionary algorithms, as an

alternative to BP, can be traced back to the late 1980s, when the emphasis was put

on Genetic Algorithms (GAs). They have been used for evolving the connection

weights with fixed network architecture, or for selecting the right network

architecture. Occasionally, they have been used for more than one purpose for

example, evolving the network weights and the topology (structure)

simultaneously. Different approaches have been used to encode the weights into

the chromosome of a GA, including direct encoding schemes, in which each

weight is explicitly represented in the chromosome, and indirect schemes, in which

a compression scheme is used that requires an expansion of the chromosome to

 Using Nature-inspired Metaheuristics to Train Predictive Machines

7

derive the individual weights. Using GAs versus BP proved to have advantages

and disadvantages. BP takes more time to reach the neighborhood of an optimal

solution, but then reaches it more precisely. On the other hand, GAs investigate the

entire search space. Hence, they reach faster the region of optimal solutions, but

have difficulties to localize the exact point.

 Meanwhile, a large number of nature-inspired metaheuristics have been

proposed, and there has been an increasing interest in investigating the synergic

effects of their hybridization. As general-purpose, global optimization algorithms,

metaheuristics give rise to new opportunities, since they can address a variety of

tasks and goals that cannot be achieved by BP. One such goal is to evolve,

simultaneously, all the characteristics of a neural network. For example, in addition

to the network weights and/or topological characteristics, one can also evolve the

parameters of transfer functions. More precisely, given a sigmoidal transfer

function, y = 1/(1 + e -kinput), the parameter k can be evolved along with the other

characteristics of interest. One can also consider neural networks with

nondifferentiable (even discontinuous) transfer functions, or with different transfer

functions, for different neurons in the same layer. As for the fitness function of the

evolved neural architecture, it can be specifically defined, in a way appropriate for

the problem. It can thus incorporate variables helping to adjust the speed of

learning, or the topological complexity of the network. Furthermore, there is the

possibility of using a secondary metaheuristic (often called meta-evolution, or

hyper-heuristic) as a meta-optimization procedure, in view of finding good

performing behavior parameters for the primary metaheuristic. This parameter

tuning stage is attempted to improve the ability of the primary metaheuristic to

approach the global optimum when training the network.

NNs are well suited for both the classification and function approximation.

This paper aims at assessing the performance of some of the most promising

nature-inspired metaheuristics when using them to evolve classifiers as well as

function approximators. The metaheuristics involved in our experiments are:

Cuckoo Search (CS), Gravitational Search Algorithm (GSA), Particle Swarm

Optimization (PSO), the PSO-GSA hybridization, Many Optimizing Liaisons

(MOL) and certain combinations of metaheuristics with local search methods. The

evolved NNs are then applied to predicting bankruptcy and foreign exchange rates.

2. METAHEURISTICS AND HYBRIDIZATIONS OF INTEREST
2.1. The Cuckoo Search Algorithm

Cuckoo search (CS) is a nature-inspired metaheuristic algorithm for

optimization, developed by Yang and Deb ([13], 2009). It was inspired by

cuckoos’ breeding behavior, which typically consists of brood parasitism and nest

takeover and may include the eviction of host eggs by recently hatched cuckoo

chicks. CS was enhanced by the so-called Lévy flight behavior associated with

some birds. In the meantime, a balanced combination of a local random walk with

Vasile Georgescu

8

permutation and the global explorative random walk is used, as a refined survival

mechanism.

CS is a population-based algorithm, in a way similar to GAs and PSO, but

it uses some sort of elitism and/or selection. Like other population-based

algorithms, CS use reproduction operators to explore the search space. Each

individual (i.e., egg) represents a solution to the problem under consideration. If

the cuckoo egg mimics very well the host’s, then it has the chance to survive and

be part of the next generation. Exploring new and potentially better solutions is the

main objective of the algorithm. The randomization in CS is more efficient as the

step length is heavy-tailed, and any large step is possible. Another important

characteristic of this heuristic is that it dependents only on a relatively small

number of parameters. Actually, the number of parameters in CS to be tuned is

fewer than in GA and PSO.

Recent experiments suggest that CS has the potential of outperforming

PSO and GA in terms of predictive power. Moreover, given that each nest can

represent a set of solutions, CS can be also extended to the type of meta-population

algorithms.

Since animals search for food in a random or quasi-random manner, their

foraging path is effectively a random walk: the next move is based on the current

location or state and the transition probability to the next location. The flight

behavior of some birds or fruit flies has demonstrated the typical characteristics of

Lévy flights, which are a form of flight that manifest power law-like

characteristics. In this case, the landscape is typically explored by using a series of

straight flight paths punctuated by sudden turns. Such behavior has been applied

for optimization and optimal search with promising results.

The CS heuristic can be summarized in three idealized rules:

 Each cuckoo lays one egg at a time and dumps it in a randomly chosen nest.

 The best nests with high-quality eggs will be carried over to the next

generations.

 The number of available host nests is fixed, and the egg laid by a cuckoo is

discovered by the host bird with a probability)1,0(ap . In this case, the host

bird can either get rid of the egg or simply abandon the nest and build a

completely new nest.

When generating new solution)1(t
ix for, say, a cuckoo i, a Lévy flight is

performed as

 t
i

t
i xx)1(Lévy . (1)

where α > 0 is the step size which should be related to the scales of the problem of

interests. In most cases, α = 1 is used. This equation is the stochastic equation for

random walk. In general, a random walk is a Markov chain whose next location

depends only on the current location and the transition probability. The product

 Using Nature-inspired Metaheuristics to Train Predictive Machines

9

means entrywise multiplications. The Lévy flight essentially provides a random

walk while the random step length is drawn from a Lévy distribution

Lévy ~ = t, (1 < 3), (2)

which has an infinite variance with an infinite mean. Here the steps essentially

form a random walk process with a power law step length distribution with a heavy

tail. The algorithm can also be extended to more complicated cases where each

nest contains multiple eggs (a set of solutions). The algorithm can be summarized

as in the following pseudo code:

1. begin

2. The objective function f(x), x (x1, …, xd);

3. Generate an initial population of n host nests (solution vectors), namely xi

 (i 1, 2, ..., n);

4. while (t < Max iterations) and (termination condition not achieved)

5. Generate a new solution vector xnew via Lévy flight and evaluate its

fitness, say Fnew ;

6. Randomly select a vector (say, xj) from the current population and compare

the function values f(xj) and f(xnew);

7. if (f(xnew)< f(xj)),

8. replace xj by xnew;

9. end if

10. A fraction (ap) of the worse nests are abandoned and new nests are

generated;

11. Keep the best solutions (or nests with quality solutions);

12. Rank the solutions and find the current best solution vector;

13. end while

14. Post process results and visualization.

15. end

 Mantegna’s algorithm

Mantegna’s algorithm ([6]) produces random numbers according to a

symmetric Lévy stable distribution. It was developed by R. Mantegna. The

algorithm needs the distribution parameters [0.3, 1.99], c > 0, and the number

of iterations, n. It also requires the number of points to be generated. When not

specified, it generates only one point. If an input parameter will be outside the

range, an error message will be displayed and the output contains an array of NaNs

(Not a Number). The algorithm is described in the following steps:

1
y

x
v , (3)

where x and y are normally distributed stochastic variables and

Vasile Georgescu

10

1,

2
2

1

2
sin1

1

2/1

yx

.

(4)

The resulting distribution has the same behavior as a Lévy distribution for

large values of the random variable 0v . Using the nonlinear transformation

 veKw
Cv

11)(
)(/

 , (5)

the sum
n

kcn w
n

z
11

1

 quickly converges to a Lévy stable distribution. The

convergence is assured by the central limit theorem. The value of)(K can be

obtained as

1

2
sin1

2

1

1

2

1

)(

K .

(6)

Also, C is the result of a polynomial fit to the values obtained by

resolving the following integral equation:

 dqqC
e

K

dq
Cqq

q
xx

exp)(1
1)(

cos
1

2

)(

2
exp

1

0

0

2

2
1

.

(7)

The required random variable is given by cnzCz /1 .

 Simplified version of the algorithm

Mantegna’s algorithm uses two normally distributed stochastic random

variables to generate a third random variable which has the same behavior as a

Lévy distribution for large values of the random variable. Further it applies a

nonlinear transformation to let it quickly converge to a Lévy stable distribution.

However, the difference between the Mantegna’s algorithm and its simplified

version used by Yang and Deb ([13]) as a part of cuckoo search algorithm is that

the simplified version does not apply the aforesaid nonlinear transformation to

generate Lévy flights. It uses the entry-wise multiplication of the random number

so generated and the distance between the current solution and the best solution

obtained so far (which look similar to the Global best term in PSO) as a transition

 Using Nature-inspired Metaheuristics to Train Predictive Machines

11

probability to move from the current location to the next location to generate a

Markov chain of solution vectors. However, PSO also uses the concept of Local

best. Implementation of the algorithm is very efficient with the use of Matlab’s

vector capability, which significantly reduces the running time. The algorithm

starts with taking one by one solution from the initial population and then replacing

it by a new vector generated using the steps described below:

stepsize = 0.01 v (s current best),

newsoln = oldsoln + stepsize z,

(8)

where v is the same as in Mantegna’s algorithm above with x calculated for α =

3/2, while z is again a normally distributed stochastic variable.

2.2. Particle Swarm Optimization (PSO)

PSO has been originally proposed by Kennedy and Eberhart ([4], 1995). It

is behaviorally inspired and belongs to Evolutionary Computation, whose main

purpose is the emergence of complex behaviors from simple rules. In the specific

case of PSO, the strategy of searching the problem hyperspace for optimum was

developed out of attempts to model the social behavior of bird flocking or fish

schooling.

PSO consists of a swarm of particles. Each particle resides at a position in

the search space. The fitness of each particle represents the quality of its position.

Initially, the PSO algorithm chooses candidate solutions randomly within the

search space. The particles fly over the search space with a certain velocity. The

velocity (both direction and speed) of each particle is influenced by its own best

position found so far and the best solution that was found so far by its neighbors.

Eventually the swarm will converge to optimal positions.

Let },,1{ Ni , n
ix and n

iv be a particle, its position and its

velocity, respectively. Now, consider a fitness function nf : . Candidate

solutions ix are initially placed at random positions in the search-space and

moving in randomly defined directions. The direction of a particle is then gradually

changed to move in the direction of the best found positions of itself and its peers,

searching in their vicinity and potentially discovering better positions.

The pseudo-code of PSO is given below:

1. Initialize all particles i with random positions in the search space:

 uploi bbUx ,~0 , where lob and upb are the lower and upper boundaries of the

search-space.

2. Set each particle’s best known position to its initial position: 00
ii xpBest .

3. Initialize each particle’s velocity to random values: ddUvi ,~0 , where

d = loup bb .

Vasile Georgescu

12

4. Set the initial swarm’s best known position 0gBest to the 0
ipBest for which

f(0
ipBest) is lowest.

5. repeat

6. for all Particle i in the swarm do

7. Pick two random numbers: p , g U~ (0, 1) .

8. Update the particle’s velocity:

)()(1 t
i

t
gg

t
i

t
ipp

t
i

t
i xgBestcxpBestcvwv (9)

where w is a parameter, called inertia weigth, cp is the so-called self

adjustment coefficient, cg is the so-called social adjustment coefficient,
t
ix is the current position of particle i at iteration t, t

ipBest is the best

position in the current neighborhood, and gBest is the best position so far.

9. Compute the particle’s new position:

11 t
i

t
i

t
i vxx . (10)

10. if t
i

t
i pBestfxf 1 then

11. Update the particle’s best known position:

 11 t
i

t
i xpBest . (11)

12. end if

13. if tt
i gBestfpBestf 1 then

14. Update the swarm’s best known position:

11 t
i

t pBestgBest (12)

15. end if

16. end for
17. until termination criterion is met

18. return the best known position: gBest .

The first term of (9), t
ivw , is the inertia component, responsible for

keeping the particle moving in the same direction it was originally heading. The

role of the coefficient w is either to damp the particle’s inertia or to accelerate the

particle in its original direction. Generally, lower values of w speed up the

convergence of the swarm to optima, and higher values of w encourage exploration

of the entire search space.

 Using Nature-inspired Metaheuristics to Train Predictive Machines

13

2.3. Gravitational Search Algorithm (GSA)

Gravitational search algorithm (GSA) was originally proposed by Rashedi

et al. ([9], 2009). In GSA, all particles are viewed as objects with masses. Based on

the Newton’s law of universal gravitation, the objects attract each other by the

gravity force, and the force makes all of them move towards the ones with heavier

masses. Each mass has four characteristics: position, inertial mass, active

gravitational mass, and passive gravitational mass. The first one corresponds to a

solution of the problem, while the other three are determined by fitness function.

Let us consider a system with N masses (agents), where the ith mass’s

position is defined as follows:

 n
i

d
iii xxxX ,,,,1 , Ni ,,2,1 . (13)

The gravitational force acting on mass i from mass j at a specific time t is

defined as follows:

)()(
)(

)()(
)()(txtx

tR

tMtM
tGtF d

i
d
j

ij

ajpid
ij

,

(14)

where ajM is the active gravitational mass related to agent j, piM is the passive

gravitational mass related to agent i, eriter/maxit-eGtG
0)(is a gravitational

constant that is diminishing with each iteration, is a small constant, and

2
)()()(tXtXtR jiij is the Euclidian distance between two agents i and j.

For the purpose of computing the acceleration of an agent i, total forces

(related to each direction d at time t) can be defined by

 1,0~,)()(
,1

UtFtF j

N

ijj

d
ijj

d
i

 .
(15)

Alternatively, to improve the performance of GSA by controlling

exploration and exploitation, only the group Kbest of heavier agents is allowed to

attract the others, where Kbest is decreasing over time.

 1,0~,)()(
,

UtFtF j

N

ijKbestj

d
ijj

d
i

 .
(16)

Thus, by lapse of iterations, exploration is fading out and exploitation is

fading in.

Given the inertial mass iiM of the ith agent, we can now define the

acceleration of the agent i, at time t, in the dth direction:

)(

)(

tM

tF
a

ii

d
id

i .
(17)

Vasile Georgescu

14

The ith agent’s next velocity and position can then be computed as:

 1,0~,)()1(Uatvtv i
d
i

d
ii

d
i , (18)

).1()()1(tvtxtx d
i

d
i

d
i (19)

Finally, after computing current population’s fitness, the gravitational and

inertial masses can be updated as follows:

)()(

)()(
)(

tworsttbest

tworsttfit
tm i

i

 ,

N

j

j

i
i

tm

tm
tM

1

)(

)(
)(.

(20)

where fiti(t) is the fitness value of the agent i at time t; best(t) is the strongest agent

at time t, and worst(t) is the weakest agent at time t; best(t) and worst(t) are

calculated as:

For a minimization problem:

).(max)(

),(min)(

},,1{

},,1{

tfittworst

tfittbest

j
Nj

j
Nj

 (21)

For a maximization problem:

).(min)(

),(max)(

},,1{

},,1{

tfittworst

tfittbest

j
Nj

j
Nj

 (22)

The steps of implementing GSA can be summarized as follows:

1. Generate the initial population.

2. Evaluate the fitness for all agents.

3. Update the parameters G(t), best(t) and worst(t).

4. Calculate the gravitational and inertial masses mi(t) and Mi(t) and the total

forces)(tF d
i in different directions , for i = 1, 2, …, N.

5. Update the velocities d
iv and the positions d

ix .

6. Repeat steps 2 to 5 until the stop criterion is reached. If a specified termination

criterion is satisfied, stop and return the best solution.

2.4. The PSO-GSA Hybrid Algorithm

Hybridization itself is an evolutionary metaheuristic approach that mainly

depends upon the role of the parameters in terms of controlling the exploration and

exploitation capabilities. In principle, we can exploit synergically the mechanisms

of control from two algorithms in order to form a hybrid with combined

capabilities. This may be more likely to produce better algorithms. The critical

parameters in PSO are pBest, whose role is to implement the exploration ability,

and gBest, whose role is to implement the exploitation ability. The critical

 Using Nature-inspired Metaheuristics to Train Predictive Machines

15

parameters in GSA are G0 and , which determine the values of)(tG , i.e.,

eriter/maxit-eGtG
0)(. They allow the fine tuning of the exploitation capability in

the first stage and a slow movement of the heavier agents in the last stage.

Numerical experiments have shown that PSO performs better in exploitation,

whereas GSA performs better in exploration. However, the latter suffers from slow

searching speed in the last iterations. A new hybrid algorithm, called PSO-GSA,

has been developed by combining the mechanism of these two algorithms and the

functionality of their parameters. It was recently proposed by Mirjalili et al. ([5],

2010) and has been tested on twenty-three benchmark functions in order to prove

its higher performance compared to standard PSO and GSA. The results shown

that that PSO-GSA outperforms both PSO and GSA in most cases of function

minimization and that its convergence speed is also faster.

The main difference in PSO-GSA is the way of defining the equation for

updating the velocity)(tVi :

))(()()()1(2211 tXgBestctacctVwtV iiii , (23)

where 1c and 2c are two adjustable parameters, w is a weighting coefficient, 1 ,

2)1,0(~ U are random numbers, aci(t) is the acceleration of agent i at iteration t,

and gbest is the best solution so far.

The way of updating the agent positions is unchanged:

)1()()1(tVtXtX iii . (24)

By adjusting the parameters 1c and 2c via the updating procedure, PSO-

GSA has a better ability to balance the global search and local search. The agents

near good solutions try to attract the other agents which are exploring the search

space. When all agents are near a good solution, they move very slowly. By using a

memory to store the best solution (gBest) found so far, PSO-GSA can exploit this

information, which is accessible anytime to each agent. Thus the agents can

observe the best solution and can tend toward it.

2.5. Many Optimizing Liaisons (MOL)

Here, we consider a metaheuristic derived from PSO, by simplifying its

mathematical description in the following way: the particle's own previous best

known position pBest is eliminated from equation (9), by setting pc = 0. The

velocity update formula now becomes:

)(1 t
i

t
gg

t
i

t
i xgBestcvwv , (25)

where is still the inertia weight, and g U~ (0, 1) is a stochastic variable

weighted by the user-defined behavioral parameter gc . The particle's current

Vasile Georgescu

16

position is still denoted by t
ix and updated as in the PSO method, and the entire

swarm's best known position is known as gBest as well. The algorithm is also

identical to that of the PSO, with the exception that it too can be simplified

somewhat by randomly choosing the particle to update, instead of iterating over the

entire swarm. This simplified PSO is called Many Optimizing Liaisons (MOL) to

make it easy to distinguish from the original PSO ([8]).

3. EXPERIMENTS WITH TRAINING CLASSIFIERS
3.1. NN Architecture, Fitness Function and the Encoded Strategy

The architecture of the evolved NN is determined by its topological

structure and can be described as a directed graph in which each node performs a

transfer function, typically a sigmoid:

hj

e

sf
n

i jiij xw
j ,,2,1,

1

1
)(

1

,

(26)

where j

n

i iijj xws 1
, n is the number of the input nodes, ijw is the

connection weight from the ith node in the input layer to the jth node in the hidden

layer, j is the bias (threshold) of the jth hidden node, and xi is the ith input.

The final output of the NN can be defined as follows:

mksfwo k

h

j

jkjk ,,2,1,)(
1

 , (27)

where kjw is the connection weight from the jth hidden node to the kth output node

and k is the bias (threshold) of the kth output node. The architecture of a NN with

2 inputs, 2 outputs and 3 hidden nodes is shown in Figure 1.

Evolving NN with search heuristics consists of using that heuristic to find

the parameters (weights and biases) of the NN as a solution of an optimization

problem.

As an encoding strategy we use a connection-based direct encoding of the

NN parameters, such as the weights and biases, which are passed, as candidate

solutions, to the fitting (objective) function of the population-based optimization

algorithm.

 Using Nature-inspired Metaheuristics to Train Predictive Machines

17

Figure 1. The architecture of a NN with 2 inputs, 2 outputs and 3 hidden

nodes

The fitness function is defined in terms of the Mean Square Error (MSE)

of the NN. Let us denote by q the number of training samples, by k
id the desired

output of the ith input unit when the kth training sample is used, and by k
io the

actual output of the ith input unit when the kth training sample is used. Then:

,
1

2

q

k

k

q

E
MSE where

m

i

k
i

k
ik doE

1

22 . (28)

3.2. Predicting Bankruptcy: Experimental Setup and Results
We next discuss the experimental setup proposed in this section. Our

purpose is to compare the performances of CS, PSO, GSA PSO-GSA and MOL

metaheuristics, when using to evolve neural network classifiers for bankruptcy

prediction. This is a hard classification problem, as data are high-dimensional, non-

Gaussian, and exceptions are common.

A sample of 130 Romanian companies has been drawn from those listed

on Bucharest Stock Exchange (BSE), with the additional restriction of having a

turnover higher than one million EURO. Financial results for the selected

companies were collected from the 2013 year-end balance sheet and profit and loss

account. As predictors, a number of 16 financial ratios have been used in our

models. The classification task consists of building classification models from a

sample of labeled examples and is based on the search for an optimal decision rule

which best discriminates between the groups in the sample.

When evaluating the predictive performance of one or more models, one of

the core principles is that out-of-sample data is used to test the accuracy. The

validation method we used in our experiments is the holdout method. The data set

has initially been split into two subsets; about 60% of the data have been used for

training and 40% for testing.

In binary classification, the accuracy is a statistical measure of how well a

classifier correctly identifies if an object belongs to one of two groups. However,

accuracy is not a reliable metric for the real performance of a classifier, because it

Vasile Georgescu

18

will yield misleading results if the data set is unbalanced. Unfortunately, this is the

case with our dataset, where the number of samples in the two classes varies

greatly: 104 solvent firms and 26 insolvent ones. Thus, a more detailed analysis

than mere proportion of correct guesses (accuracy) is needed. Actually, the

performance of the competing classifiers was evaluated using the Confusion

Matrix and the Receiver Operating Characteristic (ROC) analysis.

The NN classifiers evolved with CS, PSO, GSA, PSO-GSA and MOL

have similar architectures: 16 inputs, 2 outputs (binary response) and 15 hidden

nodes. The results for all search heuristics used to evolve NN classifiers for our

application at hand (bankruptcy prediction) are summarized in table 1. Figure 2

shows the learning performance of using PSO-GSA to evolve the NN. Figures 3-4

show the confusion matrices and ROC curves for training and test datasets. Similar

graphical representations can be obtained for the other metaheuristics.

Table 1. In-sample and out-of-sample average classification error rates

 PSO-GSA CS MOL PSO GSA

In-sample

classification rate
98.7 % 96.2 % 93.6 % 92.3 % 91.0 %

Out-of-sample

classification rate
90.4 % 88.5 % 88.5 % 86.5 % 84.6 %

As we expected, the in-sample classification rates are better than the out-

of-sample classification rates for all algorithms. The hybrid metaheuristic PSO-

GSA outperforms all the standalone metaheuristics, either in case of already seen

(training) data, or in case of unseen (test) data, showing that the hybridization is an

effective approach. As for the standalone metaheuristics, the best-performing are

CS and MOL.

Further experiments are intended in order to evaluate repeatedly the

performance of the three algorithms in terms of average classification rates, or to

apply them on other databases.

Figure 2. NN evolved with PSO-GSA: Learning performance

 Using Nature-inspired Metaheuristics to Train Predictive Machines

19

Figure 3. NN evolved with PSO-GSA: Training confusion matrix and ROC

curves

Figure 4. NN evolved with PSO-GSA: Test confusion matrix and ROC curves

4. EXPERIMENTS WITH TRAINING FUNCTION

APPROXIMATORS
4.1. NNARX models

Feedforward Neural Networks offer a straightforward extension to the

classical way of modeling time series. Namely, they can use a specific mechanism

to deal with temporal information (a series-parallel architecture for one-step ahead

prediction with respect to both delayed inputs and outputs, without feedback) and

can thus extend the linear autoregressive model with exogenous variables (ARX)

to the nonlinear ARX form:

 tnbnktnktnattt XXyyFy ,,,,,1 (29)

where F is a non-linear function, an is the number of past outputs, bn is the

number of past inputs and kn is the time delay.

Vasile Georgescu

20

 Nonlinear neural network ARX (NNARX) models are potentially more

powerful than linear ones in that they can model more complex underlying

characteristics of time series and theoretically do not have to assume stationarity.

In a NNARX model, ty is a function of its lagged values jty and the

lagged values of some exogenous variables, having the role of capturing

extraneous influences. For example, extending the NNAR model to a NNARX one,

by allowing the LEU/EURO exchange rate to additionally depend on some other

exchange rate as an exogenous variable (say, the LEU/USD exchange rate) proved

to ameliorate the overall forecasting performance.

In principle, the output of the NNARX model can be considered as an

estimate tŷ of the output ty of some nonlinear dynamical system and thus it

should be feed back in the next stage to the input of the feedforward neural

network. However, because the true previous outputs jty are available at time t

during the training of the network, a series-parallel architecture can be created, in

which the true outputs jty are used instead of feeding back the estimated outputs

jty
ˆ , as shown in Figure 5. This has two advantages. The first is that the input to

the feedforward network is more accurate. The second is that the resulting network

has a purely feedforward architecture, and the backpropagation or, alternatively, a

metaheuristic, can be used statically for training.

We adopted the standard approach for training and testing, that is, to

evaluate a model by testing its performance on a validation set consisting of out-of-

sample data.

Figure 5. A purely feedforward architecture of the NNARX(na, nb, nk) neural

 Net

4.2. Predicting Foreign Exchange Rates: Experimental Setup and Results

Let us consider a NNARX(2, 2, 1) model:

 tttttt xxyyFy 2121 ,,, , (29)

 Using Nature-inspired Metaheuristics to Train Predictive Machines

21

where the Romanian Leu to Euro exchange rate (denoted by ty) is the endogenous

variable, the Romanian Leu to US Dollar exchange rate (denoted by tx) is the

exogenous variable, 2an , 2bn and 1kn . The additional information

provided by tx is intended to ameliorate the overall forecasting performance for

ty . The neural network architecture associated with this model is depicted in

Figure 4. The number of hidden neurons is 12. The dimension of the search space

is 73 (4×12+12=60 weights, 12+1=13 biases).

Figure 6. The NN architecture of the NNARX(2, 2, 1) model

 The fitness function used to evolve the NNARX models over the training

data, by means of each metaheuristic in turn, is defined as the Mean Square Error

(MSE). MSE is also used to measure the predictive performances of the evolved

models, for all datasets: training, validation and test. The results of our experiments

are listed in table 2. The last 3 metaheuristics are hybridizations of CS, PSO and

GSA with the Matlab local optimizer FMINCON.

Table 2

Metaheuristics Rank MSE-training MSE-validation MSE-test

PSO-GSA 1 0.00024543 0.0000645492 0.000192541

CS 3 0.00025360 0.0000716124 0.000070092

MOL 4 0.00026799 0.0000730520 0.000134811

PSO 6 0.00035111 0.0000795555 0.000085198

GSA 8 0.00053956 0.0002893300 0.000286416

CS-FMINCON 2 0.00024790 0.0000654016 0.000091281

PSO-FMINCON 5 0.00027457 0.0000713060 0.000140976

GSA-FMINCON 7 0.00036225 0.0001269550 0.000124204

 It is worth to note the important role of hybridization in improving the

predictive performance of the evolved models. The best-performing optimizers are

two hybrid metaheuristics (PSO-GSA and CS-FMINCON) that are more effective

while in tandem than working alone.

Vasile Georgescu

22

Figure 7. The PSO-GSA hybridization (PSO-GSA)

Figure 8. Cuckoo Search (CS)

Figure 9. Many Optimizing Liaisons (MOL)

 Using Nature-inspired Metaheuristics to Train Predictive Machines

23

Figure 10. Gravitational Search Algorithm (GSA)

As for the standalone metaheuristics, the best-performing are, by far,

Cuckoo Search and Many Optimizing Liaisons.

A final note is about the remarkable generalization capability of all

metaheuristics: the MSE for validation and test datasets are surprisingly good, even

better than the MSE for training dataset. This emphasizes once again the very

nature of metaheuristics as global optimizers.

5. CONCLUSIONS
The aim of this paper was to compare the performances of several nature-

inspired metaheuristics, when using alone, or synergically, as hybrid methods, for

evolving Neural Network based classifiers and function approximators. Founded

on a new computational paradigm, the optimizers in this category have been

proposed in an attempt to overcome the weakness of gradient-based techniques.

Backpropagation, the most popular technique for training NNs, is also based on

gradient descent and thus suffers from the same drawbacks as the classical

optimizers, including a low convergence rate, instability, the differentiability

condition, the risk of being trapped in a local minimum and the possibility of

overshooting the minimum of the error surface. Metaheuristics, instead, are

gradient-free, have a high convergence rate and are able to perform notably well in

complex task, such as training neural networks that generate complex error

surfaces, with multiple local minima.

 Hybridization has often proven to be a successful approach in many cases

where, by combining the mechanism of two algorithms and the functionality of

their parameters, we are able to find new ways of controlling the exploration and

exploitation capabilities of the newly generated hybrid. The results reported here

may be seen as another step in validating approaches of this kind.

Vasile Georgescu

24

REFERENCES

[1] Eiben, A.E., Schippers, C.A. (1998), On Evolutionary Exploration and

Exploitation; Fundamenta Informaticate, vol. 35, no. 1-4, 35-50;

[2] Georgescu, V. (2015), Using Genetic Algorithms to Evolve a Type-2 Fuzzy

Logic System for Predicting Bankruptcy ; Advances in Intelligent Systems

and Computing, Vol. 377, pp 359-369, Springer;

[3] Georgescu, V. (2010), Robustly Forecasting the Bucharest Stock Exchange

BET Index through a Novel Computational Intelligence Approach;

Economic Computation and Economic Cybernetics Studies and Research,

ASE Publishing; 44 (3), 23-42;

[4] Kennedy, J., Eberhart, R.C. (1995), Particle Swarm Optimization, in

Proceedings of IEEE international conference on neural networks, vol. 4,

1942–1948;

[5] Mirjalili, S., Mohd Hashim, S.Z. (2010), A New Hybrid PSOGSA

Algorithm for Function Optimization, in: International Conference on

Computer and Information Application (ICCIA 2010), 374-377;

[6] Mantegna, R. (1994), Fast, Accurate algorithm for Numerical Simulation

of Lévy Stable Stochastic Processes; Physical Review E, Vol. 49, No. 5,

4677-4683;

[7] Pearl, J. (1983), Heuristics: Intelligent Search Strategies for Computer

Problem Solving; Addison-Wesley;

[8] Pedersen M.E.H., Chipperfield A.J. (2010), Simplifying Particle Swarm

Optimization; Applied Soft Computing; Volume 10, Issue 2, 618–628;

[9] Rashedi, E., Nezamabadi, S., Saryazdi, S. (2009), GSA: A Gravitational

Search Algorithm; Information Sciences, vol. 179, no. 13, 2232- 2248;

[10] Rodrigues, D., Pereira, L.A.M., Souza, A.N., Ramos, C.C., Xin-She Yan

(2013), Binary Cuckoo Search: A Binary Cuckoo Search Algorithm For

Feature Selection; IEEE International Symposium on Circuits and Systems

(ISCAS), 465 - 468 ;

[11] Shi, Y., Eberhart, R.C. (1998), A Modified Particle Swarm Optimiser, in

IEEE International Conference on Evolutionary Computation, Anchorage,

Alaska;

[12] Walton, S., Hassan, O., Morgan, K., Brown, M.R. (2011), Modified

Cuckoo Search: A New Gradient Free Optimization Algorithm. Chaos,

Solitons & Fractals, 44(9), 710–718;

[13] Yang, X.-S., Deb S. (2009), Cuckoo Search via Lévy Flights, in Proceedings

of World Congress on Nature & Biologically Inspired Computing (NaBIC

2009), India, IEEE publications, USA, 210-214.

