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NON-CONSTANT QUASI-HYPERBOLIC DISCOUNTING 

 

Abstract. This paper puts forward a non-constant quasi-hyperbolic (NQH) 

discount function which can control the switch point of preference reversal in a 

flexible way. A non-standard Hamilton-Jacobi-Bellman (HJB) equation enables us 

to produce time-consistent solution under stochastic non-constant quasi-hyperbolic 

(SNQH) discounting. The sophisticated individual, the naïve individual and the 

pre-committed individual are compared analytically and numerically. 

Key word: preference reversal; time-consistent solution; sophisticated 

individual; naïve individual; pre-committed individual. 
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1. Introduction 

Quasi-hyperbolic (QH) discount function, in particular constant QH 

(CQH1) discounting, has long been recognized as the corner stone of preference 

theory. Pan, Webb, Zank (PWZ) (2015) propose a QH discount function whose 

major advantage is capturing the switch point of preference reversal. After these 

endeavors, the usage of constant long-run discount rate ( ln  and  ) to 

                                                             
1 the constant quasi-hyperbolic (CQH) discount function includes, but not limited to, 

21, , ,    or 
21, , ,e e   

, where ln and  are constant long-run 

discount rates. 
s and 

se  
 are discount factors used to evaluate the payoff 

enjoyed at 1s  .  
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aggregate time-varying preference of conflicting selves remains “intact”. The 

purpose of this paper is to reconcile this constancy with the fact that selves make 

irregular modification of their preferences in every instant. 

The paper comprises three main components. First, we design a NQH1 

discount function. Relative to the earlier frameworks, the NQH discount function 

adds two new features: (i). by calibrating the non-constant long-run discount rate 

( )r  , the switch point between different preferences can be adjusted easily. (ii). 

multiple preference reversals becomes possible, as long as the assumption of 

non-increasing ( )r   is relaxed. In addition, by extending the Harrison-Laibson 

discount function (Harris and Laibson, 2013), section 2 approximates the conflicts 

that each self faces with the SNQH discount function. 

Second, to reach the subgame perfect equilibrium in a non-cooperative 

sequential game, we reformulate an objective function of an SNQH discounter into 

a non-standard HJB. The intuition for this is that, by aggregating preferences, the 

SNQH discounter has no incentive to deviate from time-consistent policy. Formal 

difficulties have been evident since Karp (2007) pioneered the non-standard HJB 

method, Ekeland, Mbodji and Pirvu (2010) popularized a verification theorem, and 

Zou, Chen and Wedge (2014) tackled a problem under a CQH discounting. These 

difficulties are crystallized here since the present paper studies a sophisticated 

SNQH discounter who has never appeared in the literature.  

Third, psychological features of different individuals (e.g. myopic and 

pre-committed) are explored via the deformation of the afore-mentioned HJB. In 

other word, our versatile discount function admits situations in which individuals 

can either commit or not to their initial plan over time. 

 

 

 

                                                             
1  the NQH discount function can take the form of 1, (1), (2),  where 

  0
( ) exp

s

s r d    is the discount factor used to evaluate the payoff enjoyed at 

1s   and ( )r  is a non-constant long-run discount rate. 
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2. Preference 

This section establishes a new discount function, which integrates the 

NQH discount function with the split algorithm in Harrison and Laibson (2013). 

2.1. Discount function 

Definition 2.1 (stochastic non-constant quasi-hyperbolic discount function, SNQH) 

The discount function with which a t -agent (decision time is t ) evaluates a payoff 

at time s is  

                
 

 

( ) , ,
( , ) =

( ) ,

s t s t t
D t s

s t s t

 

 

     


    
               (2.1) 

here (i) If enjoying her payoff at time  ,s t t   , self t  discounts the payoff 

with a hyperbolic discount factor   0
( , ) ( ) exp

s t

t s s t r d   


    . ( ) s t  

dollar for self t  is equal to one dollar for self s (  t s T ).  
1




E . (ii) The 

payoff enjoyed at time  ,s t    is discounted with ( )s t  . (iii) ( )r   is the 

long-run discount rate.□ 

Of particular significance is ( )r  , which allows the NQH (and SNQH) 

discount function have non-constant discount rates at arbitrary stage/status and can 

be parameterized with  

                           

  0
( )

( )

s

r d

s e

b
r a

T

 



 

 

  


 
                   (2.2) 

where  T  is the terminal time point，a  and b  are determinants of preference 

and exert independent, and often opposing, effects.  

2.2. Preference reversal 

Three examples examine how the NQH discounting, an element of the 

SNQH discounting, accounts for the switches between present-bias to future-bias.  

2.2.1. Preference reversal 

We adapt/refine Jackson and Yariv (2015) to explain the phenomenon that 

an impatient individual who prefers (one apple, 0 day) to (two apples, 1 day) 
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becomes patient in selecting (two apples, 366 days) instead of (one apple, 365 

days). 

Definition 2.2. (preference reversal)  (i) 'C  and  ''C  stand for two 

consumption streams; (ii) 
iC  denotes activity (e.g. consumption) at time 

i , 0,1,2,i  ; (iii)  t  represents decision time point, s  the time point that a 

payoff will be enjoyed, k the delay (time distance) between two timed outcomes, 

m  the translation of time. (iv) V  is the discounted utility (DU) at four time 

points  0, , ,s k m k m  ,  0 k , 0 m ,  

 
 

 

'

0

'

,0,  ( , ) (0,0)
' =

0, , ,0, ( , ) (0, )m

V C if t s
V C

V C if t s m

   


  

 

                     
 

 

' '

0

' '

0, , ,0  ( , ) (0, )
'' =

0, 0, ,0  ( , ) (0, )

k

k m

V C if t s k
V C

V C if t s k m

 







  


  
  

If, the initial preference represented by a function V  

   ' ' '

0 0,0, 0, , ,0kV C V C 


 

is opposite to the preference after a translation of m unit time 

     
   ' ' '0 , , , 0 , 0 , 0 , , 0m k mV C V C

   

then, the preference is reversed.
 
□ 

 

Figure 2.1 Impatient short run selves and patient long-run selves 
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As Fig. 2.1 illustrates, preference reversal occurs merely because the timed 

outcomes are translated m  units into the future. At time 0, the discounter is 

reluctant to accept a delay of k and has a preference of the sooner reward ( ' 0)C ，  

over the delayed reward ( '' )C k, . Also at time 0, this discounter accepts the delay 

of k  and prefers the delayed reward ( '' )C m k,  over the sooner reward 

( ' )C m, .  

 

2.2.2. Immediacy bias with translation  

It has been pointed out by PWZ (2015) that the split algorithm of the 

Harrison-Laibson discount function has restrictive requirements when expressing 

preference reversal. Contrary to their conclusion, we will demonstrate by three 

examples that the deterministic SNQH discounting (i.e. the NQH discounting) 

reflects nuance psychotic characteristics discounting.  

Let s  be the payoff-enjoying time, ( )s  be as defined as in eq.2.2, the 

payoff 'C  one apple，the payoff ''C  two apples，the translation 365m  . In 

each example, the self t  ( =0t ) is required to select payoff-enjoying time s  

twice. DU is computed using the formulas (cf. Laibson, 2010).  

2

1 2

2

1 2

1 2

( )

( )

( (1) (2) )

s s s

s s s

s s s

V u u u

V u e u e u

V u u u

 

  

 

  

 

 

 

 

    


   
    


 

We can infer from the examples (see appendix A) that the NQH 

discounting has the following features:  

(i) the preference reversal  

0( ' 0) ( '' )C C k， ,  and 0( ' ) ( '' )C m C m k, ,  

has been observed; 

(ii) the demarcation point that separates periods before and after a change in 

preference can stay at arbitrary positions, e.g.  26,17,162s  .  

(iii) the switch point can be adjusted via a  and b .  

Thus the stochastic NQH discounting (i.e. the SNQH discounting) captures 
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subtle heterogeneity even among present/future selves and allows all present/future 

selves be ordered in terms of their discount factors.  

 

3. HJBs for time-consistent/time-inconsistent individuals 

This section derives behavioral equations for different individuals.  

 

3.1. Non-standard programming 

Let x (resp. u )  be a state trajectory (resp. a feasible control). For 

 0,  R ,  , , nx u s  R R , x and u  are admissible, predictable and 

satisfy usual conditions. Let L and F  be utility functions (for more details, see 

Karp, 2007; Marín-Solano and Navas, 2010; Zou, Chen and Wedge, 2014). The 

aim of a representative individual is to select x and u to maximum her 

discounted utility, namely 

 

   

( , , ) ( , ) ( ), ( ), ( , ) ( ( ), )

( ), ( ),

T

t

J x u t D t s L x s u s s ds D t T F x T T

dx s f x s u s s

 

 



  

 

V  is a value function if  

                            
( , ) ( , , )V x t J x u t                      (3.1)

 

Theorem 3.1. Let 
 

0 ( )

k

r d

e k


 


  . The vale function V solves the following 

equation 

 

  ( )

( ) ( , ) ( , ) ( , ) max ( , , ) ( , ) , ,

1
( ) ( *( ))

( ) ( )

t x
u

s tT

t

r T t V x t K x t V x t L x u t V x t f x u t

e
K s t L u s ds

r s t r T t

 


 

        

   

   
    


 

  (3.2)

 

where K  is determined by the marginal utility of future selves and accounts for 

the incentive to deviate the time-consistent policies. □ 

 

3.2. Financial market 

We consider an arbitrage-free market in a complete probability space 

( ) PF,  with terminal timeT , 0T  . The filtration  
0t t

F  is generated by 
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two m -dimensional Brownian motions 1Z  and 2Z , satisfying the usual 

condition of right-continuity and augmentation by P -null sets. A representative 

individual earns income from the low-risk asset 1Q , the high-risk asset 2Q  and 

the riskless asset 3Q , 

 1 1 1( ) ( )dQ t Q t dt dZ   ,  2 2 2( ) ( )dQ t Q t dt dZ   , 3 3 0( ) ( )dQ t Q t dt  

where  0  is a n m  matrix-valued interest rate process.      r e s p .  

denotes a n -dimensional mean rate of return on quantitative investment fund (resp. 

stock).    resp.  denotes a n m  matrix-valued volatility of the 

quantitative investment fund (resp. stock).   is the covariance between 1Q  and 

2Q . p  resp.  is the fraction of total wealth invested in 

quantitative investment fund (resp. stock). Denoted by c  consumption. WLOG, 

assuming 1n m  , then the profit generating process is 

    
 

0 0 0

1 2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

dW t p t t W t c t dt

W t p t dZ t t dZ t

     

 

       

 

        (3.3) 

Let 
, ,c p

WV V 
be a value function, U  a utility function, c  

consumption, W  wealth. An individual maximizes her utilities from life-cycle 

behavior c  and final wealth ( ( ), )F W T T , 

  ( , ) ( , ) ( ( ), ) ( , ) ( ( ), )

T

t

V W t D t s U c s s ds D t T F W T T
 

  
 
E      (3.4) 

While Yuan (2009) uses similar asset structure under constant exponential 

discounting preference, this paper is concerned with an intrapersonal game among 

an infinite number of selves. 
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3.3. HJB for different individuals 

Denoted by superscripts , ,N P S the naïve individual, the pre-committed 

individual and the sophisticated individual. From theorem 3.1, one has. 

Proposition 3.2. the sophisticated SNQH discounter obtains her time-consistent 

policy by solving the following HJB 

     

 

 

   

0

0

0
, ,

2 2 2 2 2
2

2

( , )
( ) ( , ) ( , )

( ) ( )
( , )

( ( )) ( ) ( )

( ) ( )max

( ) ( )1 ( , )
( )

2 2 ( ) ( )

, ( )

S
S

S

c p

S

S

V W t
r T t V W t K W t

t

t W t
V W t

U c t p t W t
W

W t c t

p t t V W t
W t

Wp t t

V W T F W T



  

 



  

 

 
   



    
    

     
     

 
          







        (3.5) 

where 

    ( )( , ) ( ) 1 ( ) ( ) *( )

T

s t

t

K W t s t e r s t r T t U c s ds            

  

□ 

Since selves of the pre-committed individual commit to self- t ’s plan 

(e.g. 0t  ), and selves of the naïve individual revise their policies at all times, one 

has the following proposition,

 

Proposition 3.3. The policies of the naïve individual and the pre-committed 

individual are determined by the following HJB 
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 

 

   

,
,

0
,

0

0
, ,

2 2 2 ,
2

22 2

,

( , )
( ) ( , )

( ) ( )
( , )

( ( )) ( ) ( )

( ) ( )max

( ) 2 ( ) ( )1 ( , )
( )

2 ( )

, ( )

P N
P N

P N

c p

P N

P N

V W
r t V W

W
V W

U c p W
W

W c

p p V W
W

W

V W T F W T




 



    


    

  

       


  

 
  



    
    

    
     

 
   

      













       (3.6) 

                                                         

The above proposition complements several recent studies (e.g. Caliendo, 2011).  

 

4. Optimal strategies 

This section assesses optimal consumption and investment of different 

SNQH discounters.  

 

4.1. Consumption 

4.1.1. Logarithmic utility 

The utility function, the value function and the boundary conditions are 

      

   ( ) l n ( , ) ( ) l n ( ) ( ) l n ( )U c t c V W t t W t F W T W T     ， ，

     

(4.1)

 
where ( )     is a function of  , ( )t  and ( )t  are functions to be 

determined. In view of eq3.5, eq3.6 and eq. 4.1, we have 

Table. 4.1.  consumption under logarithmic utility 

individuals consumption 

i. pre- 

committed 

( )
( )

( ) ( )

( ) ( )

P

T

t

W t
c t

T s
ds

t t


 


 



 

 

ii. naifs ( )
( )

( ) ( )

N

T

t

W t
c t

T t s t ds  



  
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Table 4.1 reveals the consumption c  is positively correlated with the wealth 

W . Although the decision maker is a collection of selves, the policy that the 

“decision self” of the sophisticated individual makes is optimal to all other selves.  

4.1.2. CRRA utility 

The utility function, the conjectural value function and the boundary 

condition are  

     

   
 

11 1 ( )
( ) ( , ) ( ) ( )

1 1 1

W Tc W
U c t V W t t F W T

 

 
  

 

  
  

， ，          (4.2) 

Denoted by superscript CR  the CRRA utility. For notational simplicity, we let 

 

 
  

, ,

0

2 2

0 00 0

2

1

21

2 1

R RP C N C CR    

       

   

    

       
     

      

                          

(4.3) 

and 

iii. 

sophisti- 

cates 
 

 
 

( )
( )

( )

S

T

S

t

W t
c t

T t
T t s ds

T s



  






 


 

  ( )( ) ( ) 1 ( ) ( ) 1

T

S z s

s

s z s e r z s r T s dz              
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 

    

 

   

 

 

0

2

0

2 2

0 0 0

1

1
( )

2 2

0

1 ( )

( ) ( )1

1 2 2

( )

( ) 1 ( ) ( ) ( )

2 1 (1 )( )

2 1

exp

S S

S

s t S

T

t

r T t

t t

t

s t e r s t r T t s

s t






 

 

 

 

        

 

 

   

 

 

 






 

   
 

   
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(4.4) 

Let 
CR  be given as in eq.4.3. From eq3.5, eq3.6 and eq.4.2, one has 

Table 4.2 consumption under isoelastic utility 

individuals 
consumption

 

1

*( ) ( ) ( )c t t W t



  

i. pre- 

committed 
1

1

( ) ( )( ) ( )
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CR CR
T

P T t T s
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T s
t e e ds

t T




 



 
 

 

  

 
       

  
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ii. naifs 1
1

( ) ( )( )
( ) ( )

( )

CR CR
T

N T t T s

t

s t
t T t e e ds

T t




 




  



  

 
        

  


 

iii. sophisti- 

cates 
( )S t satisfies eq.4.4 
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Table 4.2 disentangles the relative risk aversion and analyzes the effects of 

key structural parameters on equilibrium consumption. 

4.1.3. CARA utility 

The utility function, the conjectural value function and the boundary 

conditions are                  

     

     ( ) ( )1
( ) ( , ) ( )

t t Wc WU c t e V W t e F W T e
   

  


        ， ，       (4.5) 

Denoted by superscript CA  the CARA utility. In order to compress 

notation, we let 
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(4.6) 
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(4.7) 

where 
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Let 
CA  and 

CA  be given as in eq.4.6. From eq3.5, eq3.6 and eq. 4.5, one has, 

               Table 4.3 consumption under CARA utility 

individuals consumption 
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iii. sophisti- 

cates 

S  satisfies eq.4.7 

Table 4.3 shows changes in the individual’s consumption operate through 

three channels: the discount function, the absolute risk aversion and the wealth.  

 

4.2. Investment 

By same token as section 4.1, one can derive the optimal fractions of the 

investment in the wealth. 

 

Table 4.4. Investment Ratio 
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Table 4.4 reveals that (i) the fraction of investment in wealth  (resp. p ) 

is an decreasing functions of its volatility  (resp. ), and an increasing functions 

of its asset return  (resp. ); (ii) / p  is negatively related to risk aversion 

coefficient  ; (iii) the optimal investment   / p  is 0 when variance between 

two risky assets   is －1 or 1. (iv) under CARA utility, the fraction of investment 

is contingent on wealth. 

 

4.3. Simulation  

In conducting the numerical analysis of the model, we use 

0.09a  , 0.006b  , 1.006  , 0.2   and 0.3   unless denoted by 

figures. 

 

4.3.1 Sophisticated individual 
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=0.2，  =0.6

=0.4，  =0.4

=0.6，  =0.2

 

Figure 4.1. c/w ratio of the sophisticated individual by   

Figure 4.1 describes the responses of consumption curve to the 



 
 
 
 
 
 
 

Non-constant Quasi-hyperbolic Discounting 

159 

 

 
 

quasi-hyperbolic parameters. The consumption-wealth (c/w) ratio is negatively 

related with the arrival rate of future  , and positively related with 

immediacy-bias parameter  .  
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a=0.06, b=0.09

a=0.12, b=0.06

a=0.18, b=0.03

 

Figure 4.2. c/w ratio of the sophisticated individual by a  and b  

 

Figure 4.2 shows that the c/w ratio increases/decreases by a /b . Therefore 

our framework can categorize disturbances according to whether they were 

short-run or long-run, anticipated or unanticipated. 

 

4.3.2 Behavioral analysis 

 

Figure 4.3. c/w ratios of the sophisticated individual, the naïve  

individual and the pre-committed individuals 
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Fig. 4.3 describes the idiosyncratic reactions of individuals. The 

pre-committed individual can resist temptation of overconsumption, while the 

sophisticated individual is affected by her preference parameters (e.g. 

 ,  , a ,b ).  

The marginal propensity to consume warrants closer scrutiny. 

Table 4.5 comparison of numerical simulation and analytic analysis 

individuals c/w ratio source 

i. 

pre-committed 

VS naïve 

P N
c c

W W
  fig.4.3 

P N
c c

W W
  

table. 4.1 

ii. 

sophisticated 

VS  

naïve 

0.2, 0.3

S N
c c

W W   
  fig.4.3 

=0 or =1

NS
c c
W W 


，

 
table. 4.1 

iii. 

sophisticated 

VS 

pre-committed 

0.2, 0.3

S P
c c

W W   
  

fig.4.3 

=0 or =1

=0 or =1

, for

, for

S P

S P

c c t T s
W W

c c t T s
W W

 

 

    

    

，

，

 
table. 4.1 

 

Table 4.5 summarizes the equilibrium of various individuals. (i). To the 

extent that all selves discipline themselves by following self t ’s ( =0t ) plan, the 

pre-commitment mechanisms stabilizes the individual’s rate of consumption. (ii) 

the consumption ratio of the sophisticated individual is larger than that of the naive 

individual.  (iii) a decrease in bias parameter   has a strong positive effect on 

the consumption of the sophisticated individual. 

 

5. Conclusion 

Our paper designs the stochastic NQH discount function and finds that: (i) 

a decrease/increase in /a b  will bring about earlier arrival of preference reversal; 

the stochastic NQH can have more than one instance of preference changes, if the 
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assumption of non-increasing function in ( )r   is relaxed. (ii) consumption 

increases/decrease by  /  . (iii) the sophisticated individual acts optimally and 

achieves a high and unified consumption trajectory.  
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Appendix A. Three examples of preference reversal 

In this appendix we let “DU” stand for discounted utility, “prefer. ” represent 

preference. We will prove that the NQH discounting sustains frequent and abrupt 

preference reversals. 

Table A1. CQH VS NQH (delayed rewards: 1 day, i.e. 1k  )  

discount function
 

21, , ,   1, (1), (2),   

source canonical

 

this paper

 para- 

meters 

mutual 110, 0.5, (1) 0.5u        

special  0.03
0.695,

400
a b   

short- 

run 

D 

U

 

   , 0, 0,1 t su   10 10 

( ,2 ) (0, ) , 1t su   4.99 4.99 

preference present present 

long- 

run 

D 

U

 

( , ) (1 , 0, )365u t s   3640.2 50.5  1085 10  

( , ) (2 , 0, )366u t s   3642.49 0.50  
108105.1   

preference present future 

prefer. 

reversal 

position of a threshold no 26s    

threshold occur earlier no a or b      

 

Note: short-run (resp. long-run) preference is tested based on selection from 

 0,1s    (resp.  365, 366s   )  
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Table A2 CQH VS NQH (delayed rewards: 1 week, i.e. 7k  ) 

discount function
 

21, , ,   1, (1), (2),   

source canonical

 

this paper

 para- 

meters 

mutual 110, 0.5, (1) 0.90u        

special  0.03
0.1,

400
a b   

short- 

run 

D 

U

 

   , 0, 0,1 t su   10

 

10

 

( ,2 ) (0, ) , 7t su   4.97  4.97  

preference present present 

long- 

run 

D 

U

 

( , ) (1 , 0, )365u t s   36404. .952  1311. 4 00   

( , ) (2 , 0, )372u t s   36404. .949  
1311. 5 02   

preference present future 

prefer.  

reversal 

position of a threshold no 17s    

threshold occur earlier no  a or b     

Note: short-run (resp. long-run) preference is tested based on selection from 

 0, 7s    (resp.  365, 372s   ) 

 

Table A3 Table 2.2 CQH VS NQH (delayed rewards: 30 days, i.e. 30k  ) 

discount function 
21, , ,e e     1, (1), (2),   

source canonical

 

this paper

 para- 

meters 

mutual 10, 0.5, = (1) 0.955u e      

special 0.046   0.03
0.046,

400
a b   
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short- 

run 

D 

U

 

   , 0, 0,1 t su   10 10 

( , )2 , ( ,3 )00su t   2.52 2.60 

preference present present 

long- 

run 

D 

U

 

( , ) (1 , 0, )365u t s   72.55 10  53.77 10  

( , ) (2 , 0, )385u t s   72.04 10  
55.28 10  

preference present future 

prefer. 

reversal 

position of a threshold no 162s    

threshold occur earlier no a or b     

Note: short-run (resp. long-run) preference is tested based on selection from 

 0, 30s    (resp.  365, 385s   ) 

 

Appendix B. Proof of theorem 3.1 

Proof. the time period  0,T is divided into N  partitions such that 
T

N


  and 

dt  . Each period lasts for ε units of time. The time is denoted as t j ， 

s i , = ( )i i   .  In addition, ( , )j jV V W j , ( ) ( ( ), )NV V N F W T T  .   

Discretizing eq.3.1 gives rise to  
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(B1) 

Discretizing eq.3.1 and pushing it forward leads to 

1

1 1

1

(0, ( 1) ) ( , , ( ) )
N j

j i j i j N j N

i

V D i L x u i j V    
 

    



   
      (B2) 

A simple induction based on eq.B1 and eq.B2 yields eq.3.2.□ 

 


