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Abstract. Simultaneous lot-sizing and scheduling in a distributed flow shop 

has been considered in this paper. Number of factories is a parameter and it is not 

necessary to use all factories. Outsourcing is the other realistic assumption of this 
paper. In other words, the tradeoff between outsourcing and number of utilized 

factories is discussed in this paper. An exact formulation of the problem has been 

provided as a mixed integer program. To solve the problem, a heuristic has been 
developed. 
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1. Introduction 
   Selection the appropriate lot-sizes and production schedules has an undeniable 

role in running the production organizations. Lot-sizing and scheduling problems 

have been an active area of research starting from the seminal paper of Wagner & 

Whithin (1958). Along with the setup issue, there are various other features to be 
dealt with when modeling lot-sizing and scheduling problems, among them are the 

segmentation of the planning horizon, the time dependence of the model 

parameters, the information degree of the model parameters, the number of 
products and production stages, the production structure, and the capacity 

restrictions (Mohammadi et al., 2010; Fandle and Stammen-Hegene, 2006; Karimi 

et al., 2003; Merece and Fonton, 2003). 
   Because of the interrelationship between lot-sizing and scheduling, simultaneous 

lot-sizing and scheduling is essential when sequence-dependent setup costs and 

times occur. Involving sequence-dependent setups is an important consideration in 

many practical applications. Because of their prevalence in, and importance to, 
industry and because of the challenges they present to solution methodologies, lot-

sizing and scheduling problems that involve a sequence-dependent setup have 

attracted attention from many researchers (Fandle and Stammen-Hegene, 2006). 
   Chung and Choi (2013) considered a two-machine ordered flow shop problem, 

where each job is processed through the in-house system or outsourced to a 

subcontractor. For in-house jobs, a schedule is constructed and its performance is 
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measured by the makespan. Since this problem is NP-hard, they presented an 
approximation algorithm. Naderi and Ruiz (2010) presented a new generalization 

of the regular permutation flow shop scheduling problem (PFSP) that referred to as 

the distributed permutation flow shop scheduling problem or DPFSP. Also, a 
comprehensive computational and statistical analysis are conducted in order to 

analyze the performance of the proposed methods. Zandieh and Rashidi (2009) 

presented an effective hybrid genetic algorithm for hybrid flow shops with 

sequence dependent setup times and processor blocking. Also, Azab and Naderi 
(2014) presented greedy heuristics for distributed job shop problems. The idea of 

the proposed heuristics is to iteratively insert operations (one at each iteration) into 

a sequence to build up a complete permutation of operations. The performance of 
the model and the six heuristics are comprehensive evaluated by numerical 

experiments. In other research, Sukkerd and Wuttipornpun (2016) proposed a 

Hybrid genetic algorithm and tabu search for finite capacity material requirement 
planning system in flexible flow shop with assembly operations. The results of this 

paper show that HGATS requires a practical computational time when applied to 

real industrial cases. 

   Simultaneous lot-sizing and scheduling in capacitated flow shop with sequence-
dependent setups has been considered by Mohammadi et al. (2010). They proposed 

a mathematical formulation and mixed integer programming based heuristics for 

the problem. Costa et al. (2015) presented a hybrid genetic algorithm for 
minimizing makespan in a flow-shop sequence-dependent group scheduling 

problem. The proposed technique makes use of a matrix encoding able to 

simultaneously manage the sequence of jobs within each group and the sequence of 

groups to be processed along the flow-shop manufacturing system. In other study, 
to solve large-sized instances of the problems, Mohammadi et al. (2010) presented 

a new algorithmic approach and a genetic algorithm, respectively. Also, in other 

research a genetic algorithm-based heuristic for capacitated lot-sizing problem in 
flow shops with sequence-dependent setups have been presented (Mohammadi and 

Fatemi Ghomi, 2011). In single factory problems, the problem is to lot-size and 

schedule products on a set of serially arranged machines, while in the distributed 
problem another additional decision arises: the allocation of the products to 

factories (Naderi and Ruiz, 2010; Moon et al., 2002).  

   This paper is organized as follows: section 2 introduces a detailed description of 

the problem. Sections 3 & 4 present the heuristic and numerical experiments, 
respectively. The last section is devoted to the final remarks and recommendation 

for future studies. 

 

2. Problem formulation     

2.1. Assumptions 

- There are a specific number of factories. It is not necessary to utilize all of the 
factories. 

-  Each factory consists of m serially-arranged machines. Each product can not be 

produced in more than one factory. 
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-   External demands exist just for final products. Demand of a specific product 

could be satisfied by outsourcing or production on a factory. 

-   In each factory production permutation is not necessarily maintained the same in 
each period. 

-   When the machines are setup, sequence-dependent setup costs and times occur. 

-   The setting up of a machine must be completed in a period. 

-   Shortage is not permitted. 
-   A component can not be produced in a period until the production of its required 

component is finished. In other words, production at a level can only be started if a 

sufficient amount of the required items from the previous level are available; this is 
called vertical interaction. 

-   To guarantee the vertical interaction, idleness between each production and its 

respective setup is defined by introducing the shadow product (Mohammadi et al., 

2010, Fandle and Stammen-Hegene, 2006). 
-   At the beginning of the planning horizon, all machines are in starting setup 

configuration. 

-   The triangle inequality holds, i.e., it is never faster to change over from one 
product to another by means of a third product. In other words, a direct changeover 

is at least as capacity efficient as going via another product.  

 

2.2. Mathematical formulation 

The following notations are used in the model formulation: 

Indices: 

i, j, k: Product type 
n, n', n'': Designation for a specific setup number 

m: Level of production 

f: A specific factory 
t: Period 

 

Parameters: 

T : Planning horizon. 

N : Number of different products. 

M : Number of production levels/ number of machines. 

MBig : A large real number. 

F : Number of factories. 

C tfm ,,
: Available capacity of machine m at factory f in period t. 

d tj ,
: External demand for product j at the end of period t.  

h mj ,
: Storage costs unit rate for product j in level m. 

b fmj ,,
: Production time to produce one unit of product j on machine m of factory f. 
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p
tfmj ,,,
: Production cost to produce one unit of product j on machine m of factory 

f in period t. 

S fmji ,,,
: Sequence-dependent setup time for the setup of the machine m in factory 

f from production of product i to production of product j; for 0,
,,,
 S fmji

ji  

and for 0,
,,,
 S fmji

ji . 

W fmji ,,,
: Sequence-dependent setup cost for the setup of the machine m in factory 

f from production of product i to production of product j; for 0,
,,,
 W fmji

ji  

and for 0,
,,,
 W fmji

ji . 

Af
: Fixed cost to stabilize factory f. 

0 : The starting setup configuration on machines. 

O tj ,
: Cost of outsourcing one unit of product j in period t.  

 

Variables: 

y
n

tfmji ,,,,
: Binary variable, which indicates whether the nth setup on machine m & 

factory f in period t is from product i to product j ( 1
,,,,
y

n

tfmji
) or not 

( 0
,,,,
y

n

tfmji
). 

x
n

tfmj ,,,
: Quantity of product j produced after nth setup on machine m & factory f 

in period t. 

I tmj ,,
: Stock of product j at level m at the end of period t. 

q
n

tfmj ,,,
: Shadow product: the gap (in quantity units) between nth setup of factory f 

(to product j) on machine m in period t and its related production in order to ensure 

that direct predecessor of this product (production of product j on machine m-1 
from factory f in period t) has been completed. 

F f
: Binary variable, if factory f has been selected for operation ( 1F f

) in 

other words ( 0F f
). 

o tj ,
: Quantity of product j which are outsourced in period t.  
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   Objective function which minimizes the sum of the sequence-dependent setup 

costs, the production costs, the storage costs, the costs of stabilizing factories and 
the costs of outsourcing the products are shown in equation (1). Note that when in 

equation (2), the demand, supply in each period are presented. Equation (3) ensures 

that in a network, total of in-flows to each node is equal to out-flows from that 

node. Equation (4) determine that each factory guarantees within one period each 
typical product j on machine m is produced before its direct successor (product j on 

machine m+1). Equation (5) represents the capacity constraints of machines during 

periods. Equation (6) indicates that setup is considered in production process. 
Equation (7) indicates the relationship between shadow products and setups. 

Equations (8) & (9) in each factory guarantee for each machine, the first setup at 

the beginning of the planning horizon is from the starting setup configuration. 

Equations (10) & (11) for each factory indicates that if destination of a setup is "0", 
successive setups are from "0" to "0". Equations (12) & (13) represent the 

relationship between successive setups. Equations (8) to (13) ensure that for each 

quadruplet (n,m,f,t) there is exactly one pair (i,j) which 1
,,,,
y

n

tfmji

. Equations 

(14) & (15) ensure that each product can not be produced in more than one factory. 
Equation (16) indicates that a factory is used if at least one product produced on it. 

Equations (17) & (18) represent the type of variables. Equation (19) indicates that 

at the beginning of the planning horizon there is no on-hand inventory. 
 

2.3. Development of lower bound 

   The formulation presented in the previous sub-section is not a practical approach 
to solve large instances of the problem. Solving the single-level multi-period CLSP 

with sequence-dependent setups is equivalent to solving multiple-dependent TSPs. 

Hence, like the TSP, the CLSP also belongs to a set of problems that are called NP-

Hard. That means it is very difficult to optimally solve large instances of the 
problem (Mohammadi et al., 2010; Almada-Lobo et al., 2007). The introduction of 

new assumptions makes the problem even more complicated. Therefore, it is 

necessary to find appropriate solution for medium and large instances. Also it is 
important to develop a computable lower bound in order to test the accuracy of the 

heuristic.  

   Model M 1
 has been assumed to be obtained from the initial model by relaxing 

all binary variables. After relaxing the binary variables, Equation (4) does not have 



 

 

 

 

 
Mohammad Mohammadi 
__________________________________________________________________ 

286 

 

 

 

important role on the problem because for non-integer values of y
n

tfmji ,,,,
, the left 

side of Equation (4) would be negative and right side of Equation (4) would be a 

big number. It means by relaxing binary variables, Equation (4) could be ignored. 

Model M 2
is obtained by adding the following Equation to M 1

 : 
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a tfmj ,,,
is a binary variable. Equation (20) is similar to the right hand side of 

Equation (6). Equation (20) is valid to the initial model, by considering Equations 

(14) & (17),  
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1. 

 

3. Development of a heuristic 

   The proposed heuristic has been composed of 4 sub-sections which are described 

as follows: 
 

3.1. Decision about the products 

The heuristic starts by dividing products (j=1,…,N) in two classes. Products in 

class 1 would be produced and the rest of products would be outsourced. Dividing 
procedure could be described as follows: 

For j=1 to N, p
j
 has been calculated: 
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p
j
could be described as the difference between the average cost of producing 

product j and the cost of outsourcing the mentioned product. Products with 

negative values of )0( pp
jj

would be selected to be produced. Products would 

be renamed. Products with negative values of p
j
are named from 1 to N' and the 

rest of products are named from N'+1 to N, 
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3.2. Selection some factories 

   The heuristic continues by dividing factories (f=1,…,F) in two classes. Factories 

in class 1 would be utilized ( 1F f
) and the rest of factories would not be 

utilized. This procedure is as follows: 

For f=1 to F, C f
 has been calculated: 
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   Factories with negative values of C f
( 0C f

) would be selected to be 

utilized.  C f
 could be described as the difference between the average cost of 

utilizing factory f and the average cost of utilizing all factories when lot-for-lot 

policy has been considered. Factories would be renamed. Factories with negative 

values of C f
 are named from 1 to f' and the rest of factories are named from f'+1 

to F. 

 

3.3. Assignment the products to factories 

   For (f=1 to f') & for (j=1 to N') calculate W fj ,
as follows: 

1. 
 


'

0 1
,,,,

N

i

M

m
fmjifj WW  

2. W fj ,
 are sorted in non-decreasing order 

3. Consider the lowest W fj ,
: assign product j to factory f 

4. Delete all W fj ,
for assigned product (j). If number of assigned products to a 

specific factory (f'') has become [ 1
'

'


f

N
], delete all W fj ,

for f=f''. 

5. Go to step 3 if any W fj ,
is remained. 

 

3.4. Determining lot-sizing, sequencing and scheduling decisions 

    Rolling-horizon heuristics have been used to overcome computational 
infeasibility issues for large-sized MIP problems by substituting most of the binary 

variables and constraints with continuous ones. The initially adopted approach 

decomposes the main problem into a sequence of smaller MIPs, each of which with 
a more tractable number of binary variables. However, for the large instances of 
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problem, the computational intractability has been remained (Mohammadi et al., 
2010; Merece and Fonton, 2003; Araujo et al., 2007; Araujo et al. 2008; Beraldi et 

al., 2008; Clark, 2003; Clark, 2000). 

   To confront the mentioned intractability, Mohammadi et al. (2010) relaxed all 
binary variables of the problem and solved the resulting problem through an 

iterative procedure. In iteration k, relaxed binary variables of period k have been 

divided into the two different groups where the members of the first and second 

groups respectively get value 1 and 0. The iterative procedure has been used in this 
paper is similar to that of Mohammadi et al. (2010) and has been demonstrated in 

Figure 1. 

   
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

         

In a specific iteration k, the rolling-horizon approach includes the following 

sections: 
1. The beginning section (first section) is composed of the (k-1) first periods. All 

variables and constraints of the beginning section are frozen. 

2. The central section (second section) contains the kth period. The relaxed binary 
variables of this period are divided into the two groups where the members of 

first and second groups get value 1 and 0, respectively. The dividing heuristic 

is as follows: 
For factories f'+1 to F, for n=1 to N: 
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                   Figure 1. The iterative procedure 
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As mentioned in the former sub-section, each of the product (1 to N') has been 

assigned to a specific factory f (f=1,…,f') 

For f=1 to f': 
1. The total setup costs for the products are calculated as follows: 

)(
1

,
0,0

,,,
ffactoryinproducedisj

M

m

N

finproducedisi
ifori

fmjij WW  
 

    

2. The products are sorted in a non-decreasing order of W j
values. 

3. Delete products in which dI kjkj ,1,1,



. Then, instead of each deleted 

product, the last remaining product is replaced. The last product is also 
repeated (N-j') times, where j' is the number of products which are 

produced in factory f.  

4. Set 0
0
end . For k>1, endk 1

 is the last product in the sequence 

vector of factory f in period k-1. 

5. Let [i] denote the ith product in the ordered sequence. 
For [i] =1 to N: 

a. Consider the insertion of product [i] into the every position. 

b. Calculate the sum of setup costs for all products scheduled so 

far using the actual setup costs. 
c. Place product i in a position with lowest resulting sum of setup 

costs. 

6. Let [i] indicate the ith product in the final ordered sequence. If i=1, 

then 1,,1
,,],[],1[,,],[,

1






yy
i

kfmii

i

kfmi
else

end k

. 

 

3. The ending section (third section) consists the last periods (from period k+1 to 

T). Therefore, the model is simplified similar to that of Mohammadi et al. 
(2010). Simplification strategy is described as follows: 

Computational time would be saved more if the majority of variables from the 

ending section would be eliminated. qxy
n

tfmj

n

tfmj

n

tfmji
andnn

,,,,,,,,,,
)1(),1(   

are eliminated from the ending section. Also, all constraints except equations (2), 

(3) & (5) are ignored, and all setup costs (and times) are assumed to be zero. 

   For ending section, b fmj ,,
and p

tfmj ,,,
is modified in order to estimate the 

capacity consumption of future setups. Assume that A1
and A2

denote the 

objective value of the lower bound ( M 2
) and its respective sum of variable 
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production costs, respectively. For ending section, b fmj ,,
 and p

tfmj ,,,
 are replaced 

by ' ,,b fmj
 and '

,,,
p

tfmj
respectively as follows: 

 p
A
Apb

A
A

b tfmjtfmjfmjfmj ,,,
2

1

,,,,,

2

1

,,
).(;).( ''   

The iteration k would be continued by solving a linear programming problem 

consisting of all 3 sub-sections. At the end of each iteration, the continuous 
variables of central section are modified as follows to reduce the related holding 

costs: 

For f=1 to f', for j=1 to N, for ,0
,,
x

n

kfj
 a specific value of  L j

is determined 

satisfying the following relation: 












1

1
,,,,,

1
,

LL jj

l
lkjkj

n

kfMj
l

lkj ddxd  

and for m=1 to M, the value of x
n

kfmj ,,,
is changed to .

,
1

, dd kj
l

lkj

L j





 

L j
indicates the last period that its respective demand of product j has been 

produced in period k. To ensure that the equations (2) & (3) hold true, I kmj ,,
would 

be modified as follows: 

dIxI kjkMj

N

n

F

f

n

kMfjkMj ,1,,
1 1

,,,,,



 

  (21) 

 

)1,...,1(
,1,,,




MmII kmjkmj
 (22) 

 

)1,...,1(
,,1,,,,




Mmxx
n

kfmj

n

kfmj
 (23) 

This implies that in central section, the production is either zero or equal to the 

some of consecutive demands for a number of periods into the future. 
 

4. Numerical experiments 

      Some numerical tests have been performing to ascertain the accuracy of the 
lower bound. Tables 1 & 2 show the results of such tests in some instances of the 

problem with (N=3, M=2, F=2, T=3) and (N=3, M=3, F=3, T=3). 
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Table 1. Comparison of M2 against M1 and original model in problem size 

N=3, M=2, F=2 & T=3. The values inside the brackets are the computational 

time in seconds and the percentage values are the difference between the 
objective values of M1 & M2 against the original model. 

NUMBER ORIGINAL 

PROBLEM 

M1 M2 

 3157.70 2808.79 3031.23 
1  11.05% 4.01% 

 (243.37) (0.054) (1.012) 

 3381.65 2929.53 3180.29 

2  13.37% 5.95% 
 (268.38) (0.043) (1.504) 

 3253.91 2880.47 3098.53 

3  11.48% 4.78% 
 (294.14) (0.061) (0.941) 

 3415.03 3019.30 3282.35 

4  11.59% 3.89% 

 (298.43) (0.055) (1.120) 
 3277.33 2920.43 3090.21 

5  10.89% 5.71% 

 (266.41) (0.072) (0.949) 

Table 2. Comparison of M2 against M1 and original in problem size N=3, M=2, 

F=3 & T=3. The values inside the brackets are the computational time in 

seconds and the percentage values are the difference between the objective 

values of  M1 & M2 against the original model. 

NUMBER ORIGINAL 

PROBLEM 

M1 M2 

 4631.24 4157.93 4398.44 
1  10.20% 5.03% 

 (9691.51) (0.134) (11.57) 

 5151.08 4646.22 4922.34 

2  9.81% 4.44% 
 (10091.96) (0.144) (15.11) 

 5231.19 4621.09 4996.91 

3  11.62% 4.48% 
 (9091.23) (0.191) (9.57) 

 4997.43 4500.12 4717.59 

4  10.00% 5.60% 

 (11233.44) (0.119) (12.19) 
 5233.19 4668.17 4953.39 

5  10.80% 5.35% 

 (9903.42) (0.149) (16.69) 
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   Comparison the results of the second columns of Tables 1 and 2 shows that 
computation time grows exponentially by increasing the dimension of the problem. 

According to Table 1, the average computational time for problems with (N=3, 

M=2, F=2, T=3) is 274.15s. According to Table 2, the average computational time 
for problems with (N=3, M=3, F=3, T=3) is 10002.31s. It means that by increasing 

M&F from 2 to 3, average computational time increases more than 36 times. 

Tables 1 and 2 also confirm the advantages of lower bound M 2
. 

   To apply the exact model, M1 and M2, GAMS models are provided using GAMS 

IDE (ver 2.0.19.0) and solved using OSL 2. The heuristic is coded in Matlab 
programming language. All models are run on a personal computer with a Pentium 

4 processor running at 3.4 GHZ. The required parameters for all numerical 

experiments are extracted from the following uniform distributions: 

 

)4,3(),250,150(),1.(200.200

)1.(100.200),,(),70,35(),70,35(

),2,5.1(),4.0,2.0(),180,0(),2,5.1(

,

,,,,,,,,

,,,,,,,

UUmNb

mNabaUUU

UUUU

OA

CSW

Phdb

tjf

tfmfmjifmji

tfmjMjtjfmj







 

    To evaluate and compare the performance of developed heuristic, 20 problems 
with different sizes are selected to test. For each problem size, five problem 

instances are randomly generated and the required parameters for those problems 

are extracted from the mentioned uniform distributions. Table 3 compares the 
solution times and objective values of heuristic and lower bound. 

 

Table 3. Comparison of lower bound and heuristic. The values inside the 

brackets are the computational time in seconds. 

PROBLEM SIZE 

(N.M.F.T) 

LOWER BOUND (M2) HEURISTIC 

3.3.3.3 (13.03) (0.23) 

  14.94% 
5.3.5.3 (98.38) (1.57) 

  16.03% 

3.5.3.3 (17.77) (0.59) 
  16.57% 

3.3.3.5 (15.43) (1.15) 

  17.02% 
5.5.5.5 (300.71) (10.52) 

  15.19% 

7.5.7.5 (1419.09) (115.54) 

  15.93% 
5.7.5.5 (730.43) (81.27) 



 

 

 

 

 
The Tradeoff between Outsourcing and Using More Factories in a Distributed 
Flow Shop System 

_______________________________________________________________ 

 

293 

 

 

 

  17.05% 

5.5.5.7 (593.03) (19.37) 

  16.55% 
7.7.7.7 >7200* (514.36) 

  16.98% 

10.5.10.5 (7047.33) (519.84) 

  16.23% 
5.10.5.5 (4353.23) (87.09) 

  16.09% 

5.5.5.10 (1113.95) (59.39) 
  17.36% 

10.7.10.7 >7200* (2057.39) 

  16.49% 

7.10.7.7 >7200* (215.69) 
  17.41% 

7.7.7.10 >7200* (300.49) 

  17.79% 
10.10.10.10 >7200* (3011.15) 

  17.09% 

15.10.15.10 >7200* (5043.88) 
  17.55% 

10.15.10.10 >7200* (2909.09) 

  18.14% 

10.10.10.15 >7200* (3922.53) 
  18.69% 

15.15.15.15 >7200* (7190.51) 

  19.61% 

*Means that finding the optimum value for the second lower bound requires more 

than 7200 seconds and the objective value at this time has been considered. The 

percentage values are the difference between the objective values of the heuristic 

against the lower bound. 
 

5. Conclusion and future studies 

   The main contribution of this paper is to develop one exact formulation and a 
heuristic for a complex flow shop lot-sizing and scheduling problem. Considering 

the expanding role of meta-heuristic approaches to solve complicated lot-sizing 

problems (Jans and Degraeve, 2007; Defersha and Chen, 2008), the application of 

meta-heuristic approaches to face this complex problem could be mentioned as a 
future research. 
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