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memssssssm Abstract

Time series forecasting remains a critical area of research across multiple disciplines, particularly
in energy demand prediction. Over time, models have evolved from traditional statistical
techniques to advanced neural and transformer-based architectures. This study presents a
comprehensive benchmarking of univariate forecasting models, ranging from classical
approaches such as SARIMA to cutting-edge architectures like Google's Titans. The dataset,
representing Romania's national electricity consumption, was compiled from official sources to
ensure accuracy and reliability. Model performance is evaluated using multiple error metrics. The
results indicate that modern neural models—specifically N-BEATS and Titans—consistently
outperform traditional methods. This study aims to provide practical guidance for selecting
appropriate forecasting tools to support data-driven decision-making in Romania's energy sector.
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messsssss 1. Introduction

Time series forecasting is essential for informed decision-making in critical sectors such as
energy, finance, and supply chain management. As artificial intelligence (Al) advances rapidly,
selecting the most effective forecasting model has become increasingly complex. Leading Al
developers recognize that predictive accuracy provides strategic advantages, fueling innovation
and competition in the development of forecasting technologies.
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Historically, classical statistical models like SARIMA have been favored for their interpretability
and ease of use (Box et al., 2015). However, the emergence of deep learning—particularly neural
networks and transformer-based architectures—has significantly improved the ability to model
complex temporal dependencies, leading to notable gains in forecasting performance.

This study benchmarks a diverse set of univariate time series forecasting models using Romania’s
national electricity consumption data from 2022 to 2024. The analysis has two main objectives:
(1) to evaluate each model's predictive accuracy using standard metrics such as Mean Squared
Error (MSE), Mean Absolute Error (MAE), and the coefficient of determination (R2); and (2) to
assess the impact of model architecture on forecasting effectiveness. Starting from SARIMA as
a baseline, the evaluation includes state-of-the-art models such as N-BEATS, NHITS, Chronos-
T5, Mamba, LSTM, and Google's Titans.

The results offer two key contributions. First, they provide a comprehensive comparative analysis
that can inform both academic inquiry and industrial application. Second, they reveal the relative
strengths of neural network and transformer-based approaches—architectures that are
increasingly defining the landscape of time series forecasting.

Romania’s electricity consumption data were selected due to their strategic importance for
national energy planning. While consumption is typically more stable than electricity prices or
generation volumes, it remains a crucial variable for operational planning and policy decisions.
Previous studies in Romania have largely centered on price forecasting, with few comparative
assessments focused on consumption. A recent exception is the work of Andrei et al. (2024),
which proposes a benchmarking framework, though applied specifically to electricity pricing.

messsssssm 2. Literature review

Accurate forecasting within the energy sector has been a pivotal area of research over recent
decades, initially centered around statistical time series methodologies. A prominent example is
the Seasonal Autoregressive Integrated Moving Average (SARIMA) model, extensively adopted
in urban solar radiation forecasting due to its capacity to handle seasonal variations effectively
(Alsharif et al., 2019). A study focusing specifically on Seoul demonstrated that a SARIMA model
attained a root mean square error (RMSE) of 33.18 and an R2 of 79%, underscoring its proficiency
in capturing seasonality in energy-related datasets (Alsharif et al., 2019).

Time series forecasting has evolved substantially, progressing from classical statistical
techniques such as ARIMA and SARIMA, which laid the foundation for structured forecasting and
offered interpretability and ease of implementation, particularly beneficial in domains requiring
short-term, linear forecasting. However, in recent years, advancements in deep learning have
significantly advanced forecasting capabilities. Long Short-Term Memory (LSTM) networks,
designed to overcome the vanishing gradient issue commonly encountered in traditional recurrent
neural networks (RNNs), have gained popularity particularly for load forecasting applications
(Masood et al., 2022). Further, cutting-edge architectures such as N-BEATS, NHITS, Chronos,
TimesFM, TimeGPT, Mamba, RetNet, and Titans have emerged, demonstrating robust
performance by effectively modeling complex, non-linear dependencies inherent in time series
data.

Transformer-based architectures, originally developed for natural language processing, have also
been successfully adapted to forecasting tasks. Models such as Informer, TimeGPT (Garza et
al.,2023), RetNet, and Titans have delivered state-of-the-art results across various forecasting
competitions and industrial applications. The effectiveness of advanced models such as N-
BEATS has been prominently illustrated in industrial applications, notably in the integrated energy
system investigation conducted for Eastman Chemical Company, where it significantly
outperformed competing methodologies (Greenwood et al., 2020; Oreshkin et al., 2020).
Similarly, LSTNet, an architecture specifically designed for multivariate forecasting, has
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demonstrated substantial performance enhancements over conventional approaches by
effectively capturing short-term and long-term temporal dependencies through integrated
convolutional and recurrent neural network layers (Lai et al., 2018).

In addition to software-driven advancements, artificial intelligence has increasingly influenced
operational systems within the energy sector, optimizing electricity generation and distribution.
Al-driven forecasting models facilitate a deeper understanding of energy production dynamics
and support real-time operational adjustments in power plants (Bara and Oprea, 2018).

Systematic literature reviews consistently highlight artificial intelligence techniques, particularly
artificial neural networks (ANNs), as dominant methodologies in short-term energy forecasting.
These reviews frequently emphasize the superior performance of hybrid models capable of
capturing both nonlinear behaviors and seasonality (Nti et al., 2020; Lai et al., 2018). Nonetheless,
comparative studies within forecasting literature generally concur that no singular forecasting
methodology is universally superior; rather, optimal model selection depends heavily on dataset
characteristics, preprocessing strategies, and evaluation metrics employed (Nti et al., 2020).

Despite advancements in multivariate and hybrid forecasting methods, univariate models
maintain distinct advantages such as interpretability, lower computational complexity, and ease
of implementation. Particularly in contexts such as Romania’s National Energy Consumption,
where data quality and availability pose specific challenges, univariate methods provide a
pragmatic balance between performance and operational simplicity.

s 3. Data and Methodology

This study relies on a comprehensive dataset comprising hourly electricity consumption at the
national scale, spanning three full years from January 1, 2022, through December 31, 20245, The
dataset includes 26,304 hourly observations, each representing electricity usage measured in
megawatt-hours (MWh) for every hour across the study period.

The dataset is complete and uniformly structured, with exactly 24 hourly measurements per day
throughout the three-year interval, enabling a detailed temporal analysis. This completeness
allows for robust exploration of electricity consumption dynamics, including variations across
hours of the day, days of the week, seasonal cycles, and interannual trends.

Figure 1 presents the full time series of hourly load (MWh) for the study period.

Figure 1
Time Series of Load (MWh)

5 https://www.sistemulenergetic.ro
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Descriptive Statistics

A preliminary statistical analysis shows that the mean hourly consumption is approximately 6,231
MWh, with a standard deviation of 980 MWh, reflecting moderate dispersion around the mean.
The observed minimum value is 2,871.75 MWh, and the maximum reaches 9,210.75 MWh.
The interquartile range (IQR), spanning from the 25th to the 75th percentiles, ranges
between 5,455.25 MWh and 6,917.50 MWh, capturing the central mass of the distribution.
The median stands at 6,178.75 MWh, slightly below the mean, suggesting a modest right-skew.
Table 1 summarizes the descriptive statistics of hourly electricity consumption from 2022 to 2024.

Table 1

Summary Statistics of Hourly Electricity Consumption (MWh), 2022-2024

Statistical indicator Value (MWh)
Minimum 2,871.75
Maximum 9,210.75

Mean 6,230.59

Median 6,178.75
Standard deviation 980.25
Coefficient of variation 15.73%

25th percentile (Q1) 5,455.25

75th percentile (Q3) 6,917.50

Interquartile range (IQR) 1,462.25

The calculated skewness (0.24) confirms this slight asymmetry, while kurtosis (-0.51) indicates a
platykurtic distribution, characterized by lighter tails and a flatter peak compared to a normal
distribution. These distributional properties suggest that while extreme values exist, they are not
excessively influential on measures of central tendency.
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An empirical analysis of the consumption distribution, visualized through both histogram and
kernel density plots, reveals a unimodal, right-tailed distribution. Most consumption values are
concentrated between 5,000 and 7,500 MWh, indicating a high density of average operational
load. The presence of a modest right skew is attributed to a minority of hours exhibiting elevated
demand, likely due to extreme weather events, industrial activity peaks, or socio-economic events
such as holidays.

Figure 2 illustrates the distribution of electricity consumption (MWh) across the three-year period.

Figure 2
Distribution of Electricity Consumption (MWh)
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Temporal disaggregation by hour of the day uncovers a pronounced diurnal pattern. Electricity
demand is lowest between 2:00 AM and 5:00 AM, rising steadily throughout the day and reaching
a peak around 7:00 PM. This regular behavior closely aligns with human activity cycles,
emphasizing the importance of incorporating time-of-day features in forecasting models.

Seasonal decomposition further reveals predictable monthly fluctuations. Average consumption
is elevated during winter months (January and December), primarily driven by heating demand
and reduced daylight, while summer months show moderately lower usage levels, partially offset
by air conditioning loads. These findings underscore the importance for forecasting models to
capture both short-term cyclical effects and long-term seasonal trends.

Methodology

This section presents an in-depth evaluation of nine® distinct univariate time series forecasting
models applied to Romania’s national electricity consumption data. The analysis begins with the
classical SARIMA model, a widely adopted statistical approach known for its interpretability and
solid baseline performance. While SARIMA vyields reasonable results, its capacity to model
nonlinear patterns is inherently limited.

Building upon this baseline, we incorporate two prominent deep learning models: N-BEATS and

NHITS. These architectures have gained significant attention in recent years due to their robust
performance across a range of forecasting tasks. In our experiments, N-BEATS demonstrates

6 We also applied TimeGPT, but the results for long-term forecast horizons were inconsistent.
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particularly strong results, achieving an R2 score of 0.90 and a Mean Absolute Percentage Error
(MAPE) of just 2.32%. One of the key advantages of N-BEATS lies in its fully interpretable
architecture—eschewing the black-box characteristics common in many deep learning models—
making it easier to fine-tune and adapt to specific data characteristics.

Although training and implementation of deep learning models are computationally more intensive
than classical approaches, the gains in accuracy and flexibility often justify the additional effort.
All models in this study were implemented using Python, a language widely recognized for its
robust ecosystem of libraries and frameworks supporting both statistical and machine learning
methodologies.

While some researchers (e.g., Hill and Du, 2024) advocate for the use of R in statistical analysis
due to its extensive range of built-in functions and packages, we find Python to be better suited
for artificial intelligence applications. Python’s active development community, broader library
support for deep learning (e.g., PyTorch, TensorFlow), and higher integration flexibility make it a
more practical choice, particularly when working with complex Al-driven forecasting models.

Table 2
Evaluation Metrics
Metric Formula
Mean Squared Error (MSE) 1<
MSE == (i = §) &)
i=1
Root Mean Squared Error (RMSE) A
RMSE = [S30,(vi — 9% (2)
Mean Absolute Error (MAE) 1
MAE =="ly: = i ®)
i=1
Mean Absolute Percentage Error (MAPE) 100% yi — ¥i
mapE = ( )Z| | @
n 4 Vi
i=1
Normalized Root Mean Squared Error RMSE
NRMSE = ——— 5
(NRMSE) Ymax = Ymin) ®
Mean Bias Error (MBE) 1<
MBE =2 (v - §) ©)
i=1
ici iati RMSE
Coefficient of Variation (CV) c =( - )x 100% %
R-squared (R? (i — 902
q (R?) R g - Dm0 = 9" ®
X i =)

Another notable aspect of the models examined in this study is the architectural shift observed
starting with Amazon Chronos—from that point onward, most models are based on Transformer
architectures. These models have been adapted from their origins in natural language processing
to time series forecasting, leveraging self-attention mechanisms to effectively capture long-range
dependencies in temporal data.

Several of these Transformer-based models—such as TimeGPT, Mamba, and TimesFM—are
provided as highly abstracted, pre-trained solutions with limited options for fine-tuning. While this
restricts customization, it significantly simplifies deployment and reduces computational
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overhead. Despite the lack of full control over model internals, these models demonstrate strong
out-of-the-box performance on the Romanian electricity consumption dataset.

To enhance transparency and reproducibility, the following section provides detailed descriptions
of each model's implementation, including input formatting, training procedures, evaluation
metrics, and any pre-processing techniques applied.

All the models have implemented the metrics displayed in Table 2.

Titans by Google (Neural Memory-based Forecasting)

This model implements a time series forecasting architecture based on
Google's Titans framework (Behrouz et al., 2024), using PyTorch and a supervised learning
approach. The model is trained from scratch on univariate hourly electricity consumption data.

Input sequences are generated using a lookback window of T;,, = 168 hours and a forecast
horizon of T,,; = 24 hours. Data is normalized using MinMax scaling before being reshaped into
overlapping input-output pairs. The architecture consists of three main components:

1. Encoder:

ht=oW?. W' x1 + b)) + b?), 9
where @ is a ReLU activation function and W,, W, are linear layer weights.
2. Neural Memory Module

The latent representation h, is passed through a memory-enhanced module inspired by State
Space Models (SSMs), which retains temporal structure via chunked memory and recurrent
attention-like mechanisms:

h' = NeuralMemory(h'). (10)

3.Decoder:
9t =w?3- (k) + bo. (11)
Training is performed for 50 epochs using the Adam optimizer, and model performance is

evaluated using metrics such as RMSE, MAE, sMAPE, and R?, highlighting how well the model
fits the temporal structure of the data, using the loss function:

N
1
£mse=_z §i — iz- 12
ni_lly yil (12)

TimesFM

We also explored TimesFM, a transformer-based time series foundation model developed by
Google and released via HuggingFace (Das et al., 2024). TimesFM runs entirely locally and is
accessed through an open-source interface, allowing for greater transparency and flexibility.
Forecasting is performed in zero-shot mode, relying solely on pretrained weights without
additional training or adaptation.

After interpolating missing values and reindexing the dataset, the time series is passed into the
model, and the TimesFM forecasting function is applied. Internally, TimesFM uses a
large encoder-decoder transformer architecture. The model follows the standard sequence-
to-sequence transformer paradigm, mapping historical inputs to future values.

e The input series x = (x4, x5, ..., x7) IS embedded and passed through self-attention
layers:

. QKT
Attention(Q,K,V) = softmax (—) V. (14)

Jax
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e Output is generated autoregressive or all-at-once for the desired forecast horizon h=96
steps (24 hours in 15-min intervals).

The model does not update its weights during inference. Therefore, performance relies entirely
on its ability to generalize from prior training on large-scale datasets. Because of that reason, we
suspect this model had one of the worst performances.

N-BEATS

Neural Basis Expansion Analysis for Interpretable Time Series Forecasting (N-BEATS) is used to
predict the next 24 hours of electricity consumption (forecast horizon) using the preceding 168
hours (lookback window), leveraging the temporal patterns inherent in historical demand data.
Unlike recurrent or convolutional networks, N-BEATS uses a deep stack of fully connected layers
structured in blocks, where each block outputs both a backcast (reconstruction of past inputs) and
a forecast (future predictions). This recursive refinement allows the network to iteratively improve
its prediction by minimizing residuals (Oreshkin et al., 2020).

Mathematically, each block learns parameterized basis functions through dense layers and
produces output via two sets of coefficients: 6, and 6, such that:

backcast, forecast = 0(x) = G(Bb),H(Bf), where x is the input vector, G and H are basis
expansions learned by the model, and the residual input for the next block is updated as:
x « (x — backcast), (15)
¥ < (y + forecast). (16)
This iterative process allows the model to decompose the time series into components and
reconstruct future values with increasing precision. The model was trained on national electricity
consumption data from 2022 to 2024, using standard scaling and techniques such as early

stopping and learning rate reduction to enhance generalization showing great results. Because
of the fine-tuning in most part, but also the architecture itself, this model had the best results.

N-HITS
NHITS is a neural forecasting model designed to capture both local and global patterns by
employing a multi-resolution, hierarchical approach to interpolation. Our implementation

leverages PyTorch and applies the model to hourly national electricity demand data, using the
previous 168 hours as input to forecast the subsequent 24 hours.

The model architecture consists of multiple NHITS blocks, each working at different resolution
levels. Each block is composed of three fully connected layers with ReLU activation functions:

hl = ReLUW1x + b1)h% = ReLU(W?Z2h! + b2)h3 =
= ReLU(W3hZ + b3). 17)

These layers are followed by two linear heads producing both a backcast (reconstruction of the
input) and a forecast:

Yipackeast = WR> + DV ecnse = Wilh® + b (18)
The multi-resolution interpolation can be represented through specific basis functions:
Yipackeast = Bkbekakfnremst = B0y (19)
After each block processes the input, residual updates are performed:
X <X = Viggeease 'y < I+ Yisorecast® (20)

This iterative process allows the model to learn at multiple resolution levels and progressively
refine its predictions. The network was trained using the Adam optimizer, over 50 epochs and a
batch size of 32, where the batch size refers to the number of training sequences processed in
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parallel before model weights are updated. No formal hyperparameter optimization techniques
such as grid search or cross-validation were used; parameters were chosen heuristically based
on model performance.

Chronos -T5 (Amazon)

Chronos-T5 is Transformer-based deep learning model developed by Amazon for probabilistic
time series forecasting. An early and prominent example of this model is presented in the work
by Ansari et al. (2024), where the authors introduced Chronos-T5 as an adaptation of the T5
language model, repurposed for forecasting tasks by encoding temporal patterns in a sequence-
to-sequence framework. For our implementation, the pretrained "amazon/chronos-t5-large"
model, accessed via the chronos Python package, was employed to perform 24-hour ahead
electricity load forecasting using the preceding 24 hours as contextual input.

The Chronos-T5 architecture can be mathematically represented as a sequence-to-sequence
transformer model:

1. Encoder-Decoder Architecture:
Y = Decoder(z,E)z = Encoder(X). 21)
2. Self-Attention Mechanism:

. QKT
Attention(Q,K,V) = softmax < > V. (22)

Nen

FT(X) =Y (23)

3. Quantile Forecasting Function:

In the equations 21-23:
e X represents the input time series (prior 24 hours);
e Y represents the predicted output at different quantiles;
e zis the latent representation produced by the encoder;
e E represents positional encodings for temporal alignment;
e 7 represents the quantile level (0.1, 0.5, 0.9 in our implementation);

e vy, is the forecast at quantile t.

The model was evaluated on national electricity consumption data using standard error metrics
such as MAE, RMSE, and RZ?. Unlike traditional models like ARIMA, Chronos-T5 produces
guantile-based forecasts, which allow us to estimate prediction intervals and assess the
uncertainty around future values. In our case, we generated forecasts at the 10th, 50th, and 90th
percentiles, making it possible to visualize trust intervals around the predicted mean. This
represents a key advantage over black-box models like N-BEATS or NHITS that do not natively
produce confidence intervals. Furthermore, because Chronos is based on a language model
architecture, it allows fine-tuning for custom datasets and can benefit from pretraining on large-
scale time series corpora. At the moment of writing this paper, there were 5 different versions of
this model, each calibrated to accommodate varying computational resources available to
academic researchers.

Mamba

Mamba is functional deep learning approach for univariate time series forecasting. Wang (2024)
demonstrated that Mamba-type models show considerable promise in forecasting-specific
scenarios. The key component of the model is a custom-designed neural block named
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ExponentialMovingAverage (EMA), which simulates a time-dependent memory mechanism
through a state-space formulation:

he=aOQx+ (1 —a)© hg_yy, (24)

where:

e  h, is the hidden state at time t;

e x; istheinputattimet;

e ¢ is alearnable parameter vector constrained between [0,1] via the sigmoid function:

a = o(W);

e (O represents element-wise multiplication.
The model architecture consists of:

1. Input Projection:

2g = Winx + by (25)
2. Stacked EMA Layers with Residual Connections:
Zg+ny = LayerNorm (zl + EMA(GELU(Z,))) . (26)
3. Output Projection:
Y = WourzL + boue- @27

Training uses the AdamW optimizer with MSE loss:
1w ,
Lysg = NZ(Y;’ - y)?. (28)
i=1

This architecture is compact and efficient, avoiding the complexity of traditional recurrent models
while maintaining temporal sensitivity through its state-space dynamics. The model with the
lowest validation loss is saved and used for inference.

LSTM

The next model utilizes a supervised deep learning approach for short-term electricity
consumption forecasting, implemented using the TensorFlow/Keras framework. The model
employs a univariate Long Short-Term Memory (LSTM) architecture to predict future hourly load
demand based on historical time series data and engineered temporal features (Goodfellow et
al., 2016). The LSTM network can be mathematically formulated as:

1. LSTM Cell Gates:
fe = o(Wr - [hie-ny xe] + by )ie = o(Wi - [hgeny, ] + bi)o, =
= o(W, - [hge—1y x| + bo). (29)
2. Cell State Update:
& =tanh(W, - [hye—ap ] + be) e = £ © cppny + i © &y (30)
3. Hidden State Update:

hy = 0, © tanh(c,) . (€29
4. Prediction Output:
9e =W, - he + by, (32)
The cyclical features are encoded as:
xSthowr = sin (211 , hour ), (33)
24
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h
xC€%Showr = cos | 21T - Jour i (34)
24

The script derived lagged values at 24 hours and 168 hours to incorporate previous day and
previous week patterns, respectively. These inputs were normalized using a MinMaxScaler to
ensure compatibility with the LSTM activation ranges. The model was trained on sequences of
historical data over a fixed window, with the objective of minimizing the mean squared error:

N
1
Lysg = NZ(?;’ - y)*. (35)
=1

The network consists of an LSTM layer followed by dense output layers. It was trained using the
Adam optimizer, with early stopping employed to prevent overfitting (Kong et al., 2019). The use
of LSTM allows the model to learn long-term dependencies in the time series, making it more
flexible than classical models such as SARIMA.

LSTM Retention Network (RetNet)

This architecture has been proposed in 2023 by Quin et al., in partnership with Microsoft. RetNet
is a recent innovation that blends the strengths of recurrent and attention-based models, providing
a linear-time alternative to transformers while preserving temporal dependencies over long
sequences.

RetNet introduces a novel retention-based memory update scheme, replacing traditional self-
attention with a more computationally efficient kernel memory mechanism. The memory update
can be formally described as:

e Query, Key, and Value Projections:

qe = Wyxe, ke = Wik, ve = Wyxe. (36)
e Retention Update Rule:
my=a-mg_qy+ ke O v 37)
e  Output:
Ye = qr O my. (38)

In (37), ais a learnable decay factor that controls memory retention across time. The element-
wise product (©) allows the model to integrate dynamic contextual information with low
computational cost.

In contrast to LSTM, this model relies solely on the Ro Load variable and does not incorporate
engineered features like cyclical encodings or lag-based variables, making it a purer sequence
learner. Inputs were scaled using MinMax normalization, and data was fed in fixed-size windows
of 48 hours.

The model is trained from scratch, not pretrained, using the Adam optimizer and a mean squared
error (MSE) loss. The training was performed over 10 epochs with an 80/20 train-test split. A fixed
forecast horizon of 24 hours was used in evaluation.

Hyperparameter Configuration and Validation

To enhance methodological transparency and reproducibility, we summarize below the key
hyperparameter settings and validation strategies applied for each model. Although the lookback
and forecast windows were largely standardized (168/24), other training parameters such as
optimizer, batch size, and epochs varied by model. All deep learning architectures were trained
using an 80/20 split with early stopping based on validation loss. Transformer-based and
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pretrained models such as Chronos-T5 operated in zero-shot or few-shot inference mode without
access to local fine-tuning (see Table 3).

Table 3
Key Training Configurations by Model
Lookback | Forecast R
Model Window Horizon Optimizer | Epochs Bqtch Validation
Size Method
(hours) (hours)
SARIMA N/A 24 N/A N/A N/A Rolling
evaluation
N-BEATS 168 24 Adam 50 32 80/20 split
NHITS 168 24 Adam 50 32 80/20 split
N/A Fixed
Chronos-T5 24 24 . N/A N/A window,
(pretrained)
zero-shot
TimesFM 168 24 N/A (zero- N/A N/A No fine-
shot) tuning
Mamba 168 24 AdamwW 50 32 80/20 split
LSTM 168 24 Adam 100 64 80/20 split
Titans 168 24 Adam 50 32 80/20 split
RetNet 48 24 Adam 10 64 80/20 split
]
4. Results

Based on the performance evaluation metrics extracted from running the models, several
significant observations can be drawn regarding their efficiency and performance. The models
were run on the Bucharest University of Economic Studies server infrastructure, using an Intel(R)
Xeon(R) Gold 6342 CPU @ 2.80GHz, 62 GB RAM, and a VMware SVGA Il Adapter graphics
card. Table 4 contains the results of the SARIMA, N-BEATS, NHITS, Chronos-T5, TimesFM

models used.
Table 4
Evaluation of Forecasting Accuracy and Efficiency Across Models — Part 1
Metrics SARIMA N-BEATS NHITS Chronos-T5 | TimesFM
MSE 187740.47 | 42250.652 90755.211 73208.521 197503.396
RMSE 433.29 205.55 301.256 270.571 444.414
MAE 267.14 142.14 199.743 215.585 359.699
MAPE 3.63 2.324 3.299 3.325 5.895
NRMSE 0.06 0.032 0.052 0.109 0.166
MBE -23.64 8.519 -17.14 163.404 275.051
cv 0.058 3.301 4.845 0.043 7.013
sMAPE 0.036 2.31 3.286 3.253 5.665
R2 0.773 0.956 0.909 0.861 0.673
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The results for Mamba, LSTM, Titans by Google and RetNet are shown in the Tabel 5.

Table 5
Evaluation of Forecasting Accuracy and Efficiency Across Models — Part 2

Metrics Mamba LSTM nggzlzy RetNet
MSE 97575.15 127987.6 95729.01 33070.44
RMSE 312.3702 357.7536 309.4 181.8528
MAE 247.156 267.5903 214.34 132.3554
MAPE 3.85% 4.3462 3.57 1.9506
NRMSE 0.0863 0.062 0.0501 0.0732
MBE 145.6783 -64.253 -45.59 39.5289
Ccv 3.8432 0.0577 0.1605 0.0287
sMAPE 3.82 4.3322 3.58 1.9442
R2 0.9115 0.8651 0.9027 0.9373
Execution time 00:00:58 00:16:59 00:11:12 00:03:24

The N-BEATS model has been the most successful (see Figure 3) demonstrating the superior
predictive power across multiple error metrics, having the lowest RMSE (205.55), MAE (142.14),
and MAPE (2.324%). Additionally, it achieves the highest coefficient of determination (R? = 0.956),
indicating exceptional explanatory power. The model's NRMSE of 0.032 further confirms its robust
performance in normalized terms.

Figure 3

N-BEATS Forecast: Train and Test Predictions vs Actual Load

9000 4

8000

7000 4

6000 +

RO Load (MW)

| — Actual
—— Prediction

iTest Start
: 1

2022-01 2022-05

2022-09 2023-01

2023-09
Timestamp

2023-05

2024-01 2024-05

2024-09 2025-01

RetNet and Titans by Google also exhibit very good performance characteristics. Titans by
Google demonstrates balanced performance with an RMSE of 309.4 and MAE of 214.34,
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accompanied by a strong R2 value of 0.9027 (Appendix 1 contains the forecast visualizations for
each model).

Regarding computational efficiency, Chronos-T5 substantially outperform other models with
execution times of 7 seconds. This computational advantage may prove critical in real-time
forecasting applications or when rapid retraining is necessary. Analysis of prediction bias, as
measured by Mean Bias Error (MBE), reveals distinct tendencies among the models. SARIMA,
NHITS, and LSTM exhibit negative bias values (-23.64, -17.1402, and -64.253 respectively),
indicating systematic underprediction. Conversely, Chronos-T5 and TimesFM demonstrate
substantial positive bias (163.404 and 275.051), suggesting consistent overprediction of
electricity consumption values.

The coefficient of variation (CV) metrics reveals interesting patterns in forecast stability. Chronos-
T5 and Titans by Google exhibit remarkably low CV values (0.0427 and 0.1605), potentially
indicating superior consistency in their predictions across different time periods or load conditions.

TimesFM consistently underperforms across multiple evaluation criteria, with the highest MAPE
(5.895%), largest positive bias (MBE = 275.051), and lowest coefficient of determination (R2 =
0.673), suggesting limited applicability for electricity consumption forecasting in its current
implementation.

LSTM presents a trade-off between accuracy and computational requirements, achieving
reasonable predictive metrics (R2 = 0.8651, RMSE = 357.7536) but requiring significantly more
computational resources, as evidenced by its execution time of 16 minutes and 59 seconds.

s 5. Discussion

This study benchmarks nine forecasting models—from the classical SARIMA to advanced neural
and transformer-based architectures such as N-BEATS—on Romania’s national electricity
consumption data. By comparing models across multiple performance metrics (RMSE, MAE, R?)
and evaluating computational efficiency, we provide practical insights into balancing predictive
accuracy with operational demands.

The results confirm that neural and transformer-based models significantly outperform traditional
statistical methods. N-BEATS, for example, achieves a 52.6% reduction in RMSE and lowers
MAPE from 3.63% (SARIMA) to 2.32%, demonstrating its superior ability to capture complex
temporal dependencies. These improvements have important implications for optimizing energy
scheduling, integrating renewable resources, and improving overall grid management.

The evaluation framework adopted in this study, combining error magnitude, bias, and
explanatory power metrics, ensures a comprehensive performance assessment. Nevertheless,
several limitations should be acknowledged. The analysis is based on a three-year univariate
dataset, which may not fully capture longer-term cyclical dynamics or structural shifts in
consumption behavior. Moreover, focusing exclusively on aggregated national consumption
excludes potentially informative multivariate factors, such as weather variations or economic
indicators. Model performance was also found to be sensitive to hyperparameter settings and
computational resource constraints, particularly in the case of large transformer-based
architectures, suggesting the need for context-specific validation prior to operational deployment.

Overall, the findings emphasize the evolving capabilities of deep learning models in time series

forecasting while highlighting the practical considerations necessary for their effective and
responsible adoption in Romania’s energy system.
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— 6. Conclusions

This study provides a comprehensive benchmarking of univariate forecasting models applied to
Romania’s national electricity consumption data. The results demonstrate that deep learning
architectures consistently outperform classical statistical methods, with N-BEATS reducing
forecast errors by 27% and Titans achieving a 31% improvement in MSE compared to SARIMA.
This analysis extends beyond previous research on Romanian energy forecasting by focusing
specifically on consumption patterns and by evaluating transformer architectures not previously
benchmarked in this context.

While neural and transformer models demonstrated superior accuracy and an enhanced ability to
capture complex seasonal and nonlinear behaviors, these benefits came at the cost of increased
computational requirements and more extensive preprocessing. Transformer-based models
required up to eight times the computational resources of statistical methods. However, ongoing
advancements in hardware acceleration and model optimization are gradually mitigating these
constraints, making such models increasingly feasible for operational deployment.

Model selection should be guided by the specific operational requirements of Romania’s energy
sector. In environments where real-time processing under constrained resources is critical,
SARIMA remains a viable and efficient option. Conversely, scenarios demanding higher
forecasting accuracy, such as seasonal capacity planning or renewable integration forecasting,
benefit substantially from the flexibility and predictive power of deep learning models like N-
BEATS and Titans. The sensitivity analysis further indicates that data quality plays a crucial role,
with neural models showing greater resilience to noise but higher sensitivity to training volume,
thereby emphasizing the importance of robust preprocessing pipelines in production settings.

This study acknowledges several limitations. The relatively short two-year evaluation period may
not capture all long-term cyclical patterns. Additionally, the exclusive focus on national aggregate
consumption omits regional differences and sector-specific consumption behaviors. Finally, the
use of univariate models, while aiding comparability, leaves room for improvement through
multivariate forecasting approaches incorporating meteorological and economic variables.

Looking ahead, Romania’s energy sector, which targets a 7 GW expansion of renewable energy
capacity by 2030, stands to benefit significantly from the deployment of advanced forecasting
systems. Hybrid two-stage models that combine statistical methods like SARIMA for initial
estimations with neural network refinements could balance computational efficiency with high
predictive accuracy. Further research should explore ensemble methods that dynamically adapt
to contextual factors, as well as domain-specific constraints that could enhance performance
during periods of extreme demand or system transitions.

By evaluating a wide spectrum of forecasting paradigms within a consistent and realistic
framework, this study offers Romanian energy stakeholders’ actionable guidance for selecting
models that best align with their operational goals, computational capacities, and desired
forecasting precision. As Romania continues its transition to a more sustainable energy future,
the adoption of such advanced predictive tools will be crucial for maintaining grid stability,
integrating renewable energy sources, and enhancing the efficiency of national energy markets.
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memmmmsm Appendix 1

Forecast visualisations by model
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