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Abstract 
Time series forecasting remains a critical area of research across multiple disciplines, particularly 
in energy demand prediction. Over time, models have evolved from traditional statistical 
techniques to advanced neural and transformer-based architectures. This study presents a 
comprehensive benchmarking of univariate forecasting models, ranging from classical 
approaches such as SARIMA to cutting-edge architectures like Google's Titans. The dataset, 
representing Romania's national electricity consumption, was compiled from official sources to 
ensure accuracy and reliability. Model performance is evaluated using multiple error metrics. The 
results indicate that modern neural models—specifically N-BEATS and Titans—consistently 
outperform traditional methods. This study aims to provide practical guidance for selecting 
appropriate forecasting tools to support data-driven decision-making in Romania's energy sector. 

Keyword: Energy Load Forecast, Neural Networks, Time Series, Large Language Models, 
Foundational Models 
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1. Introduction 
Time series forecasting is essential for informed decision-making in critical sectors such as 
energy, finance, and supply chain management. As artificial intelligence (AI) advances rapidly, 
selecting the most effective forecasting model has become increasingly complex. Leading AI 
developers recognize that predictive accuracy provides strategic advantages, fueling innovation 
and competition in the development of forecasting technologies. 
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Historically, classical statistical models like SARIMA have been favored for their interpretability 
and ease of use (Box et al., 2015). However, the emergence of deep learning—particularly neural 
networks and transformer-based architectures—has significantly improved the ability to model 
complex temporal dependencies, leading to notable gains in forecasting performance. 

This study benchmarks a diverse set of univariate time series forecasting models using Romania’s 
national electricity consumption data from 2022 to 2024. The analysis has two main objectives: 
(1) to evaluate each model's predictive accuracy using standard metrics such as Mean Squared 
Error (MSE), Mean Absolute Error (MAE), and the coefficient of determination (R²); and (2) to 
assess the impact of model architecture on forecasting effectiveness. Starting from SARIMA as 
a baseline, the evaluation includes state-of-the-art models such as N-BEATS, NHITS, Chronos-
T5, Mamba, LSTM, and Google's Titans. 

The results offer two key contributions. First, they provide a comprehensive comparative analysis 
that can inform both academic inquiry and industrial application. Second, they reveal the relative 
strengths of neural network and transformer-based approaches—architectures that are 
increasingly defining the landscape of time series forecasting. 

Romania’s electricity consumption data were selected due to their strategic importance for 
national energy planning. While consumption is typically more stable than electricity prices or 
generation volumes, it remains a crucial variable for operational planning and policy decisions. 
Previous studies in Romania have largely centered on price forecasting, with few comparative 
assessments focused on consumption. A recent exception is the work of Andrei et al. (2024), 
which proposes a benchmarking framework, though applied specifically to electricity pricing. 

2. Literature review 
Accurate forecasting within the energy sector has been a pivotal area of research over recent 
decades, initially centered around statistical time series methodologies. A prominent example is 
the Seasonal Autoregressive Integrated Moving Average (SARIMA) model, extensively adopted 
in urban solar radiation forecasting due to its capacity to handle seasonal variations effectively 
(Alsharif et al., 2019). A study focusing specifically on Seoul demonstrated that a SARIMA model 
attained a root mean square error (RMSE) of 33.18 and an R² of 79%, underscoring its proficiency 
in capturing seasonality in energy-related datasets (Alsharif et al., 2019). 

Time series forecasting has evolved substantially, progressing from classical statistical 
techniques such as ARIMA and SARIMA, which laid the foundation for structured forecasting and 
offered interpretability and ease of implementation, particularly beneficial in domains requiring 
short-term, linear forecasting. However, in recent years, advancements in deep learning have 
significantly advanced forecasting capabilities. Long Short-Term Memory (LSTM) networks, 
designed to overcome the vanishing gradient issue commonly encountered in traditional recurrent 
neural networks (RNNs), have gained popularity particularly for load forecasting applications 
(Masood et al., 2022). Further, cutting-edge architectures such as N-BEATS, NHITS, Chronos, 
TimesFM, TimeGPT, Mamba, RetNet, and Titans have emerged, demonstrating robust 
performance by effectively modeling complex, non-linear dependencies inherent in time series 
data. 

Transformer-based architectures, originally developed for natural language processing, have also 
been successfully adapted to forecasting tasks. Models such as Informer, TimeGPT (Garza et 
al.,2023), RetNet, and Titans have delivered state-of-the-art results across various forecasting 
competitions and industrial applications. The effectiveness of advanced models such as N-
BEATS has been prominently illustrated in industrial applications, notably in the integrated energy 
system investigation conducted for Eastman Chemical Company, where it significantly 
outperformed competing methodologies (Greenwood et al., 2020; Oreshkin et al., 2020). 
Similarly, LSTNet, an architecture specifically designed for multivariate forecasting, has 
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demonstrated substantial performance enhancements over conventional approaches by 
effectively capturing short-term and long-term temporal dependencies through integrated 
convolutional and recurrent neural network layers (Lai et al., 2018). 

In addition to software-driven advancements, artificial intelligence has increasingly influenced 
operational systems within the energy sector, optimizing electricity generation and distribution. 
AI-driven forecasting models facilitate a deeper understanding of energy production dynamics 
and support real-time operational adjustments in power plants (Bâra and Oprea, 2018). 

Systematic literature reviews consistently highlight artificial intelligence techniques, particularly 
artificial neural networks (ANNs), as dominant methodologies in short-term energy forecasting. 
These reviews frequently emphasize the superior performance of hybrid models capable of 
capturing both nonlinear behaviors and seasonality (Nti et al., 2020; Lai et al., 2018). Nonetheless, 
comparative studies within forecasting literature generally concur that no singular forecasting 
methodology is universally superior; rather, optimal model selection depends heavily on dataset 
characteristics, preprocessing strategies, and evaluation metrics employed (Nti et al., 2020). 

Despite advancements in multivariate and hybrid forecasting methods, univariate models 
maintain distinct advantages such as interpretability, lower computational complexity, and ease 
of implementation. Particularly in contexts such as Romania’s National Energy Consumption, 
where data quality and availability pose specific challenges, univariate methods provide a 
pragmatic balance between performance and operational simplicity. 

3. Data and Methodology 
This study relies on a comprehensive dataset comprising hourly electricity consumption at the 
national scale, spanning three full years from January 1, 2022, through December 31, 20245. The 

dataset includes 26,304 hourly observations, each representing electricity usage measured in 
megawatt-hours (MWh) for every hour across the study period. 

The dataset is complete and uniformly structured, with exactly 24 hourly measurements per day 
throughout the three-year interval, enabling a detailed temporal analysis. This completeness 
allows for robust exploration of electricity consumption dynamics, including variations across 
hours of the day, days of the week, seasonal cycles, and interannual trends. 

Figure 1 presents the full time series of hourly load (MWh) for the study period. 

Figure 1 

Time Series of Load (MWh)  

                                                           
5 https://www.sistemulenergetic.ro  



Benchmarking Time Series Models on Romania’s National Electricity Consumption 

Romanian Journal of Economic Forecasting – 28(3) 2025 149 

Error!Error!

 

 

 

Descriptive Statistics 

A preliminary statistical analysis shows that the mean hourly consumption is approximately 6,231 
MWh, with a standard deviation of 980 MWh, reflecting moderate dispersion around the mean. 
The observed minimum value is 2,871.75 MWh, and the maximum reaches 9,210.75 MWh. 
The interquartile range (IQR), spanning from the 25th to the 75th percentiles, ranges 
between 5,455.25 MWh and 6,917.50 MWh, capturing the central mass of the distribution. 
The median stands at 6,178.75 MWh, slightly below the mean, suggesting a modest right-skew. 

Table 1 summarizes the descriptive statistics of hourly electricity consumption from 2022 to 2024. 

Table 1 

Summary Statistics of Hourly Electricity Consumption (MWh), 2022-2024 

Statistical indicator Value (MWh) 

Minimum 2,871.75 

Maximum 9,210.75 

Mean 6,230.59 

Median 6,178.75 

Standard deviation 980.25 

Coefficient of variation 15.73% 

25th percentile (Q1) 5,455.25 

75th percentile (Q3) 6,917.50 

Interquartile range (IQR) 1,462.25 

 

The calculated skewness (0.24) confirms this slight asymmetry, while kurtosis (-0.51) indicates a 
platykurtic distribution, characterized by lighter tails and a flatter peak compared to a normal 
distribution. These distributional properties suggest that while extreme values exist, they are not 
excessively influential on measures of central tendency. 
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An empirical analysis of the consumption distribution, visualized through both histogram and 
kernel density plots, reveals a unimodal, right-tailed distribution. Most consumption values are 
concentrated between 5,000 and 7,500 MWh, indicating a high density of average operational 
load. The presence of a modest right skew is attributed to a minority of hours exhibiting elevated 
demand, likely due to extreme weather events, industrial activity peaks, or socio-economic events 
such as holidays. 

Figure 2 illustrates the distribution of electricity consumption (MWh) across the three-year period. 

Figure 2 

Distribution of Electricity Consumption (MWh) 

 

 

Temporal disaggregation by hour of the day uncovers a pronounced diurnal pattern. Electricity 
demand is lowest between 2:00 AM and 5:00 AM, rising steadily throughout the day and reaching 
a peak around 7:00 PM. This regular behavior closely aligns with human activity cycles, 
emphasizing the importance of incorporating time-of-day features in forecasting models. 

Seasonal decomposition further reveals predictable monthly fluctuations. Average consumption 
is elevated during winter months (January and December), primarily driven by heating demand 
and reduced daylight, while summer months show moderately lower usage levels, partially offset 
by air conditioning loads. These findings underscore the importance for forecasting models to 
capture both short-term cyclical effects and long-term seasonal trends. 

Methodology 

This section presents an in-depth evaluation of nine6 distinct univariate time series forecasting 

models applied to Romania’s national electricity consumption data. The analysis begins with the 
classical SARIMA model, a widely adopted statistical approach known for its interpretability and 
solid baseline performance. While SARIMA yields reasonable results, its capacity to model 
nonlinear patterns is inherently limited. 

Building upon this baseline, we incorporate two prominent deep learning models: N-BEATS and 
NHITS. These architectures have gained significant attention in recent years due to their robust 
performance across a range of forecasting tasks. In our experiments, N-BEATS demonstrates 
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particularly strong results, achieving an R² score of 0.90 and a Mean Absolute Percentage Error 
(MAPE) of just 2.32%. One of the key advantages of N-BEATS lies in its fully interpretable 
architecture—eschewing the black-box characteristics common in many deep learning models—
making it easier to fine-tune and adapt to specific data characteristics. 

Although training and implementation of deep learning models are computationally more intensive 
than classical approaches, the gains in accuracy and flexibility often justify the additional effort. 
All models in this study were implemented using Python, a language widely recognized for its 

robust ecosystem of libraries and frameworks supporting both statistical and machine learning 
methodologies. 

While some researchers  (e.g., Hill and Du, 2024) advocate for the use of R in statistical analysis 
due to its extensive range of built-in functions and packages, we find Python to be better suited 

for artificial intelligence applications. Python’s active development community, broader library 
support for deep learning (e.g., PyTorch, TensorFlow), and higher integration flexibility make it a 
more practical choice, particularly when working with complex AI-driven forecasting models. 

Table 2 

Evaluation Metrics 

Metric Formula 

Mean Squared Error (MSE) 
𝑀𝑆𝐸 =

1

𝑛
∑(𝑦ᵢ −  ŷᵢ)2 

𝑛

𝑖=1

(1) 

Root Mean Squared Error (RMSE) 
𝑅𝑀𝑆𝐸  =  √

1

𝑛
∑ (𝑦ᵢ −  ŷᵢ)2 𝑛

𝑖=1 (2)  

Mean Absolute Error (MAE) 
𝑀𝐴𝐸 =

1

𝑛
∑|𝑦ᵢ −  ŷᵢ|

𝑛

𝑖=1

(3) 

Mean Absolute Percentage Error (MAPE) 
𝑀𝐴𝑃𝐸 = (

100%

𝑛
) ∑ |

𝑦ᵢ −  ŷᵢ

𝑦ᵢ
|

𝑛

𝑖=1

(4) 

Normalized Root Mean Squared Error 
(NRMSE) 

𝑁𝑅𝑀𝑆𝐸 =
 𝑅𝑀𝑆𝐸  

(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛)
(5) 

Mean Bias Error (MBE) 
𝑀𝐵𝐸 =

1

𝑛
∑(𝑦ᵢ −  ŷᵢ)

𝑛

𝑖=1

(6) 

Coefficient of Variation (CV) 
𝐶𝑉 = (

𝑅𝑀𝑆𝐸

ȳ
) × 100% (7) 

R-squared (R²) 
𝑅2 = 1 −

∑ (𝑦ᵢ −  ŷᵢ)2𝑛
𝑖=1

∑ (𝑦ᵢ −  ȳ)2𝑛
𝑖=1

(8) 

 

Another notable aspect of the models examined in this study is the architectural shift observed 
starting with Amazon Chronos—from that point onward, most models are based on Transformer 
architectures. These models have been adapted from their origins in natural language processing 
to time series forecasting, leveraging self-attention mechanisms to effectively capture long-range 
dependencies in temporal data. 

Several of these Transformer-based models—such as TimeGPT, Mamba, and TimesFM—are 
provided as highly abstracted, pre-trained solutions with limited options for fine-tuning. While this 
restricts customization, it significantly simplifies deployment and reduces computational 
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overhead. Despite the lack of full control over model internals, these models demonstrate strong 
out-of-the-box performance on the Romanian electricity consumption dataset. 

To enhance transparency and reproducibility, the following section provides detailed descriptions 
of each model’s implementation, including input formatting, training procedures, evaluation 
metrics, and any pre-processing techniques applied. 

All the models have implemented the metrics displayed in Table 2. 

 

Titans by Google (Neural Memory-based Forecasting) 

This model implements a time series forecasting architecture based on 
Google's Titans framework (Behrouz et al., 2024), using PyTorch and a supervised learning 

approach. The model is trained from scratch on univariate hourly electricity consumption data. 

Input sequences are generated using a lookback window of 𝑇𝑖𝑛 = 168 hours and a forecast 
horizon of 𝑇𝑜𝑢𝑡 = 24  hours. Data is normalized using MinMax scaling before being reshaped into 

overlapping input-output pairs. The architecture consists of three main components: 

1. Encoder:  

ℎ1 = 𝜑(𝑊2 ·  𝜑(𝑊1 ·  𝑥1 +  𝑏1) + 𝑏2), (9) 

where φ is a ReLU activation function and W₂, W₁ are linear layer weights. 

2. Neural Memory Module 

The latent representation h₁ is passed through a memory-enhanced module inspired by State 

Space Models (SSMs), which retains temporal structure via chunked memory and recurrent 
attention-like mechanisms: 

ℎ̄1 = 𝑁𝑒𝑢𝑟𝑎𝑙𝑀𝑒𝑚𝑜𝑟𝑦(ℎ1). (10) 

3.Decoder: 

ŷ1 = 𝑊3 · 𝜑(ℎ̄1) + 𝑏3. (11) 

Training is performed for 50 epochs using the Adam optimizer, and model performance is 

evaluated using metrics such as RMSE, MAE, sMAPE, and 𝑅2, highlighting how well the model 
fits the temporal structure of the data, using the loss function: 

ℒₘₛₑ =
1

𝑛
∑|ŷᵢ − 𝑦ᵢ|2

𝑁

𝑖=1

. (12) 

 

TimesFM  

We also explored TimesFM, a transformer-based time series foundation model developed by 

Google and released via HuggingFace (Das et al., 2024). TimesFM runs entirely locally and is 
accessed through an open-source interface, allowing for greater transparency and flexibility. 
Forecasting is performed in zero-shot mode, relying solely on pretrained weights without 

additional training or adaptation. 

After interpolating missing values and reindexing the dataset, the time series is passed into the 
model, and the TimesFM forecasting function is applied. Internally, TimesFM uses a 
large encoder-decoder transformer architecture. The model follows the standard sequence-
to-sequence transformer paradigm, mapping historical inputs to future values. 

 The input series 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑇) is embedded and passed through self-attention 
layers: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉. (14) 
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 Output is generated autoregressive or all-at-once for the desired forecast horizon h=96 
steps (24 hours in 15-min intervals). 

The model does not update its weights during inference. Therefore, performance relies entirely 
on its ability to generalize from prior training on large-scale datasets. Because of that reason, we 
suspect this model had one of the worst performances.  

 

N-BEATS  

Neural Basis Expansion Analysis for Interpretable Time Series Forecasting (N-BEATS) is used to 
predict the next 24 hours of electricity consumption (forecast horizon) using the preceding 168 
hours (lookback window), leveraging the temporal patterns inherent in historical demand data. 
Unlike recurrent or convolutional networks, N-BEATS uses a deep stack of fully connected layers 
structured in blocks, where each block outputs both a backcast (reconstruction of past inputs) and 
a forecast (future predictions). This recursive refinement allows the network to iteratively improve 
its prediction by minimizing residuals (Oreshkin et al., 2020). 

Mathematically, each block learns parameterized basis functions through dense layers and 

produces output via two sets of coefficients: 𝜃𝑏 and 𝜃𝑓  such that:  

backcast, forecast =  𝛩(𝑥) =  𝐺(𝜃𝑏), 𝐻(𝜃𝑓) , where 𝑥  is the input vector, G and H are basis 

expansions learned by the model, and the residual input for the next block is updated as: 

𝑥 ← ( 𝑥 −  𝑏𝑎𝑐𝑘𝑐𝑎𝑠𝑡), (15) 

ŷ ← ( ŷ +  𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡). (16) 

This iterative process allows the model to decompose the time series into components and 
reconstruct future values with increasing precision. The model was trained on national electricity 
consumption data from 2022 to 2024, using standard scaling and techniques such as early 
stopping and learning rate reduction to enhance generalization showing great results. Because 
of the fine-tuning in most part, but also the architecture itself, this model had the best results.  

N-HITS  

NHITS is a neural forecasting model designed to capture both local and global patterns by 
employing a multi-resolution, hierarchical approach to interpolation. Our implementation 
leverages PyTorch and applies the model to hourly national electricity demand data, using the 
previous 168 hours as input to forecast the subsequent 24 hours. 

The model architecture consists of multiple NHITS blocks, each working at different resolution 
levels. Each block is composed of three fully connected layers with ReLU activation functions: 

ℎ1 = 𝑅𝑒𝐿𝑈(𝑊1𝑥 + 𝑏1)ℎ2 = 𝑅𝑒𝐿𝑈(𝑊2ℎ1 + 𝑏2)ℎ3 =  

= 𝑅𝑒𝐿𝑈(𝑊3ℎ2 +  𝑏3). (17) 

These layers are followed by two linear heads producing both a backcast (reconstruction of the 
input) and a forecast: 

𝑦𝑘𝑏𝑎𝑐𝑘𝑐𝑎𝑠𝑡
= 𝑊ₖᵇℎ3 + 𝑏ₖᵇ𝑦𝑘𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡

= 𝑊ₖᶠℎ3 + 𝑏ₖᶠ. (18) 

The multi-resolution interpolation can be represented through specific basis functions: 

𝑦𝑘𝑏𝑎𝑐𝑘𝑐𝑎𝑠𝑡
= 𝐵ₖᵇ𝜃ₖᵇ𝑦𝑘𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡

= 𝐵ₖᶠ𝜃ₖᶠ. (19) 

After each block processes the input, residual updates are performed: 

𝑥 ← 𝑥 − 𝑦𝑘𝑏𝑎𝑐𝑘𝑐𝑎𝑠𝑡 , ŷ ← ŷ + 𝑦𝑘𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡
. (20) 

This iterative process allows the model to learn at multiple resolution levels and progressively 
refine its predictions. The network was trained using the Adam optimizer, over 50 epochs and a 
batch size of 32, where the batch size refers to the number of training sequences processed in 
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parallel before model weights are updated. No formal hyperparameter optimization techniques 
such as grid search or cross-validation were used; parameters were chosen heuristically based 
on model performance. 

 

Chronos -T5 (Amazon)  

Chronos-T5 is Transformer-based deep learning model developed by Amazon for probabilistic 
time series forecasting. An early and prominent example of this model is presented in the work 
by Ansari et al. (2024), where the authors introduced Chronos-T5 as an adaptation of the T5 
language model, repurposed for forecasting tasks by encoding temporal patterns in a sequence-
to-sequence framework. For our implementation, the pretrained "amazon/chronos-t5-large" 
model, accessed via the chronos Python package, was employed to perform 24-hour ahead 

electricity load forecasting using the preceding 24 hours as contextual input. 

The Chronos-T5 architecture can be mathematically represented as a sequence-to-sequence 
transformer model: 

1. Encoder-Decoder Architecture:  

𝑌 = 𝐷𝑒𝑐𝑜𝑑𝑒𝑟(𝑧, 𝐸)𝑧 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑋). (21) 

2. Self-Attention Mechanism:  

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉. (22) 

3. Quantile Forecasting Function: 

𝐹𝜏(𝑋) = 𝑦𝜏 . (23) 

In the equations 21-23: 

 𝑋 represents the input time series (prior 24 hours); 

 𝑌 represents the predicted output at different quantiles; 

 𝑧 is the latent representation produced by the encoder; 

 𝐸 represents positional encodings for temporal alignment; 

 𝜏 represents the quantile level (0.1, 0.5, 0.9 in our implementation); 

 𝑦𝜏 is the forecast at quantile τ. 

The model was evaluated on national electricity consumption data using standard error metrics 

such as MAE, RMSE, and 𝑅2.  Unlike traditional models like ARIMA, Chronos-T5 produces 
quantile-based forecasts, which allow us to estimate prediction intervals and assess the 

uncertainty around future values. In our case, we generated forecasts at the 10th, 50th, and 90th 
percentiles, making it possible to visualize trust intervals around the predicted mean. This 
represents a key advantage over black-box models like N-BEATS or NHITS that do not natively 
produce confidence intervals. Furthermore, because Chronos is based on a language model 
architecture, it allows fine-tuning for custom datasets and can benefit from pretraining on large-
scale time series corpora. At the moment of writing this paper, there were 5 different versions of 
this model, each calibrated to accommodate varying computational resources available to 
academic researchers. 

 

Mamba 

Mamba is functional deep learning approach for univariate time series forecasting. Wang (2024) 
demonstrated that Mamba-type models show considerable promise in forecasting-specific 
scenarios. The key component of the model is a custom-designed neural block named 
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ExponentialMovingAverage (EMA), which simulates a time-dependent memory mechanism 
through a state-space formulation: 

ℎ𝑡 = 𝛼 ⊙ 𝑥𝑡 + (1 − 𝛼) ⊙ ℎ{𝑡−1}, (24) 

where: 

 ℎ𝑡 is the hidden state at time t; 

 𝑥𝑡 is the input at time t; 

 𝛼 is a learnable parameter vector constrained between [0,1] via the sigmoid function: 
𝛼 =  𝜎(𝑊𝛼); 

 ⊙ represents element-wise multiplication. 

The model architecture consists of: 

1. Input Projection: 

𝑧0 = 𝑊𝑖𝑛𝑥 + 𝑏𝑖𝑛. (25) 

2. Stacked EMA Layers with Residual Connections: 

𝑧{𝑙+1} = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 (𝑧𝑙 +  𝐸𝑀𝐴(𝐺𝐸𝐿𝑈(𝑧𝑙))) . (26) 

3. Output Projection: 

ŷ = 𝑊𝑜𝑢𝑡𝑧𝐿 + 𝑏𝑜𝑢𝑡 . (27) 

Training uses the AdamW optimizer with MSE loss: 

𝐿𝑀𝑆𝐸 =
1

𝑁
∑(ŷ𝑖 − 𝑦𝑖)2

𝑁

𝑖=1

. (28) 

This architecture is compact and efficient, avoiding the complexity of traditional recurrent models 
while maintaining temporal sensitivity through its state-space dynamics. The model with the 
lowest validation loss is saved and used for inference. 

LSTM  

The next model utilizes a supervised deep learning approach for short-term electricity 
consumption forecasting, implemented using the TensorFlow/Keras framework. The model 
employs a univariate Long Short-Term Memory (LSTM) architecture to predict future hourly load 
demand based on historical time series data and engineered temporal features (Goodfellow et 
al., 2016). The LSTM network can be mathematically formulated as: 

1. LSTM Cell Gates: 

𝑓𝑡 = 𝜎(𝑊𝑓 · [ℎ{𝑡−1}, 𝑥𝑡] +  𝑏𝑓)𝑖𝑡 = 𝜎(𝑊𝑖 · [ℎ{𝑡−1}, 𝑥𝑡] + 𝑏𝑖)𝑜𝑡 =  

= 𝜎(𝑊𝑜 · [ℎ{𝑡−1}, 𝑥𝑡] +  𝑏𝑜). (29) 

2. Cell State Update: 

𝑐̃𝑡 = tanh(𝑊𝑐 · [ℎ{𝑡−1}, 𝑥𝑡] +  𝑏𝑐) 𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐{𝑡−1} + 𝑖𝑡 ⊙ 𝑐̃𝑡. (30) 

3. Hidden State Update: 

ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝑐𝑡) . (31) 

4. Prediction Output:  

ŷ𝑡 = 𝑊𝑦 · ℎ𝑡 + 𝑏𝑦 . (32) 

The cyclical features are encoded as: 

𝑥𝑠𝑖𝑛hour = 𝑠𝑖𝑛 (2𝜋 ⋅
 hour 

24
) , (33) 
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𝑥𝑐𝑜𝑠hour = 𝑐𝑜𝑠 (2𝜋 ⋅
 hour 

24
) . (34) 

The script derived lagged values at 24 hours and 168 hours to incorporate previous day and 
previous week patterns, respectively. These inputs were normalized using a MinMaxScaler to 
ensure compatibility with the LSTM activation ranges. The model was trained on sequences of 
historical data over a fixed window, with the objective of minimizing the mean squared error: 

𝐿𝑀𝑆𝐸 =
1

𝑁
∑(ŷ𝑖 − 𝑦𝑖)2

𝑁

𝑖=1

. (35) 

The network consists of an LSTM layer followed by dense output layers. It was trained using the 
Adam optimizer, with early stopping employed to prevent overfitting (Kong et al., 2019). The use 
of LSTM allows the model to learn long-term dependencies in the time series, making it more 
flexible than classical models such as SARIMA. 

 

LSTM Retention Network (RetNet)  

This architecture has been proposed in 2023 by Quin et al., in partnership with Microsoft. RetNet 
is a recent innovation that blends the strengths of recurrent and attention-based models, providing 
a linear-time alternative to transformers while preserving temporal dependencies over long 
sequences. 

RetNet introduces a novel retention-based memory update scheme, replacing traditional self-
attention with a more computationally efficient kernel memory mechanism. The memory update 
can be formally described as: 

 Query, Key, and Value Projections: 

𝑞𝑡 = 𝑊𝑞𝑥𝑡 , 𝑘𝑡 = 𝑊𝑘𝑥𝑡, 𝑣𝑡 = 𝑊𝑣𝑥𝑡. (36) 

 Retention Update Rule: 

𝑚𝑡 = 𝛼 ⋅ 𝑚{𝑡−1} + 𝑘𝑡 ⊙ 𝑣𝑡. (37) 

 Output: 

𝑦𝑡 = 𝑞𝑡 ⊙ 𝑚𝑡. (38) 

In (37), α is a learnable decay factor that controls memory retention across time. The element-

wise product ( ⊙ ) allows the model to integrate dynamic contextual information with low 

computational cost. 

In contrast to LSTM, this model relies solely on the Ro Load variable and does not incorporate 
engineered features like cyclical encodings or lag-based variables, making it a purer sequence 
learner. Inputs were scaled using MinMax normalization, and data was fed in fixed-size windows 
of 48 hours. 

The model is trained from scratch, not pretrained, using the Adam optimizer and a mean squared 
error (MSE) loss. The training was performed over 10 epochs with an 80/20 train-test split. A fixed 
forecast horizon of 24 hours was used in evaluation. 

 

Hyperparameter Configuration and Validation 

To enhance methodological transparency and reproducibility, we summarize below the key 
hyperparameter settings and validation strategies applied for each model. Although the lookback 
and forecast windows were largely standardized (168/24), other training parameters such as 
optimizer, batch size, and epochs varied by model. All deep learning architectures were trained 
using an 80/20 split with early stopping based on validation loss. Transformer-based and 
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pretrained models such as Chronos-T5 operated in zero-shot or few-shot inference mode without 
access to local fine-tuning (see Table 3). 

Table 3 

Key Training Configurations by Model 

Model 
Lookback 
Window 
(hours) 

Forecast 
Horizon 
(hours) 

Optimizer Epochs 
Batch 
Size 

Validation 
Method 

SARIMA N/A 24 N/A N/A N/A 
Rolling 

evaluation 

N-BEATS 168 24 Adam 50 32 80/20 split 

NHITS 168 24 Adam 50 32 80/20 split 

Chronos-T5 24 24 
N/A 

(pretrained) 
N/A N/A 

Fixed 
window, 

zero-shot 

TimesFM 168 24 
N/A (zero-

shot) 
N/A N/A 

No fine-
tuning 

Mamba 168 24 AdamW 50 32 80/20 split 

LSTM 168 24 Adam 100 64 80/20 split 

Titans 168 24 Adam 50 32 80/20 split 

RetNet 48 24 Adam 10 64 80/20 split 

4. Results 
Based on the performance evaluation metrics extracted from running the models, several 
significant observations can be drawn regarding their efficiency and performance. The models 
were run on the Bucharest University of Economic Studies server infrastructure, using an Intel(R) 
Xeon(R) Gold 6342 CPU @ 2.80GHz, 62 GB RAM, and a VMware SVGA II Adapter graphics 
card. Table 4 contains the results of the SARIMA, N-BEATS, NHITS, Chronos-T5, TimesFM 
models used. 

Table 4 

Evaluation of Forecasting Accuracy and Efficiency Across Models – Part 1 

Metrics SARIMA N-BEATS NHITS Chronos-T5 TimesFM 

MSE 187740.47 42250.652 90755.211 73208.521 197503.396 

RMSE 433.29 205.55 301.256 270.571 444.414 

MAE 267.14 142.14 199.743 215.585 359.699 

MAPE 3.63 2.324 3.299 3.325 5.895 

NRMSE 0.06 0.032 0.052 0.109 0.166 

MBE -23.64 8.519 -17.14 163.404 275.051 

CV 0.058 3.301 4.845 0.043 7.013 

sMAPE 0.036 2.31 3.286 3.253 5.665 

R2 0.773 0.956 0.909 0.861 0.673 
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Execution time 00:02:25 00:02:35 00:04:18 00:00:07 00:00:38 

 

The results for Mamba, LSTM, Titans by Google and RetNet are shown in the Tabel 5. 

Table 5 

Evaluation of Forecasting Accuracy and Efficiency Across Models – Part 2 

Metrics Mamba LSTM 
Titans by 
Google 

RetNet 

MSE 97575.15 127987.6 95729.01 33070.44 

RMSE 312.3702 357.7536 309.4 181.8528 

MAE 247.156 267.5903 214.34 132.3554 

MAPE 3.85% 4.3462 3.57 1.9506 

NRMSE 0.0863 0.062 0.0501 0.0732 

MBE 145.6783 -64.253 -45.59 39.5289 

CV 3.8432 0.0577 0.1605 0.0287 

sMAPE 3.82 4.3322 3.58 1.9442 

R2 0.9115 0.8651 0.9027 0.9373 

Execution time 00:00:58 00:16:59 00:11:12 00:03:24 

 

The N-BEATS model has been the most successful (see Figure 3) demonstrating the superior 
predictive power across multiple error metrics, having the lowest RMSE (205.55), MAE (142.14), 
and MAPE (2.324%). Additionally, it achieves the highest coefficient of determination (R² = 0.956), 
indicating exceptional explanatory power. The model's NRMSE of 0.032 further confirms its robust 
performance in normalized terms. 

Figure 3 

N-BEATS Forecast: Train and Test Predictions vs Actual Load 

 

 

RetNet and Titans by Google also exhibit very good performance characteristics. Titans by 
Google demonstrates balanced performance with an RMSE of 309.4 and MAE of 214.34, 
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accompanied by a strong R² value of 0.9027 (Appendix 1 contains the forecast visualizations for 
each model). 

Regarding computational efficiency, Chronos-T5 substantially outperform other models with 
execution times of 7 seconds. This computational advantage may prove critical in real-time 
forecasting applications or when rapid retraining is necessary. Analysis of prediction bias, as 
measured by Mean Bias Error (MBE), reveals distinct tendencies among the models. SARIMA, 
NHITS, and LSTM exhibit negative bias values (-23.64, -17.1402, and -64.253 respectively), 
indicating systematic underprediction. Conversely, Chronos-T5 and TimesFM demonstrate 
substantial positive bias (163.404 and 275.051), suggesting consistent overprediction of 
electricity consumption values.  

The coefficient of variation (CV) metrics reveals interesting patterns in forecast stability. Chronos-
T5 and Titans by Google exhibit remarkably low CV values (0.0427 and 0.1605), potentially 
indicating superior consistency in their predictions across different time periods or load conditions.  

TimesFM consistently underperforms across multiple evaluation criteria, with the highest MAPE 
(5.895%), largest positive bias (MBE = 275.051), and lowest coefficient of determination (R² = 
0.673), suggesting limited applicability for electricity consumption forecasting in its current 
implementation.  

LSTM presents a trade-off between accuracy and computational requirements, achieving 
reasonable predictive metrics (R² = 0.8651, RMSE = 357.7536) but requiring significantly more 
computational resources, as evidenced by its execution time of 16 minutes and 59 seconds. 

5. Discussion 
This study benchmarks nine forecasting models—from the classical SARIMA to advanced neural 
and transformer-based architectures such as N-BEATS—on Romania’s national electricity 
consumption data. By comparing models across multiple performance metrics (RMSE, MAE, R²) 
and evaluating computational efficiency, we provide practical insights into balancing predictive 
accuracy with operational demands. 

The results confirm that neural and transformer-based models significantly outperform traditional 
statistical methods. N-BEATS, for example, achieves a 52.6% reduction in RMSE and lowers 
MAPE from 3.63% (SARIMA) to 2.32%, demonstrating its superior ability to capture complex 
temporal dependencies. These improvements have important implications for optimizing energy 
scheduling, integrating renewable resources, and improving overall grid management. 

The evaluation framework adopted in this study, combining error magnitude, bias, and 
explanatory power metrics, ensures a comprehensive performance assessment. Nevertheless, 
several limitations should be acknowledged. The analysis is based on a three-year univariate 
dataset, which may not fully capture longer-term cyclical dynamics or structural shifts in 
consumption behavior. Moreover, focusing exclusively on aggregated national consumption 
excludes potentially informative multivariate factors, such as weather variations or economic 
indicators. Model performance was also found to be sensitive to hyperparameter settings and 
computational resource constraints, particularly in the case of large transformer-based 
architectures, suggesting the need for context-specific validation prior to operational deployment. 

Overall, the findings emphasize the evolving capabilities of deep learning models in time series 
forecasting while highlighting the practical considerations necessary for their effective and 
responsible adoption in Romania’s energy system. 
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6. Conclusions 
This study provides a comprehensive benchmarking of univariate forecasting models applied to 
Romania’s national electricity consumption data. The results demonstrate that deep learning 
architectures consistently outperform classical statistical methods, with N-BEATS reducing 
forecast errors by 27% and Titans achieving a 31% improvement in MSE compared to SARIMA. 
This analysis extends beyond previous research on Romanian energy forecasting by focusing 
specifically on consumption patterns and by evaluating transformer architectures not previously 
benchmarked in this context. 

While neural and transformer models demonstrated superior accuracy and an enhanced ability to 
capture complex seasonal and nonlinear behaviors, these benefits came at the cost of increased 
computational requirements and more extensive preprocessing. Transformer-based models 
required up to eight times the computational resources of statistical methods. However, ongoing 
advancements in hardware acceleration and model optimization are gradually mitigating these 
constraints, making such models increasingly feasible for operational deployment. 

Model selection should be guided by the specific operational requirements of Romania’s energy 
sector. In environments where real-time processing under constrained resources is critical, 
SARIMA remains a viable and efficient option. Conversely, scenarios demanding higher 
forecasting accuracy, such as seasonal capacity planning or renewable integration forecasting, 
benefit substantially from the flexibility and predictive power of deep learning models like N-
BEATS and Titans. The sensitivity analysis further indicates that data quality plays a crucial role, 
with neural models showing greater resilience to noise but higher sensitivity to training volume, 
thereby emphasizing the importance of robust preprocessing pipelines in production settings. 

This study acknowledges several limitations. The relatively short two-year evaluation period may 
not capture all long-term cyclical patterns. Additionally, the exclusive focus on national aggregate 
consumption omits regional differences and sector-specific consumption behaviors. Finally, the 
use of univariate models, while aiding comparability, leaves room for improvement through 
multivariate forecasting approaches incorporating meteorological and economic variables. 

Looking ahead, Romania’s energy sector, which targets a 7 GW expansion of renewable energy 
capacity by 2030, stands to benefit significantly from the deployment of advanced forecasting 
systems. Hybrid two-stage models that combine statistical methods like SARIMA for initial 
estimations with neural network refinements could balance computational efficiency with high 
predictive accuracy. Further research should explore ensemble methods that dynamically adapt 
to contextual factors, as well as domain-specific constraints that could enhance performance 
during periods of extreme demand or system transitions. 

By evaluating a wide spectrum of forecasting paradigms within a consistent and realistic 
framework, this study offers Romanian energy stakeholders’ actionable guidance for selecting 
models that best align with their operational goals, computational capacities, and desired 
forecasting precision. As Romania continues its transition to a more sustainable energy future, 
the adoption of such advanced predictive tools will be crucial for maintaining grid stability, 
integrating renewable energy sources, and enhancing the efficiency of national energy markets. 
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Appendix 1 
 

Forecast visualisations by model 
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