
 

 Romanian Journal of Economic Forecasting – XXV (1) 2022 68

JOINT MODELLING OF S&P500 AND 

VIX INDICES WITH ROUGH FRACTIONAL 
ORNSTEIN-UHLENBECK VOLATILITY 
MODEL 

Ömer ÖNALAN* 

Abstract 
In this paper, we study the joint modelling problem of S&P500 and VIX indices, under rough 
volatility dynamics by a stochastic model with continuous paths. Our aim is to improve the 
future values’ forecast of S&P500 index using the VIX index estimates. The present study is 
built on the estimation with the rough volatility models of the noise component which is 
included in financial models. The main stylized facts of the volatility can be captured well by 
fractional Brownian motions with a Hurst index, lower than 0.5. The  parameter governs 
the realized volatility roughness of time series. In the rough volatility approach, the Hurst 
exponent  is estimated by using the scaling properties of the volatility series. We describe 
the log-volatility of S&P500 index using a rough fractional Ornstein-Uhlenbeck model. The 
VIX index is a measure of the market’s expected volatility on the S&P 500 Index. When the 
rBergomi model is empirically calibrated to daily data of the proxy, realized volatility and the 
VIX index, it is found that the VIX index is rough with 0.3 and consistent with daily 
implied volatility. The findings suggest that the VIX index is consistent with daily implied 
volatility of S&P500 and also rescaled version of the VIX index can be used to model the 
volatility process of S&P500 index. Finally, price estimates of S&P500 can be properly 
approached by using a Rough Fractional Ornstein-Uhlenbeck model of VIX index which is 
an implied volatility process. 
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1. Introduction 
There are many factors that affect the behavior of financial markets. When we want to model 
the behavior of a financial asset mathematically over time, we cannot usually gather enough 
detailed information or define the evaluation mechanism of the financial asset precisely. In 
this case, stochastic models may be offered as useful tools to satisfy this aim. Stochastic 
models can be used to predict future value of interested asset price. Generally, financial 
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assets are modelled with stochastic differential equations driven by Brownian motion. 
However, the empirical studies show that financial time series have long range memory 
property. The long memory property can be controlled using fractional Brownian motion with 

0.5 ( Comte, Coutin and Renault, 2012). Another stylized fact of financial time series is 
that the series come back to their long range mean level over time. This type of behavior is 
known as mean-reversion and often modeled by the Ornstein-Uhlenbeck process (OU). 
Barndorff-Nielsen and Shephard (2001) used an OU process to model the stochastic 
volatility of financial assets. If the data are observed with high frequency, the semimartingale 
structure of series deteriorates. The reason for this phenomenon is the market microstructure 
noise. Heston or Bates stochastic volatility models cannot reproduce some important 
empirical facts of the observed volatility surface. 

For the first time, Gatheral et al. (2018) propose a "Rough Fractional Stochastic Volatility" 
(RFSV) model, in which the process of log-volatility is modelled in terms of a fractional 
Ornstein-Uhlenbeck(fOU) process with 0.5. Gatheral's model is highly consistent with 
empirical estimates of volatile time series. In the RFSV model, the volatility process 

,  where:  is the solution of the (fOU) process. Gatheral et al., (2014) and 
Bennedsen et al., (2016), using the high-frequency price data, obtain the value of 0.5. 
In the study of Gatheral et al. (2018), the realized variance estimates, taken from the Oxford-
Man Institute of Quantitative Finance Realized Library 2 (http://realized.oxford-
man.ox.ac.uk/data/download), are used as volatilities. Furthermore, they state that the 
estimation of the Hurst exponent, , is robust across time, scales and markets. Volatility is 
a proxy for the magnitude of price changes and acts as a stochastic process. The VIX 
volatility index is designed to measure the market’s expectation for 30 days volatility, implied 
by the S&P 500 index option price. The VIX shows the annualized square root of the price 
of a contract with payoff equal to ∆⁄ ), where: ∆ 30 days and  denotes the 
value of the SPX. Furthermore, S&P500 implied that the correlation index (CIX) can also be 
used for predicting the S&P500 index return. The CIX index can be used for reflecting 
market’s overall systematic risk. Since the volatility itself is not observable, we need a proxy 
for the volatility process. Absolute and squared returns are often used for tvolatility proxy 
process. To get a better estimator for volatility, we can use EWMA, quadratic variation or 
realized kernel estimator. In general, the VIX and S&P500 indices have a negative 
correlation. To model the dynamics of the VIX index, different models are proposed in 
literature, for example, the log-normal Ornstein-Uhlenbeck (OU) diffusion by Mencia and 
Sentana (2013), the mean-reverting process by Kaeck and Alexander (2013), etc. Stochastic 
volatility models are often based on the Markovian assumption for the underlying asset price 
process. However, the rough volatility approach assumes that the instantaneous volatility is 
driven by fractional Brownian motion. Bennedsen, Lunde, and Pakkanen (2016) examined 
daily volatility measurements of individual US stocks and found lower values for  (between 
0.05 and 0.2) and volatility roughness. The aim of this paper is to obtain a continuous time 
model of rough volatility process  and then to simulate the S&P500 index values. This 
approach requires our model to involve both roughness (irregular behavior at short time 
scales) and persistence (strong dependence at longer time scales). The first contribution of 
our empirical study is to show that observed time series are rough, persistent, and non-
Gaussian. The second contribution is that rescaled VIX index can be used for modeling the 
volatility of the S&P500 index. 

The main contribution of this paper is to propose the joint modeling of dynamics of the VIX 
index and the underlying financial asset S&P500 index using rough volatility models (non-
Markovian models). In this way, we aim to compute fair values of the SP500 index. We model 
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the dynamics of the log-volatility process using a Rough Fractional Ornstein-Uhlenbeck 
Volatility process and we use the (EWMA) model to derive the proxy volatility process of the 
spot (squared) volatility of a day of the S&P500 index, because this method may capture 
properties as heteroskedasticity and volatility clustering. The roughness of the realized 
volatility is assessed by estimating the Hurst parameter, 0,1 . We contribute to verify 
the rough behavior of volatility by showing that the statistical estimation of the Hurst index, 

, is lower than 0.5 and also by showing that the volatility is more irregular than a standard 
Brownian motion. 

The paper is organized as follows. In section 2, we review fundamental properties of the 
Ornstein-Uhlenbeck process and fractional Brownian motion. Section 3 includes some 
results on generation of volatility of financial assets and realized variance and rough volatility. 
Section 4 presents the model, applied to real S&P500 and VIX index data. Section 5 includes 
the conclusions. 

2. The Fractional Ornstein-Uhlenbeck 
Process 

2.1. The Ornstein-Uhlenbeck Process 
The Ornstein-Uhlenbeck process (OU), introduced by Uhlenbeck and Ornstein (1930), is a 
stochastic process which reverts to its long-term mean over time. The process (OU) can be 
considered as continuous time process similar to the discrete-time AR(1) process and it 
satisfies the following stochastic differential equation, 

,  

where: V v  is known,  W   is a standart Brownian motion, κ µ V  drift and 
σ t, V  are volatility coefficients, respectively. This equation is known as the Vasicek 

model, which is given by Vasicek (1977).  V v  is known and  dW √dt Z  with  
Z ~N 0,1 . The second term represents the random shocks to process V . The solution of 
SDE between s and t is given by s t (see Bouasabah, M., & Bensouda, C., 2017). 

1  

V  is a unique solution of Vasicek model with ~ , 1  

The Euler discretization schema is given as   1

   

where: 1  is the mean, Z  is a one-dimensional noise process, and 

  is the volatility of the noise process. 
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2.2. The Fractional Brownian Motion 
Fractional Brownian motion (fBm), which includes the long-range dependence, self-
similarity, and depends on the Hurst parameter 0,1 , is a zero-mean and continuous 
Gaussian process. The covariance function is given as 

,
2

| | | | | |  

σH
1

Γ H 1 2⁄
  1 s H ⁄ sH ⁄ ds 1 2H⁄

1
Γ 2H 1 sin πH

 

For s t  , E BH t t H .  | |  for , , 

0. 

Fractional Brownian motion was firstly described by Mandelbrot and Van Ness (1968) as,  

BH t
1

Γ H 1 2⁄
t s H s H dB s t s H dB s  

where : Γ  represents the gamma function, B t  is a standard 

Brownian motion (for details, see Samorodnitsky and Taqqu, 1994). (fBm) may be seen as 
a weighted average of Gaussian white noise. Parameter H controls the regularity of the 
process. When H 1 2 ⁄ , the process shows long range dependence and when H 1 2 ⁄ , 
fBm is not semimartingale. In this case, Ito calculus is not available for this process. fBm has 
a self-similar property, so that for a constant 0,  .  

A geometric fractional Brownian motion (GFBM) describes following SDE, 

 

where:  drift and  volotility parameter are constants. is fractional Brownian motion. 
The solution of (GFBM) is given by, 

1
2

 

Parameter Estimation for the (GFBM) Model. Given the logarithmic returns  
 ,  1,2, … , ,  then the sample mean   and sample variance  is 

calculated, respectively as, 

∑    and  ∑  

Then, the parameters of (GFBM),  and , are estimated. The drift  and volatility  
parameters of (GFBM) model are estimated as follows (Feng, Z., 2018; Ibrahim, S. N. I., 
Misiran, M., & Laham, M. F., 2021). 

|∆ |
   and    ̂

∆
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fBm is not stationary, however, its increments show a stationary process, thus, generally, 
inorder to make forecasts its increments are used. 

| | | | | |  

(fBm) has the following scaling property, 

| ∆ | ∆  

1

√2
| | ⁄  

2.3 The Fractional Ornstein–Uhlenbeck Process(fOU) 
The model(fOU) satisfies the following stochastic differential equation (SDE) 

 
The solution of SDE above is given by 

 

1  

2
1  

To estimate the parameters of the fOU model, we use an estimation method proposed by 
Xiao et al. (2018). Let X   , i 0,1, … ,, represent the discrete sample observations, then the 
model parameters are estimated. First, the Hurst exponent  is estimated as, 

1
2

∑ 2

∑ 2
 

Then, using this estimated H parameter, the other parameters of the model are estimated 
as follows by the method of moments. 

∑ 2   

4 2
 

⁄

 

̂
∑ ∑ ∑

∑ ∑
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̂
∑ ∑

2

⁄

 

The Hurst exponent 0,1  characterizes the scaling behavior of the range of cumulative 
departures of a time series from its mean (Hurst, E., 1951; Mandelbrot and Wallis, 1968). 

3. Volatility Modelling 
The volatility, , is used in finance as a measure of variability (riskiness) in asset prices and 
it is not directly observable. It has an important role in asset/derivative pricing, risk 
management, and portfolio analysis. Estimating volatility accurately is valuable for both 
empirical and theoretical studies in finance. The implied volatility is a good indicator of the 
“fear” in the market. The volatility is generally estimated in two ways, namely the historical 
realized volatility and the implied volatility. Realized volatility is calculated based on observed 
historical prices, while the implied volatility is obtained from the market prices of financial 
derivatives. In this study, we also use the realized volatility, which is calculated from high-
frequency data. Let  be the price of S&P500 index at time . The process  , 

0,  satisfies the following stochastic differential equation (SDE) 

 

The volatility only might be derived from the observable proxies of the realized variance. 
Let be  , over time grid  ,using the most recent  observations on 
the  . We consider the price , on time grids  . Using the most 
recent  observations on the  is deduced the annual realized variance as 

Annualized Realized Volatility 100
252

 

 is the annualised realized volatility for S&P500 on day . For | | 0 ,  
approaches to the quadratic variance, thus the realized variance is used as an unbiased 
estimator of integrated variance (Guo, I., Loeper, G., Obłój, J., & Wang, S., 2020). 

100
 

The realized volatility measures the annualized standard deviation in the daily price return 
of an index over a given period. Realized variance is used as an unbiased estimator of 
integrated variance, 

~  

We need to find a proxy for spot volatility. In general, considered volatility proxies are 
computed at a daily frequency. Then, we can estimate the integrated variance for a step size 
∆ 0, n N, 
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   ,   ∆,2∆, … , ∆
∆

 

The value of expected variance,  can be computed from the price of options 

with an expiry . We obtain a proxy for spot volatility as 
∆

 , where  are 

i.i.d centered random variables. The VIX is used as an implied volatility estimate proxy.  

1
∆

∆

 

Another parametrization is  

2
∆

∆
 

where: ∆ 30 days and  is the market price at the time . We need to derive a 
proxy for the volatility process from index prices, since we cannot directly observe the 
volatility. The volatility proxies can be computed in different ways. Let   is the highest 
price,  is the lowest price,  is the opening price and  is the closing price of day . The 
proxies of daily volatility, based on the highest and lowest, opening and closing prices of the 
day are: 

Parkinson (1980) volatility: ∑  

German-Klass Volatility:  ∑ 2 2 1  

 
Exponentially-weighted Moving Average (EWMA) 
Current volatility estimate  uses  most recent observed returns , … , . The 
decay factor  is a known parameter. 

1
1

 

Annualized volatility: ∑  

The above methods are based on daily prices. Besides, all of these methods have similar 
results. 

3.1 Rough Volatility Models 
Measure of Roughness of the Log-volatility 
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In this section, we consider the scaling of the moments of the increments of the log-volatility. 
Gatheral (2018) propose fitting the empirical absolute moment of order , for different  
values, as 

1
| ∆ | ∆  

Then, the empirical estimates of  are determined as 1⁄  times the slope  of the 
above linear regression. The rough volatility models have the paths with fBM with 
0, 1 2⁄ , which are rougher than trajectories of a standart Brownian motion. For very long 

mean reversion time 1  ⁄  and 0, 1 2⁄  log-volatility process   follows locally as 
an FBM process (Gatheral et al., 2018, and Bennedsen et al., 2016). Roughness of volatility 
is closely related to the Hurst parameter, . As  approaches to 0, the paths become more 
irregular. An fBm satisfies the relationship H α 1 2⁄  , which means that  H 1 2⁄  
implies roughness. Bennedsen et al. (2016) propose the following relationship, 

1  ,  ~ | |   , | | 0 

where: c is a constant, ρ  is the autocorrelation function of log volatility, |Δ| is the lag time,  

α , ∞   and  α is called the roughness index of volatility. We estimate the volatility 

of the S&P over days. We study the scaling measure as follows, 

∆, | ∆ |     

For various ∆ and q, the smallest ∆ is one day. 

∆, ~ | |   , | | 0 

∆, | |  

where: ∆ 5,10,15,20,25,30,35,40,45,50 , 2  . The relationship 2 1 

allows us to estimate   using    .   

3.2 The Fractional Ornstein-Uhlenbeck Volatility Model(fOUVM) 
The log-realized volatility behaves similarly to fBm with 1 2⁄ . But,  

model, so the expected volatility  is not stationary, because 

0, .  is the average realized volatility and using a fractional Ornstein-Uhlenbeck 

  ,  0,  

where:  , 0. The solution of the fOU proces is given by, 

 

If  1⁄  , then log-volatility process behaves locally as fBm. The variance forecast 
formula is, 



Institute for Economic Forecasting 

 Romanian Journal of Economic Forecasting – XXV (1) 2022 76

| Δ ⁄

∆ ⁄  

3.2.1 The Rough Fractional Stochatic Volatility (RFSV) Model 

 

  and    

where:  is the parameter of mean-reversion of the instantaneous volatility. 

The discritezation of (fOU) on grid time , , … ,  on 0,  is given as 

X t X t κ µ X t t t ν WH t WH t  

3.3 The Rough Bergomi Model 
The rough Bergomi (rBergomi) model is introduced by Bayer, C., Friz, P., and Gatheral, J. 
(2016) as follows 

1  

1
2

 

where:  1.7 , 
⁄

⁄
,  and   is instantaneous volatility of the 

instantaneous variance (vol-of-vol) :   2
√

2
⁄

⁄
 

Approximately 2.5,   Riemann-Liouville fBm:    K   , 0  

K √2 ⁄ , ξ t 0.234 √1 t   and  t ξ t  forward variance 
curve, known at time 0. 

The Hybrid Scheme (Bayer, C., Ben Hammouda, C., and Tempone, R., 2020). 

√2
⁄

 

where:  is number of steps and  is a Gaussian variable. 

⁄ 1 ⁄

1 2⁄

⁄⁄

 

where:  is the instantaneous variance process, 0,1  is a parameter, 0, 1 2⁄ ,  
 is the forward variance curve,   is a Riemann-Liouville fBm. ,  are 
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independependent Brownian motions. A generalized volatility process  is proposed by 
Merino, R., Pospíšil, J., Sobotka, T., Sottinen, T., and Vives, J. (2021) as follows 

1
2

  , 0 

where: 0 , 0,1  and 1 2⁄ .  is the volatility of the volatility and calculated as 

Υ∆
1
∆ 1 ∆

∆

 

Finally, the following estimator is found (for details see, Garcin, M., and Grasselli, M., 2020). 

̂ 2 1 4Υ 1  

For, 0, the RFSV model and 1, we obtain the rough Bergomi model. 

For every 0, 

2  

If 0 then  (the variance of the standard fBm) 

3.3.1 Simulation of the Rough Bergomi Model 

Jacquier et al. (2018) propose a simulation approach as follows. Let  t t i∆   , 0
0,1,2, … n represent the time grid. 

1  Simulating the Volterra process  ,   . ,  

2  Simulating the variance process  V ξ t 2  t s H . dZ  ,  1.2287 

⁄

⁄
    and Doléans-Dade exponential Y exp Y E Y  

3  Set the paths of Brownian motion Z driven by X as follows, 

Z Z nH .  and   Z nH .  

Let  ~ 0, 1⁄  and   WH t WH t ρZ 1 ρ Z  

4  Simulating the S&P500 index price   

1
2

∆   

∆  
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4. Application 
Our data set consists of closing prices of the S&P500 and the VIX Indices, daily from 
01.01.2015 to 01.01.2020, retrieved from Yahoo Finance. In this section, we use daily price 
data of S&P 500 and VIX indices. We apply our models to VIX index daily data spot volatility 
and the implied volatility of S&P500. The data are obtained from CBOE from 01.01.2015 to 
01.01.2020. (http://www.cboe.com/products/vix-index-volatility/vix-options). In this study, we 
take ∆ 1 252⁄  and T 4 years. There is a total of 1256 observed data. For the S&P500 
index, we use proxy daily spot variances by daily realized variance estimates from the 
Oxford-Man Institute of Quantitative Finance Realized Library, (https://realized.oxford-
man.ox.ac.uk/data/download). The VIX is a volatility index on the Chicago Board of 
Exchange (CBOE) and is the measure of the market’s expectation of the 30-day volatility 
implied by the S&P 500 (CBOE, 2009). The VIX is a weighted average of implied volatilities 
of options on the S&P 500 Index with various strikes and maturities. We compare the VIX 
index with historical volatility. The observed data are used to estimate realized volatility. The 
roughness of the realized volatility is assessed by estimating the Hurst parameter.  

Figure 1 compares the VIX and the S&P500 indices over the all-observation interval. A spike 
in the VIX is accompanied by a simultaneous negative reaction in SPX index prices. Between 
VIX and SPX indices, a negative correlation exists. When the S&P500 index suffer sharp 
declines, the VIX volatility index tends to rise.  

The VIX index measures the expected volatility of the S&P500 Index (SPX) over the next 30 
days. The VIX it goes higher the higher trader’s expectations are for the short term market 
volatility. 

Figure 1. S&P 500 and VIX Levels  
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Figure 2. Log Returns of VIX and S&P 500 Indices 

 

 
We analysed the daily log returns of the VIX and S&P 500 indices. Figure 2 shows two 
indices representing the volatility clusters in their log-returns. In other words, the large 
movements tend to be followed by large movements and vice versa.  

Figure 3. The VIX and the Realized Volatility of the S&P 500 One-month 
Ahead 

 
               

The realized (historical) volatility can be expressed as a measure of the past changes in 
stock prices. Implied volatility denotes the expected future rate of change of index prices. In 
Figure 3, when comparing the implied volatility (measured by the VIX) with the realized 
volatility of the S&P 500 index, the VIX generally appears higher than the realized variance. 
This difference between two variables may be considered as a risk premium. Thus, the VIX 
index can be used as a proxy for the realized volatility. Furthermore, it may give early signals 
about future changes in the S&P500 index. 

RiskMetrics suggests to use the decay factor   of 0.94 and 0.97 for daily and monthly 
data, respectively. To calculate the historical spot volatility, we use the Exponential Weighted 
Moving Average (EWMA) with smoothing parameter 0.94 and  is the return of SPX. 

1 . 1 .  
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Figure 4. SPX (EWMA) Volatility 

 
               

The EWMA method is easy to calculate and gives us a low RMSE. The VIX levels and 
S&P500 realized volatility levels, calculated using closing price levels, are given for each 
trading day. 

Figure 5. ,  as a Function of  , S&P500, 

. , , . , ,  
 

Here, the volatility proxies used are the precomputed 5-minute realized variance estimates 
by the Oxford-Man Institute of Quantitative Finance. Figure 5 shows the estimates of the 
volatility process smoothness of SPX. The volatility process is not directly observable from 
the market. So, an exact computation of , ∆  ) is not possible in practice. We must 
derive therefore proxy spot volatility values by using appropriate methods.  

                                                     
Figure 6 shows that the volatility of S&P 500, generated by the Fractional Rough Ornstein-
Uhlenbeck Volatility Model (FROUSV) shows very similar behavior to one day ahead VIX 
Index level. The (FROUSV) model is consistent with the mean reversion property of volatility. 
There is a significant degree of variation. 
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Figure 6. VIX and the Estimated Volatility from Model for SPX 

 
                       

Table 1. Descriptive Statistics of S&P500 and VIX 
Index Mean Std.dev. Kurt. Skew. Min Max J. B 
S&P500 2465.22 364.42 -1.2 0.2 1829.08 3329.62 92.65 
VIX 15.06 4.23 3.49 1.55 9.14 40.74 987.95 

 

Table 1 summarizes the moments of S&P500 and VIX indices. It shows that the VIX index 
is much more volatile than the S&P500 index. In addition, The S&P500 index has positive 
skewness and weak kurtosis. The VIX returns have positive skewness and strong kurtosis 
(>3). The Jarque Bera statistics show that both of them do not satisfy the normality 
assumption. The calibration of parameters of (FROUSV) model process to log VIX  
observation data is given in Table 2. 

For the VIX index, instantaneous volatility values can be derived based on the (FROUSV) 
model, given by 

1 0.0154 2.6834 0.004 0.001 0.06186 0.004 .

0.05433 0.004 . .  

Tabel 2. Model Parameter Estimates 
 κ µ σ H η λ α 
SPX(RV) 0.0077 9.25 1.325 0,23   -0.27 
Log(VIX) 0.0154 2.68 0.062 0.33 0.001 0.0543 -0.17 
Log(SPX)  0.1988 8.26 0.134 0.23 0,001 0.0137 -0.27 
EWMA(SPX) 0.0188 -0.0005 0.067 0.54 0.001  0.043 
 
The estimated Hurst parameter H 0.33 of the realized volatility process is in the rough 
volatility range, 0 0.5. Therefore, we can model the VIX index using a rough volatility 
model. Furthermore, the value of κ is higher than1/  value. This result represents the 
roughness of the VIX index. 
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Figure 7. Real VIX and VIX Estimates Based on the Model (MAPE=0.1094) 

 
 

Figure 8. Real and Estimated Values from Model, for S&P500 Index Prices 
(MAPE=0.1094) 

 
 

S&P500 index prices can be simulated using the following stochastic equation 

1 0.1988 8.2616 0.004 0.001 0.1338 0.004 .

0.01368 0.004 . .  
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In Figure 8, it is observed that the simulated and actual graphs of the S&P500 index prices 
look very much alike. 

5. Conclusions 
In this paper, we investigate the joint modelling of S&P500 and VIX indices using the rough 
Bergomi volatility approach. The log-volatility is modelled using a Rough Fractional Ornstein-
Uhlenbeck process (RFOU). The proxy volatility process for the SPX index is calculated 
using the Exponential Weighted Moving Average (EWMA) method. The daily realized 
variance estimates, which are proxies for daily spot (squared) volatilities of S&P500, and the 
daily VIX index data are calibrated in our model. The VIX index contains some predictive 
information about future SPX volatility. We found that by using a monofractal scaling 
relationship the log-volatility might be modelled with a rough fractional Ornstein-Uhlenbeck 
process and the Hurst exponent H is below 0.5 for daily time scale. Furthermore, the rough 
volatility models may capture the dynamics of historical and implied volatilities. The variance 
process is not a Markov process nor semimartingale, the scaled VIX index can be used as 
a proxy for the implied volatility process. The realized variance process imitates the fBm 
behavior very well. The VIX index can capture the future volatility of the SPX, and hence it 
can be used to predict the future movements of the S&P500. The VIX volatility index is a 
proxy for implied volatility. 

Finally, we derive the rough implied volatility process and make new predictions for the 
S&P500 price dynamics based on a Rough Fractional Ornstein-Uhlenbeck model with rough 
volatility. The stochastic volatility process can also be modelled as a Volterra process (i.e., 
a moving average of a standard Brownian motion). In the rough volatility framework, using 
the form of the integration kernel in the moving average is very important.  
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