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Abstract  

The effect of not treating Seasonal Level Shift (SLS) outliers on forecast accuracy, and 
prediction intervals is the focus of this study. We examine the impact of SLS on point and 
interval forecasts using simulation experiment for time series models including SAR (1) and 
SMA (1) for different parameter values, sample sizes and time of occurrences. We extend 
the strategy suggested by Asghar and Urooj (2017) to forecasting in the presence of SLS by 
looking at forecast accuracy and prediction interval. We demonstrate that SLS significantly 
increases the inaccuracy of the SARIMA models, increases the bias in the SARIMA 
estimates, and significantly affects the prediction intervals. However, after detection and 
adjustment of SLS, SARIMA estimates become less biased, and forecast accuracy measure 
and prediction interval significantly improve. The difference of location of SLS from forecast 
origin has similar effect on bias and forecast accuracy in SAR (1) model. While, in SMA (1) 
model, the SLS occurring at the beginning of the series has greater adverse effect than that 
occurring at the middle or end of the series. Three monthly time series data from Pakistan 
are used to explore the issue. 

Keywords: Seasonal Level Shift (SLS), SARIMA, forecast accuracy, point forecasts, interval 
forecasts 

JEL Classification: C15, C18, C63, C32, C87 

1. Introduction 

Mostly time series data exhibit the problem of large disturbance as well as structural 
changes, where outliers and structural changes cause misleading analysis such as 
inappropriate model selection, improper decomposition of the series, biased parameter 
estimation and importantly misleading forecasts (Chen & Liu; 1993). Time series forecasting 
is a key technique used at all levels for effective policy and strategic decision-making under 
uncertainty. The contamination of time series with outliers and breaks results in distortion of 
forecasts. In such cases, the forecast accuracy is reduced due to the biased estimates of 
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the model parameters and will have long lasting effect on the outliers. As noticed by 
Cousineau & Chertier, (2010), some outliers are at times enough to distort the whole analysis 
and make it a necessity to be dealt with. The detection of outliers is important for all 
disciplines (such as economics, finance, physics, public health and machine learning along 
with others). According to Bollen & Jackman (1985), the outliers have a greater impact on 
statistical significance when sample size is small. Similarly, Chen (2001) observed that 
outliers in experimental data lead to inccurate interpretation of the results of fuzzy linear 
regression. Therefore, many researchers identify the presence of outliers and use strategies 
for detection of these large disturbances in time series data. The literature shows that the 
presence of outliers in historical data can occasionally has a significant impact on forecast 
accuracy. Box & Jenkins (1973), Tsay (1988), Chen & Liu (1993a, 1993b), Balke (1994), 
Kaiser & Maravall (1999) and many other scholars examined the types and structure of 
outliers and their effects on diagnostics, model specification and forecasting. The effect of 
one time shock (additive outlier) on forecasts was explored by Hillmer (1984) and Ledolter 
(1989). Stock & Watson (1996, 1999) noticed that ignorance of outliers misleads forecasts 
in addition to other reasons.  

Outliers are observations that are unusually smaller or much larger than the rest of the data 
(Bollen & Jackman; 1985). In simple words, outliers in time series are those data that do not 
match the typical observations and depart from the regular trend and/or seasonal component 
pattern. The type and location of outliers determine the deviation of observation from the 
trend. Fox (1972) identified few different types of outliers and suggested their detection 
method. Though Chang (1982) and Tsay (1986) and many others examined two types of 
outliers, Tsay (1988) and Chen & Liu (1993) identified four different types of outliers namely 
level shift (LS), transient change (TC), innovative outlier (IO), and additive outlier (AO). 
Kaiser & Maravall (2001) proposed and explored seasonal outliers. Several researchers 
investigated the existence, impact and detection of outliers in various time series designs, 
including Nair et al. (2006), Mustafa (2009), Urooj & Asghar (2017), Asghar & Urooj (2017). 
Many studies examined and argued about the effect of nature, magnitude, and timing of 
various type of outliers. As Tsay (1988), Chen & Liu (1993), Balke & Fomby (1994) & 
Maravall (2007) noted biased parameter estimates due to outliers. According to Charles 
(2004, 2006) the presence of outliers led to non-normality, excess kurtosis and skewness. 

Economic forecasting has long been a point of interest, although, it has a long history of 
systematic forecast failure, despite all known methodologies. According to Hendry & 
Ericsson (2001), the precense of shifts and discontinuities interact with other issues and 
exacerbate the forecast failure. Hence, it is essential to identify and analyse the outliers 
before forecasting. Many econometric methods for times series forecasting have been 
proposed; however, limited progress has been seen in identifying and monitoring the impact 
of outliers in time series forecasting, especially in the case of Seasonal Level Shift (SLS).  

This motivates us to examine the consequences of outliers such as SLS and other types on 
forecasts. The studies by Urooj (2016), Urooj & Asghar (2017), Asghar & Urooj (2017) and 
Urooj & Asghar (2020) examined the existence, impact and detection of AO, IO, LS, TC and 
SLS in time series data for various SARIMA(p,d,q)(P,D,Q)s

4  models also by collecting 
empirical evidence from time series data for Pakistan. However, these studies did not focus 
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on the forecasting performance in the presence of outliers. The current study focuses on the 
forecasting of time series models in the presence of SLS. We attempt to answer three 
questions: How does the unrecognized seasonal level shift (SLS) affect the width of the 
prediction intervals? What is the impact of SLS on forecast for different sample sizes? And 
how does the impact of outlier vary due to the distance of outlier from the forecast origin? 
To answer these, we explore the influence of SLS on forecasts in SARIMA models. We have 
examined the impact of SLS on point and interval forecast in terms of forecast accuracy 
through simulation for free of SLS, with SLS and adjusted for SLS series using the sampling 
distribution of coefficients of SAR(1) and SMA(1), also written as SARIMA(0,0,0)(1,0,0)s 

models, respectively, where ‘s’  indicates the seasonal frequency. This study also 

examines the carry‐over effects of seasonal level shift on forecasts by looking at the impact 

of time of occurrence of SLS along with the exploration of impact of outlier for different 
sample sizes. The empirical study is also conducted for Pakistan, using variables measured 
on monthly frequency. 

Section 2 is about analytical framework, followed by description of the outliers, outlier 
detection method and simulation strategy. The simulation results of the impact of SLS on 
forecast accuracy and prediction interval for various time series models is explored in 
Section 3. Section 4 presents empirical analysis for Pakistan using monthly time series data 
with outliers. Section 5 concludes with a brief discussion on the implications of the results. 

2. Analytical Framework 

Studies including Fox (1972), Chang et al. (1988), Tsay (1988), Chen & Liu (1993a, 1993b), 
Vaage (2000), Kaiser & Maravall (2001), Hotta et.al (2004), Urooj & Asghar (2017) and 
Asghar and Urooj (2017) emphasized on the performance of univariate time series analysis 
in the presence of outliers. Bollen and Jackman (1985) argues the vital influence of outliers 
in case of sample size and less robust statistics. The studies by Urooj (2016), Urooj and 
Asghar (2017), Asghar and Urooj (2017) and Urooj and Asghar (2020) examined the 
existence, impact and detection of AO, IO, LS, TC and SLS in time series data for various 
SARIMA(p,d,q)(P,D,Q)s

5 models.  
In this study, seasonal ARIMA model is used to investigate the effects of the outliers 
especially SLS on the performance of time series forecasts. A seasonal ARIMA model for 
quarterly and monthly series is usually indicated as SARIMA (p, d, q) (P, D, Q)s . Consider 
an outlier free time series 𝑦𝑡 such that 

 𝜙(𝐵)Φ(𝐵𝑠)∇𝑑∇𝑠
𝐷𝑦𝑡 =  𝜃(𝐵)Θ(𝐵

𝑠)𝑎𝑡      (1) 

where: B is backshift lag operator as 𝐵𝑦𝑡 = 𝑦𝑡−1 while ‘s’ shows the seasonal frequency i.e., 
s=4 or 12 for quarterly or monthly series respectively and ‘d’ is the order of integration. The 
other terms are defined as 

𝜙(𝐵) = 1 − 𝜙1𝐵
1 − 𝜙2𝐵

2…𝜙𝑝𝐵
𝑝, 

Φ(𝐵𝑠) = 1 − Φ1B
𝑠 −⋯Φ𝑝𝐵

𝑠𝑝 , 

Θ(𝐵𝑠) = 1 − Θ1B
𝑠 −⋯Θ𝑞𝐵

𝑠𝑞   
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q, P, D, Q are seasonal frequency order, non-seasonal and seasonal roots, order of integration 
and seasonal integration of the model as defined by Box and Jenkins (1976). AR(p), MA(q), 
SAR(P) and SMA(Q) are the special form models defined under SARIMA (p, d, q)(P, D, Q)s. 
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𝜃(𝐵) = 1 − 𝜃1𝐵
1 − 𝜃2𝐵

2…𝜃𝑞𝐵
𝑞  

With roots lying outside the unit circle, ∇𝑑∇𝑠
𝐷  𝑦𝑡 is the stationary series with  𝑎𝑡 ∼  𝑁 (0, 𝜎𝑎

2). 
We may define   

𝜋(B) =  
∇𝑑 ∇𝑠

𝐷𝜙 (𝐵)Φ(𝐵𝑠)

𝜃 (𝐵)Θ(𝐵𝑠)
= 1 − 𝜋1𝐵 − 𝜋2𝐵

2…. 

Such that equation (1) can be written as  
  ϕ(B)Φ(𝐵𝑠)

𝜃(𝐵)Θ(𝐵𝑠)
 ∇𝑑∇𝑠

𝐷𝑦𝑡 = 𝑎𝑡  

or equivalently,          𝜋(B) 𝑦𝑡 = 𝑎𝑡                 (2) 

Equation (2) forms an AR (∞) process. It can also be written as   

              𝑦𝑡 =  𝜓(𝐵)𝑎𝑡                                 (3)6 

where: 𝜓(𝐵) =
𝜃(𝐵)Θ(𝐵𝑠)

𝜙(𝐵)Φ(𝐵𝑠)∇𝑑 ∇𝑠
𝐷 =

(1−𝜃1𝐵−𝜃2𝐵
2…−𝜃𝑞𝐵

𝑞)( 1−Θ1B
𝑠−⋯Θ𝑞𝐵

𝑠𝑞)

(1−𝐵)𝑑(1−𝐵𝑠
𝐷) (1−𝜙1𝐵−𝜙2𝐵

2… −𝜙𝑝𝐵
𝑝)(1−Φ1B

𝑠−⋯Φ𝑝𝐵
𝑠𝑝)

 . 

Due to the existence of outliers the series is unobservable and the observed series is 
contaminated with outliers as (see Fox; 1972, Bell and Hillmer; 1983, Tsay; 1988) 

    𝑧𝑡 = 𝑦𝑡 + 𝐴𝑡     (2) 

where:  𝐴𝑡 is a parametric function, may be deterministic or stochastic depending on the 

type of disturbance, representing the exogenous disturbances of 𝑧𝑡 and is given as 

𝐴𝑡 = 𝜔𝑖𝑣𝑖(𝐵)𝐼𝑡
(𝑇) 

where:  𝐼𝑡
(𝑇) is an indicator variable such that 𝐼𝑡

(𝑇) = 1 𝑎𝑡 𝑡 = 𝑇 𝑎𝑛𝑑 𝑧𝑒𝑟𝑜 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒, 𝜔𝑖 
is the magnitude of ith outlier, 𝑣𝑖(𝐵) determines the dynamics of outliers for i=SLS. The 

series 𝑧𝑡 is a linear combination of the stationary series 𝑦𝑡 and the parametric function 𝐴𝑡. 
Hence, 𝑧𝑡 forms stationary process with roots lying outside the unit circle (Box and Jenkins, 

1970, section 3.2 and Chatfield, 2016, section 3.4) 
Asghar and Urooj (2017) investigated five types of outliers, i.e., additive outlier (AO), 
innovative outlier (IO), level shift (LS), transient change (TC) and seasonal level shift (SLS) 
but they did not examine the impact of SLS on point and interval forecast A brief overview 
of these five types of outliers is given as 
i) Additive Outlier (AO) is an outlier (external/exogenous change) which occurs at a 
particular time t0, affects one observation only. Its effects are independent of the models, but 

has serious effects on parameter estimates and forecasts. 𝜔𝐴  is the magnitude of AO, 

𝜈𝐴(𝐵)  determines the dynamic of outliers 𝜈𝐴(𝐵) =  1. 

ii) Innovative outlier (IO) is an internal but aberrant innovation affecting the observed 
time series for some time span after the occurrence date. The effects of the innovation outlier 

are less serious in estimation and inferences. 𝜔𝐼𝑂  is the magnitude of IO, 𝜈𝐼𝑂(𝐵)  

determines the dynamic effect of outliers as  𝜈𝐼𝑂(𝐵) =  
1

𝜋(𝐵)
. 

iii) Level shift (LS) is a permanent change in the time series. The level shift effect is 

large in stationary process as compared to non-stationary process. 𝜔𝐿𝑆 is the magnitude of 

LS, 𝜈𝐿𝑆(𝐵)  determines the dynamic of LS as 𝜈𝐿𝑆(𝐵) =   
1

(1−𝐵)
. 

iv) Transitory change (TC) is the level shifts which dies out exponentially. 𝜔𝑇𝐶 is the 

magnitude of TC, 𝜈𝑇𝐶(𝐵)  determines the dynamic impact of TC as 𝜈𝑇𝐶(𝐵) =  
1

(1−𝛿𝐵)
  where 

𝛿 is the decaying parameter determining the rate of gradual decline in impact of TC. 

                                                        
6 var (y)=𝜎2 [𝜔(𝐵)]2 
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v) Seasonal Level shift (SLS) is the interference which upsets only certain quarters or 
months of the years. It is the special kind of level shift which arises in SARIMA(p,d,q)(P,D,Q)s 

at some point T such that for 1≤ 𝑇 ≤ 𝑛, in time and re-occur regularly every year at same 

season say S and its effect carries up to subsequent seasons. 𝜔𝑆𝐿𝑆 is the magnitude of 

SLS, 𝜈𝑆𝐿𝑆(𝐵) =  
1

∇𝑠
−

1

𝑠∇
 determines the dynamic impact of SLS  𝜈𝑆𝐿𝑆(𝐵) =  

1

∇𝑠
−

1

𝑠∇
 𝑤ℎ𝑒𝑟𝑒 ∇= 1 − 𝐵  𝑎𝑛𝑑 ∇𝑠= (1 − 𝐵

𝑠) .  

For detection and adjustment of outliers, iterative procedure suggested by Kaiser & Maravall 
(2001) and revised by Asghar & Urooj (2017) is used which consists of three stages. In stage 
one, first step is to compute the maximum likelihood estimates (MLE) of the model 
parameters using an initial SARIMA(P, D, Q) model on actual observed series assuming that 
there are no outliers, then obtain the residuals. The observed series from eq (4) is re-written 
as 

𝑧𝑡 =  𝜓(𝐵)𝑎𝑡 + 𝜔𝑖𝑣𝑖(𝐵)𝐼𝑡
(𝑇), or 

𝜋(B) 𝑧𝑡 = 𝑎𝑡 + 𝜔𝑖𝑣𝑖(𝐵)𝐼𝑡
(𝑇), or 

  𝑍𝑡 = 𝜔𝑖𝑥𝑡 + 𝑢𝑡                                   (5) 

The estimates of outliers’ magnitude and effect along with their variances are obtained using 

MLE and are given by   𝜔�̂� =
∑ 𝑍𝑡
𝑛
𝑡=1 𝑥𝑡

∑ 𝑥𝑡
2𝑛

𝑡=1
  and variance as 𝑉𝑎𝑟(𝜔𝑖)̂ =

𝜎𝑢
2

∑ 𝑥𝑡
2𝑛

𝑡=1
 for i=AO, IO, LS, 

TC, SLS. In step two of stage one, compute test statistics for different outliers using the 
residuals. These test statistics are constructed using likelihood ratio for testing the existence 

of outlier at time point 𝑑 as 𝜆𝑖,𝑑   =  
�̂�𝑖,𝑑

√𝑉𝑎𝑟(𝜔𝑖)̂

 ; 𝑖 = AO, IO, LS, TC, SLS. Computing maximum 

of the test statistics and comparing { 𝜆𝐼𝑂,𝑚𝑎𝑥 , 𝜆𝐴𝑂,𝑚𝑎𝑥 , 𝜆𝑇𝐶,𝑚𝑎𝑥 , 𝜆𝐿𝑆,𝑚𝑎𝑥 , 𝜆𝑆𝐿𝑆,𝑚𝑎𝑥} with critical 

value c 7 , if  𝜆𝑖,𝑚𝑎𝑥 < 𝐶 , at pre-decided cut off points 𝐶 = {3, 3.5, 4},  then there is no 

significant outliers, and if 𝜆𝑖,𝑚𝑎𝑥 ≥ 𝑐 there is significant outlier. If no outliers are found then 

stop and conclude, otherwise, adjust the effect from the residuals as well as the observed 

series zt is adjusted at time 𝑡 =  𝜏1 to obtain the corrected yt via equation (5) using the 

estimated magnitude  𝜔�̂�  and the appropriate dynamic impact of outlier and repeat this 

procedure until no more outliers are found. In stage two run a multiple regression model for 
joint estimation of outlier’s effect using the residuals as an output variable and the first 
stage’s identified outliers as the input variables. Calculate the test statistics for probable 
outliers and if found significant, remove the outliers from the set of identified outliers and run 
again the estimation cycle of multiple regression until no outlier is found. Now obtain the 
adjusted series by removing the significant outlier effects then compute the MLE for model 
parameters using adjusted series and repeat the whole process for further iteration until the 
relative change of the residuals become negligible. In the final stage, run the intervention 
model with estimated parameters and significant outliers (for detail see Asghar & Urooj 
(2017) and Kaiser & Maravall (2001)). This intervention model is used for forecasting 
purpose.  
Estimating the initial ARIMA(p, d, q) model can lead to misidentifying level shifts as 
innovational outliers or cannot detect them at all (Darné & Charles, 2011). To better 

                                                        
7 These three values are selected based on simulation results of Chang (1982) and provided 

satisfactory results, also see Chang and Tiao (1983) and Tsay (1986). 
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determine whether the outliers can be considered as permanent or not, an outlier search will 
be conducted using the series in levels, i.e., from an ARIMA(p, 0, q) (Balke & Fomby 1991; 
Balke 1993).The proposed iterative procedure is less vulnerable to spurious and masking 
effects during outlier detection and allows to jointly estimate the model parameters and 
multiple outlier effects (Dagum & Bianconcini, 2010). The estimation of intervention model 
allows to verify if there are any insignificant lags to be removed from the model.   

2.1 Mathematical Exploration of Impact of SLS on Forecast 

We intend to explore the impact of SLS on forecast through various SARIMA models. This 
section investigates mathematically the impact of SLS on forecast through 
SARIMA(0,0,0)(1,0,0)4 and SARIMA(0,0,0)(0,0,1)4 model in the presence of SLS. The 
specification of model lags is via automatic selection process based on minimum AIC. The 
analysis comprises of model identification, parameter estimation, point forecasts and interval 
forecasts. We initiate by considering an outliers free time series 𝑦𝑡 then the contaminated 

series is considered and the forecast is evaluated by measuring the mean square of the h-
step ahead forecast error MSFE (h;k, 𝜔 ) and the relative increase in this mean square error 

that is due to SLS at any time T(I MSFE (h;k, 𝜔 )). 

2.2 Simulation Strategy 

We study the impact of SLS on point and interval forecast of various time series 
specifications by observing the behaviour of SARIMA(0,0,0)(1,0,0)4 and 
SARIMA(0,0,0)(0,0,1)4 model, respectively, under three different scenarios, namely series 
free of SLS, series affected by the presence of a SLS and series adjusted for SLS. Simulation 
experiment is run for the choice of parameter values Φ4 = {0.2,0.4, 0.6, 0.8) for SARIMA 

(0,0,0)(1,0,0)4 or SAR(1), as we shall call it now onwards, and Θ4 = {0.2,0.4, 0.6, 0.8) for 

SARIMA(0,0,0)(0,0,1)4 or SMA(1) model, as we shall call it now onwards. We have examined 
the impact of SLS of size 𝜔𝑆𝐿𝑆 = 5𝜎  on series of size 𝑛 = {50, 100} for 5000 iterations. 

We focus on the impact of SLS at different locations by examining the performance of the 
forecast in terms of forecast accuracy for point forecast using different measures of 
aggregate error namely Mean Error (ME), Root Mean Square Error (RMSE), Mean Absolute 
Error (MAE) and Mean Absolute Standard Error (MASE). For interval forecast we look at the 
length of the prediction intervals using data generating process of SARIMA, we generate 
three series, i.e., with SLS, without SLS, and adjusted for SLS, then estimate the model, and 
get parameter estimates, and their standard errors. 
Forecast accuracy/error is the difference between the actual values and the forecast value 

for a given time period 𝐸𝑡 = 𝑌𝑡 − 𝐹𝑡 , where E is the forecast error of given time, 𝑌𝑡  is the 

actual value and 𝐹𝑡 is the forecast value. Forecast accuracy is calculated using ME, MASE, 
RMSE, MAE for point and interval one step ahead forecast. Different measure of aggregate 
error used are: 

I. Mean Error (ME) calculated as 𝑀𝐸 =  
∑ 𝑒𝑡
𝑁
𝑡=1

𝑁
,  

II. Root Mean Square Error (RMSE) as RMSE = √
∑ 𝑒𝑡

2𝑁
𝑡=1

𝑁
,  

III. Mean Absolute Error (MAE) as 𝑀𝐴𝐸 =
∑ |𝑒𝑡|
𝑁
𝑡=1

𝑁
 and  

IV. Mean Absolute Scale Error (MASE) as 𝑀𝐴𝑆𝐸 = 

∑ |
𝑒𝑡

1
𝑁−𝑚 

∑ |𝑌𝑡−𝑌𝑡−𝑚|
𝑁
𝑡=𝑚+1

|𝑁
𝑡=1

𝑁
, Where 

m= seasonal period or 1 if non-seasonal. 
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2.3 Empirical Study 

The studies by Urooj (2016), Urooj & Asghar (2017), Asghar & Urooj (2017) and Urooj & 
Asghar (2020) examined the existence, impact and detection of AO, IO, LS, TC and SLS in 
time series data for various SARIMA(p,d,q)(P,D,Q)s

8 models also by collecting empirical 
evidence from time series data for Pakistan. Further, the influence of outliers is significant 
for small sample size and less robust statistics (Bollen & Jackman; 1985). However, these 
studies did not focus on the forecasting performance in the presence of outliers. The current 
study focuses on the forecasting of time series models in the presence of SLS.  
Lack of empirical literature for impact of outliers, especially of SLS on forecast in the case of 
Pakistan motivates us to empirically explore the impact on forecast in the presence of SLS 
in case of monthly time series data for Pakistan. Three monthly series were considered, 
namely Tax collection (2004 M1 to 2016 M6) collected by Federal Board of Revenue, Money 
in circulation (2002 M1 to 2016 M12) and Broad money (2006 M10 to 2016 M12). The data 
is taken from Federal Board of Revenue (FBR) annual reports, and International Financial 
Statistics (IFS). The assessment regarding outliers and structural breaks is conducted using 
Kaiser & Maravall (2001)’s suggested iterative procedure for multiple outlier detection and 
joint estimation was modified by Asghar & Urooj (2017) as discussed in earlier section. 

3. Impact of SLS on Forecasts 

Seasonal shift is a special kind of level shift which occurs in SARIMA(p, d, q)(P,D,Q)s at 

some point T for 1 ≤ 𝑇 ≤ 𝑛 in time and reoccurs regularly every year at the same season, 

say 𝑆𝑗  𝑗 = 0,1,2, …   for seasonal frequency of S and its effects caries up to ( 𝑠 − 1) 

subsequent seasons. We attempt to derive the resulting increase in the Mean Square Error 
of the L-step ahead forecast. This increase is due to two effects: (i) the carry over effect of 
outlier on the forecast and (ii) the bias in the estimates of the coefficients of SARIMA models. 
As noted by Pena (2001), the forecast uncertainty is due to three sources of variability 
amongst which one is model uncertainty including the impact of outliers as well. Suppose 

the outlier occurs at time point t = T such that 𝑛 = 𝑙𝑠 = 𝑇 + 𝑘  is the length of time series. 

Suppose we (the forecaster) do not observe the series 𝑦𝑡 directly as it is contaminated with 

outlier, namely SLS, and hence have ignored its adjustment in estimation of coefficients and 
calculation of forecast errors. We are now attempting to study the impact of SLS on forecast 
from the SARIMA models. 

3.1. Effects of SLS on the Forecast from SARIMA Model with Known 

Coefficient  

To better understand the impact of SLS on forecast we consider the model from (1) is outlier 
free series 

Φ(𝐵𝑠)𝜙(𝐵)(1 − 𝐵)(1 − 𝐵𝑠)𝑦𝑡 =  𝜃(𝐵)Θ(𝐵
𝑠)𝑎𝑡  

While observed series carrying the impact of outlier is given by, 

𝑧𝑡 = 𝑦𝑡 + 𝐴𝑡 , such that 

                                                        
8 Seasonal Autoregressive Moving Average (SARIMA (p, d, q)(P, D, Q)s ) Model, where s, p, d, 

q, P, D, Q are seasonal frequency order, non-seasonal and seasonal roots, order of integration 
and seasonal integration of the model as defined by Box and Jenkins (1976). AR(p), MA(q), 
SAR(P) and SMA(Q) are the special form models defined under SARIMA (p, d, q)(P, D, Q)s. 
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𝑧𝑡 = 𝑦𝑡 + 𝜔𝑆𝐿𝑆 𝑆(𝐵)𝐼𝑡(𝑇)        (6) 

where: 𝑆(𝐵) =  
𝑆

𝑠−1
[

1

1−𝐵𝑠
− 

1

𝑆(1−𝐵)
] = (

𝑆

𝑆−1
) (

1

1−𝐵𝑠
) −

1

(𝑆−1)(1−𝐵)
 

= (1 + 𝐵𝑠 + 𝐵2𝑠 +⋯) −
1

𝑆 − 1
(𝐵 + 𝐵2 + 𝐵3 +⋯ 𝐵𝑆+𝑟 … )   

𝑆(𝐵) = ∑ 𝐵𝑗𝑆 − 
1

𝑆−1
 ∑ ∑ 𝐵𝑖+𝑗𝑆𝑆−1

𝑖=0
𝑙𝑠−𝑇
𝑗=0

𝑙𝑠−𝑇
𝑗=0   

where 𝑙𝑠 = 𝑛 = 𝑇 + 𝑘 Hence equation (6) becomes: 

           𝑧𝑡 = 𝑦𝑡 + 𝜔𝑆𝐿𝑆  (∑ 𝐵𝑗𝑆 − 
1

𝑆−1
 ∑ ∑ 𝐵𝑖+𝑗𝑆𝑆−1

𝑖=0
𝑙𝑠−𝑇
𝑗=0

𝑙𝑠−𝑇
𝑗=0 ) 𝐼𝑡(𝑇)    (7) 

for 𝐼𝑡
𝑇 =

1      𝑖𝑓 𝑡 = 𝑇
0     𝑖𝑓 𝑡 ≠ 𝑇

 is the variable representing the presence/absence of outliers, 𝜔𝑆𝐿𝑆 is 

the effect of outlier. 
Let us assume that coefficients of SARIMA model are known and outlier at point T is ignored. 
The one-step ahead forecast when the outlier occurs at the last point observed, i.e., T=n. It 
was established under Chen and Liu (1993b) that the type of outlier would not be determined 
and it would be like additive outlier, but it is ignored. So, the forecast would be  

𝑧𝑛(1) = 𝜋1𝑧𝑛 + 𝜋2𝑧𝑛−1 +⋯ 

�̂�𝑇(1) = 𝜋1𝑧𝑇 + 𝜋2𝑧𝑇−1 +⋯ 

where: �̂�𝑇 is the 1-step ahead forecast at time T, 𝑧𝑡 is the observed data point with 𝜋𝑗 as 

weights 

�̂�𝑇(1) = 𝜋1(𝑦𝑇 + 𝜔𝑆𝐿𝑆) + 𝜋2𝑧𝑇−1 +⋯ 

Since 𝑧𝑇−1, 𝑧𝑇−2, …are already outlier free, so,  

�̂�𝑇(1) = 𝜋1𝑦𝑇 + 𝜋1𝜔𝑆𝐿𝑆 + 𝜋2𝑦𝑇−1 +⋯ 

�̂�𝑇(1) = 𝜋1�̂�𝑇(1) + 𝜋1𝜔𝑆𝐿𝑆          (8) 

With ∑ 𝜋𝑗
𝑘
𝑗=1 = 1 and the 1-step ahead forecast error is  𝑎𝑇+1 = 𝑧𝑇+1 − �̂�𝑇(1). Now for h-

step ahead minimum mean square error forecast made at time t=n=T is 

�̂�𝑇(ℎ) = 𝜋1
(ℎ)𝑧𝑇 + 𝜋2

(ℎ)𝑧𝑇−1 +⋯ 

where: 𝜋𝑗
(ℎ)
= 𝜋𝑗+𝑙−1 + ∑ 𝜋ℎ𝜋𝑗

(𝑙<ℎ)
   𝑗 = 1,2,… 𝑙−1

ℎ=1  and 𝜋𝑗
(1)
= 𝜋𝑗. 

Therefore, the h-step ahead forecasts are also the linear combinations of the past 
observations. Once again, we can write  

�̂�𝑇(ℎ) = 𝜋1
(ℎ)(𝑦𝑇 + 𝜔𝑆𝐿𝑆) + 𝜋2

(ℎ)𝑧𝑇−1 +⋯  

Since 𝑧𝑇−1, 𝑧𝑇−2, … are already outlier free, so, 

�̂�𝑇(1) = 𝜋1
(ℎ)�̂�𝑇(1) + 𝜋1

(ℎ)𝜔𝑆𝐿𝑆  …………..   (9) 

All the forecasts made at future time from the time origin T will be biased because of the 

effect of outlier at time T. The magnitude of bias will depend upon 𝜋1
(ℎ)and the magnitude 

𝜔𝑆𝐿𝑆. 
The h-step ahead forecast made at time origin 𝑙𝑠 = 𝑛 = 𝑇 + 𝑘 using 𝑧𝑇 is 

�̂�𝑛(ℎ) = 𝜋1
(ℎ)𝑧𝑛 + 𝜋2

(ℎ)𝑧𝑛−1 +⋯ 

�̂�𝑇+𝑘(ℎ) = 𝜋1
(ℎ)𝑧𝑇+𝑘 + 𝜋2

(ℎ)𝑧𝑇+𝑘−1 +⋯+ 𝜋𝑘+1
(ℎ)𝑧𝑇 +⋯ ……..  (10) 
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In order to get the exact impact of SLS, for 𝑙𝑠 = 𝑛 = 𝑇 + 𝑘, let the SLS affects in a seasonal 

manner at time point 𝑇 = 𝑙𝑠/2, then equation (10) becomes: 

�̂�𝑇+𝑘(ℎ) = 𝜋1
(ℎ)(𝑦𝑇+𝑘 + 𝜔𝑆𝐿𝑆 𝑆(𝐵)𝐼𝑇+𝑘(𝑇)) + 𝜋2

(ℎ)(𝑦𝑇+𝑘−1 + 𝜔𝑆𝐿𝑆 𝑆(𝐵)𝐼𝑇+𝑘−1(𝑇)) + ⋯+

𝜋𝑘+1
(ℎ)(𝑦𝑇 + 𝜔𝑆𝐿𝑆 ) + 𝜋𝑘+2

(ℎ)𝑦𝑇−1 +⋯,  

where 𝑆(𝐵) = ∑ 𝐵𝑗𝑆 − 
1

𝑆−1
 ∑ ∑ 𝐵𝑖+𝑗𝑆𝑆−1

𝑖=0
𝑙𝑠−𝑇
𝑗=0

𝑙𝑠−𝑇
𝑗=0  for 𝑙𝑠 = 𝑛 = 𝑇 + 𝑘. 

Hence, �̂�𝑇+𝑘(ℎ) = �̂�𝑇+𝑘 + (𝜋1
(ℎ)𝜔𝑆𝐿𝑆 + 𝜋2

(ℎ) (
−1

𝑠−1
)𝜔𝑆𝐿𝑆 + 𝜋3

(ℎ) (
−1

𝑠−1
)𝜔𝑆𝐿𝑆 +⋯+ 𝜋𝑘+1

(ℎ)𝜔𝑆𝐿𝑆) 

�̂�𝑇+𝑘(ℎ) = �̂�𝑇+𝑘 + (∑ 𝜋1+𝑗𝑠
(ℎ)𝑘

𝑗=0 𝜔𝑆𝐿𝑆 + (
−1

𝑠−1
)∑ ∑ 𝜋𝑗𝑠−𝑖

(ℎ)𝑠−1
𝑖=0

𝑘
𝑗=1 𝜔𝑆𝐿𝑆) ………   (11) 

The forecast made at some future time origin will also be contaminated by the outlier, i.e., 
SLS at time T. Moreover, the effect of SLS when forecasting from any origin away from T, 
i.e., T+k will contaminate every lead time forecast. 
If the effect of SLS is not corrected for, then subsequently forecast may be badly biased, 
therefore, it is important to develop methods to adjust the time series when affected by SLS. 
If SLS has occurred at time 𝑇; 𝑘 period prior to forecast origin we can write the forecast error 

as: 

𝑧𝑇+𝑘+ℎ − �̂�𝑇+𝑘(ℎ) = 𝑧𝑇+𝑘+ℎ − �̂�𝑇+𝑘(ℎ)

=  𝑦𝑇+𝑘+ℎ − �̂�𝑇+𝑘(ℎ) + 𝜔𝑆𝐿𝑆 [∑𝜋1+𝑗𝑠
𝑘

𝑘

𝑗=0

 − (
1

𝑠 − 1
)∑∑𝜋𝑗𝑠−𝑖

𝑠−1

𝑖=0

𝑘

𝑗=1

] 

𝑧𝑇+𝑘+ℎ − �̂�𝑇+𝑘(ℎ) = 𝑒𝑇+𝑘
(ℎ) + 𝜔𝑆𝐿𝑆 [∑ 𝜋1+𝑗𝑠

ℎ𝑘
𝑗=0  − (

1

𝑠−1
)∑ ∑ 𝜋𝑗𝑠−𝑖

𝑠−1
𝑖=0

𝑘
𝑗=1 ]     (12) 

where: 𝑒𝑇+𝑘
(ℎ) = 𝑎𝑇+𝑘+ℎ  +  𝜓1𝑎𝑇+𝑘+ℎ−1 . . . . . . . + 𝜓ℎ−1𝑎𝑇+𝑘+ℎ−1 with 𝜓𝑗  ; 𝑗 =

1,2,3, … being the coefficients on the basis of eq (2).The mean square of the h-step ahead 

forecast error in equation (11) is as follows: 

MSFE (h;k, 𝜔 )=   𝜎𝑎
2  ∑ 𝜓𝑗

2ℎ−1
𝑗=0 + 𝜔𝑆𝐿𝑆

2  [∑ 𝜋1+𝑗𝑠
(ℎ)𝑘

𝑗=0  − (
1

𝑠−1
)∑ ∑ 𝜋𝑗𝑠−𝑖

(ℎ)𝑠−1
𝑖=0

𝑘
𝑗=1 ]

2

… (13) 

And the relative increase in this mean square error that is due to SLS at any time T is given 
by: 

IMSFE (h;k, 𝜔 ) =  (
𝜔

𝜎
)
2

 
1

∑ 𝜓𝑗
2ℎ−1

𝑗=0

 [∑ 𝜋1+𝑗𝑠
(ℎ)𝑘

𝑗=0  − (
1

𝑠−1
)∑ ∑ 𝜋𝑗𝑠−𝑖

(ℎ)𝑠−1
𝑖=0

𝑘
𝑗=1 ]

2

………  (14) 

To achieve better understanding, we will apply it to certain stochastic processes i-e SAR(1) 
and SMA(1).  

The SAR(1) or SARIMA (0,0,0)(1,0,0)s model is given by 

𝑦𝑡  − Φ𝑦𝑡−𝑠  = 𝑎𝑡   Or (1 − Φ𝐵𝑠)y𝑡 = 𝑎𝑡  

We may rewrite this model as π(B)y𝑡 = 𝑎𝑡 such that π(B) =  𝜋0 − 𝜋1 −⋯  

where: 𝜋0  = 1, 𝜋1 = ⋯ = 𝜋𝑠−1 = 0 = 𝜋𝑠+1 = 𝜋𝑠+2 = ⋯ 
and 𝜋𝑠 = Φ so 𝜋𝑗

(1)
 =  𝜋𝑗 , ∀𝑗 ≠ 𝑠   𝜋𝑗

(ℎ)
 =  0  ∀𝑗 ≠ 𝑠  𝜋𝑠

(1)
 =  Φ and 𝜋𝑠

(ℎ)
 =  𝜋𝑠

ℎ−𝑠+1 =

Φℎ−𝑠+1 𝑤ℎ𝑒𝑟𝑒 ℎ 𝑖𝑠 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 𝑠. 

For 𝜓(𝐵) =
1

1−Φ𝐵𝑠
= 1 +Φ𝐵𝑠 + (Φ𝐵𝑠)2 + (Φ𝐵𝑠)3 +⋯ 

Such that Ψ0=1, Ψ𝑠 = Φ,Ψ2𝑠 = Φ
2, … , 𝑚𝑜𝑟𝑒𝑜𝑣𝑒𝑟, Ψ1 = Ψ2 = ⋯ = Ψ𝑠−1 = 0 = Ψ𝑠+1 =

⋯ 
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Hence    Ψ𝑗 = Φ
𝑗/𝑠; 𝑗 = 0, 𝑠, 2𝑠, 3𝑠 …. 

Now,     
1

∑ 𝜓𝑗
2ℎ−1

𝑗=0

=
1

1+Φ2+Φ4+⋯+Φ2(ℎ−1)
=

1−Φ2

1−Φ2ℎ
 

And  

∑ 𝜋1+𝑗𝑠
ℎ𝑘

𝑗=0 = 0,∑ ∑ 𝜋𝑗𝑠−𝑖
𝑠−1
𝑖=0

𝑘
𝑗=1 = 𝜋𝑠

(ℎ)
 = Φℎ−𝑠+1. 

Finally, IMSFE (h; k, 𝜔 ) =  (
𝜔

𝜎
)
2

 (
1−Φ2

1−Φ2ℎ
 ) [ − (

1

𝑠−1
)Φℎ−𝑠+1]

2

 

IMSFE (h;k, 𝜔 ) =  (
𝜔

𝜎
)
2

 (
1

𝑠−1
)
2

Φ2(ℎ−𝑠+1) (
1−Φ2

1−Φ2ℎ
 ) ……….     (15) 

For SMA(1) or SARIMA (0,0,0)(0,0,1)s model 𝑦𝑡  = 𝑎𝑡 − Θ𝑎𝑡−𝑠 or y𝑡 = (1 − Θ𝐵
𝑠)𝑎𝑡  

We may rewrite this model as π(B)y𝑡 = 𝑎𝑡 such that π(B) =
1

1−Θ𝐵𝑠
= 1 + Θ𝐵𝑠 + (Θ𝐵𝑠)2 +

(Θ𝐵𝑠)3 +⋯  

where: 𝜋0  = 1, 𝜋1 = ⋯ = 𝜋𝑠−1 = 0 = 𝜋𝑠+1 = 𝜋𝑠+2 = ⋯ 

And 𝜋𝑠 = Θ, 𝜋2𝑠 = Θ
2𝑠, 𝜋3𝑠 = Θ

3𝑠, … 

hence, π𝑗 = Θ
𝑗

𝑠; 𝑗 = 0, 𝑠, 2𝑠, 3𝑠 so 𝜋𝑗
(1)  =  𝜋𝑗 , ∀𝑗 ≠ 𝑠 , 𝜋𝑗

(ℎ)  =  0, 𝑗 = 1, 2, 3… 𝑎𝑛𝑑 𝜋𝑗
(ℎ)  =

 Θ
𝑗

𝑠; 𝑗 = 0, 𝑠, 2𝑠, 3𝑠 … , 𝜋𝑠
(1)  =  Φ,  

𝜋𝑠
(ℎ)  =  𝜋𝑠

ℎ−𝑠+1 = Θℎ−𝑠+1 , 𝜋2𝑠
(ℎ)  =  Θℎ−2𝑠+1 , 𝜋3𝑠

(ℎ)  =  Θℎ−3𝑠+1  … 

𝑎𝑛𝑑 𝜋𝑠+1
(ℎ)  =  Θℎ+𝑠 , 𝜋2𝑠+1

(ℎ)  =  Θℎ±2𝑠 , 𝜋3𝑠+1
(ℎ)  =  Θℎ+3𝑠, 𝑤ℎ𝑒𝑟𝑒 ℎ 𝑖𝑠 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 𝑠  

For 𝜓(𝐵) = 1 − Θ𝐵𝑠 , such that Ψ0=1, Ψ𝑠 = 0,… , 𝑚𝑜𝑟𝑒𝑜𝑣𝑒𝑟, Ψ1 = Ψ2 = ⋯ = Ψ𝑠−1 =
0 = Ψ𝑠+1 = ⋯. 

Now,  
1

∑ 𝜓𝑗
2ℎ−1

𝑗=0

=
1

Θ2
 and ∑ 𝜋1+𝑗𝑠

ℎ𝑘
𝑗=0 = ∑ Θℎ+𝑗𝑠𝑘

𝑗=0 , ∑ ∑ 𝜋𝑗𝑠−𝑖
𝑠−1
𝑖=0

𝑘
𝑗=1 = ∑ Θ𝑗𝑠𝑘

𝑗=1  . 

Finally, the relative increase in mean square error due to SLS in SMA(1) model is when h is 
multiple of S 

IMSFE (h; k, 𝜔 ) =  (
𝜔

𝜎
)
2

 (
1

Θ2
 )  [ ∑ Θℎ+𝑗𝑠𝑘

𝑗=0 − (
1

𝑠−1
)∑ Θ𝑗𝑠𝑘

𝑗=1 ]
2

  

IMSFE (h; k, 𝜔 ) =  (
𝜔

𝜎
)
2

  [ ∑ Θℎ+𝑗𝑠−1𝑘
𝑗=0 − (

1

𝑠−1
)∑ Θ𝑗𝑠−1𝑘

𝑗=1 ]
2

    (16) 

When h is not a multiple of S 

IMSFE (h;k, 𝜔 ) =  (
𝜔

𝜎
)
2

 (
1

Θ2
 ) [ − ( 1

𝑠−1
)∑ Θ𝑗𝑠𝑘

𝑗=1 ]
2
 

IMSFE (h;k, 𝜔 ) =  (
𝜔

𝜎
)
2

(
1

𝑠−1
)
2
∑ Θ2(𝑗𝑠−1)𝑘
𝑗=1   ……………………….. (17) 

Using the results in equation (14), (15) and (16), we can conclude that, in the case of SAR 
(1), the SLS produces an identical relative increase in the mean square of the h-step ahead 
forecast error for any value of k, i.e., it is invariant regardless of whether the outlier occurs 
at the forecast origin or at any other preceding time period. However, in the case of SMA(1) 
model; the longer the time between the time of SLS and the forecast origin (k), the lower 
would be the inaccuracy caused in point forecasts. In case  the forecast lead time (h) is a 
multiple of S; there is no impact of h on the forecast inaccuracy while for otherwise values 
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of h, the greater the forecast lead time is; the smaller will be the increase in forecast error. 
Finally, it is noted that the impact of SLS on forecasts depends upon the model parameters 
in both models. 

3.2. SLS Impact on Point and Interval Forecasts under Estimated SARIMA 

Model Coefficients   

In the last section, we explore the impact of SLS on point forecasts obtained from SARIMA 
models when their parameters are known. But this situation is generally not true. It is 
observed by Asghar and Urooj (2017), Urooj (2016; unpublished PhD thesis) that SLS 
affects the parameter estimates resulting in bias in the estimates produced. Hence, ignoring 
SLS will have exacerbated effect on point forecast and prediction intervals.  
Using the basic assumption about the error term for SAR (1)s for s=12 model  

(i)  𝐸(𝑎𝑡) = 0,  

(ii) 𝐸(𝑎2𝑡) = 𝜎𝑎
2,  

(iii) 𝐸(𝑎𝑡𝑎𝑡−𝑘) = 0; 𝑡 ≠ 𝑠,  

(iv) 𝐸(𝑦𝑡𝑎𝑡) = 0.   

For the model 𝑦𝑡 = Φ𝑦𝑡−𝑠 + 𝑎𝑡  or 𝑦𝑡 = Φ𝑦𝑡−12 + 𝑎𝑡  and the OLS estimator for the 

parameter Φ from the uncontaminated series is Φ̂ =
∑ 𝑦𝑡𝑦𝑡−𝑠
𝑛
𝑡=𝑠+1

∑ 𝑦𝑡
2𝑛

𝑠+1
 and for the series from 

eq(4) 𝑧𝑡 = 𝑦𝑡 +𝜔𝑆𝐿𝑆  𝑆(𝐵)𝐼𝑡(𝑇)  it is given by Φ̂ =
∑ 𝑧𝑡𝑧𝑡−𝑠
𝑛
𝑡=𝑠+1

∑ 𝑧𝑡
2𝑛

𝑠+1
 or Φ̂ =

∑ (𝑦𝑡+𝜔𝑆𝐿𝑆 𝑆(𝐵)𝐼𝑡(𝑇))(𝑦𝑡−𝑠+𝜔𝑆𝐿𝑆 𝑆(𝐵)𝐼𝑡−𝑠(𝑇))
𝑛
𝑡=𝑠+1

∑ 𝑧𝑡
2𝑛

𝑠+1
  

Approximation to 𝐸(Φ̂) for SAR (1) processin the presence of SLS is given by 𝐸(Φ̂) =
Φ+𝐴

1+𝐴
  

where: A=
2𝜔∑ 𝑦𝑡−𝑠𝜐𝑡

𝑛
𝑠+1

∑ 𝑦𝑡−𝑠2
𝑛
𝑠+1

.  With the IMFSE for SAR (1) or SARIMA (0,0,0)(1,0,0)s model 

IMSFE (h; k, 𝜔 ) =  (
𝜔

𝜎
)
2

 (
1

𝑠−1
)
2

(
(Φ+A)2(ℎ−𝑠+1)(1−Φ+2A)

(1+𝐴)2(2−𝑠)((1+𝐴)2ℎ−(Φ+A)2ℎ)
 ) ……………  (18) 

The second quantity in the numerator of the third term represents the effect on parameter 
estimates due to SLS. This effect forms a carry-over impact due to the nature of outlier. In 
order to learn more about the impact of SLS, in our study for SAR (1) and SMA (1) process, 

we replace the parameter estimates Φ̂ and Θ̂ by their biased expected values in equation 
(15) and (16) respectively. These increases are similar to the ones which are obtained under 
the assumption that the parameters are known. This is done via simulations and is discussed 
in detail in the next section. 

4. Simulation Analysis 

The R package will be used with different libraries, especially TSA, forecast, seasonal, etc., 
for simulation study in CRAN-R codes. In the first step, we used the data generating process 
of SARIMA, generate three series, with SLS, without SLS, and adjusted for SLS, in the 
second step we estimate three models, respectively, and will record each model parameter 
estimate, and standard error. Further, in the third step, forecast error and one step ahead 
forecast interval is recoded for each model using 5000 iterations on SARIMA (0,0,0)(1,0,0)4 
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and (0,0,0)(0,0,1)4  models and results are compared with, without SLS and adjusted for 
SLS series in terms of model estimation and diagnostics, one step ahead forecast and 
interval forecasts and a number of forecast error measures.  

4.1. Impact of SLS on Forecast Accuracy 

The impact of SLS is examined for two cases, namely SAR (1) and SMA (1). We observe 

that the existence of 𝜔𝑆𝐿𝑆 = 5𝜎   causes substantial bias in the estimation of model 

parameters. We initially estimate the SARIMA (0,0,0)(1,0,0)4 for Φ4 = {0.2,0.4, 0.6, 0.8) 
and SARIMA(0,0,0)(0,0,1)4 for Θ4 = {0.2,0.4, 0.6, 0.8) model with SLS at time T and 

observe the impact of SLS on forecast by calculating one step ahead forecast for 4 quarters. 
We calculate several statistics using the simulated sampling distribution of estimators. These 
include the parameter estimates, their sampling distributions and standard errors, root mean 
square errors, mean absolute errors, autocorrelation function and mean absolute square 
error are calculated.  

4.1.1. The SAR (1) Model   

We observed that series with SLS of magnitude  𝜔𝑆𝐿𝑆 = 5𝜎  caused biased in sampling 

distribution of Φ̂4.  𝐸(Φ4̂) remain between [0.189, 0.768] in case of series free of outlier 

and between [0.880, 0.924] series with outlier. However, when adjusted the series for outlier 

𝐸(Φ4̂) remain between [0.5508, 0.825]. The sampling distribution of Φ̂4 series with SLS is 

33 % to 17 % high compared to the sampling distribution of Φ̂4 the series adjusted for SLS. 

However, in the case of series free of SLS the sampling distribution of Φ̂4are approximately 

unbiased. For all values SLS cause bias which reduce through adjustment of SLS.  

For the series with SLS the sampling distribution of Φ̂4  yield high 𝐸(𝑆�̂�) , 

𝐸(𝑅𝑀𝑆�̂�) , 𝐸(𝑀𝐴�̂�), 𝐸(𝐴𝐶�̂�) and 𝐸(𝑀𝐴𝑆�̂�).  While series adjusted for SLS it become 

minimum. However, the series without SLS have 

minimum 𝐸(𝑆�̂�), 𝐸(𝑅𝑀𝑆�̂�) , 𝐸(𝑀𝐴�̂�), 𝐸(𝐴𝐶�̂�) and 𝐸(𝑀𝐴𝑆�̂�) compared to the series with 

SLS and adjusted for SLS. The sampling distribution of Φ̂4 series with SLS have 𝐸(𝑆�̂�)  

5 % high compared to the series adjusted for SLS. Similarly, 𝐸(𝑅𝑀𝑆�̂�)9 is 12% to 23%. 

And 𝐸(𝑀𝐴�̂�)10 is 13% to 5%, high. The sampling distribution of Φ̂4 series with SLS have 

𝐸(𝐴𝐶�̂�)11  is approximately the same and negative, but when series adjusted for SLS, the 

ACF of Φ4  values increase and become positive. Similarly, 𝐸(𝑀𝐴𝑆�̂�)12 is minimum in 

case of with outlier series while in case of no SLS it is relatively greater and series ‘adjusted 
for SLS’ have high values (see Table 1). 

  

                                                        
9 Mean value of Root mean square error (RMSE). 
10 The average value of Mean Absolute Error (MAE). 
11 Mean value of Auto Correlation Function. 
12 Mean value of Mean Absolute Scale Error. 
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Table 1. Sampling Distribution of SAR-Hat ∅�̂� and Forecast Accuracy 

n=50 ,    W=5sigma,     cv=3.5           BP= 7 
Series with SLS 

SAR1 Coeff SE ME RMSE MAE ACF MASE 
∅=0.2 0.880 0.088 0.0243 1.317 1.021 -0.015 0.287 

∅=0.4 0.890 0.082 0.0247 1.238 0.956 -0.012 0.265 

∅=0.6 0.908 0.077 0.0518 1.149 0.912 0.017 0.244 

∅=0.8 0.924 0.073 0.0249 1.120 0.858 -0.002 0.221 

Series Adjusted for SLS 

SAR1 Coeff SE ME RMSE MAE ACF MASE 
∅=0.2 0.5508 0.081 -0.009 1.150 0.919 0.0342 0.572 

∅=0.4 0.6412 0.077 -0.0122 1.099 0.878 0.0323 0.528 

∅=0.6 0.7349 0.074 -0.0179 1.045 0.835 0.0135 0.463 

∅=0.8 0.825 0.072 -0.0187 1.032 0.821 0.0338 0.384 

Series without SLS 

SAR1 Coeff SE ME RMSE MAE ACF MASE 
∅=0.2 0.189 0.0685 1.1E-06 0.983 0.778 -0.005 0.689 

∅=0.4 0.381 0.0687 5.5E-06 0.983 0.779 -0.006 0.646 

∅=0.6 0.574 0.0686 3.6E-05 0.984 0.780 -0.004 0.569 

∅=0.8 0.768 0.0685 1.0E-04 0.984 0.781 -0.004 0.437 

Note: n* is the number of samples have four quarter so total observation 50*4. C.v* is the critical 
value for detecting of SLS. BP* is the break point where SLS occur. All measures have mean 
value in the table getting from 5000 number of iterations. 

4.1.2 The SMA (1) Model   

We observed that series with SLS of magnitude 𝜔𝑆𝐿𝑆 = 5𝜎   caused bias in sampling 

distribution of Θ̂4. 𝐸(Θ̂4) value is between [0.194, 0.797] in case of series free of outlier and 

is between [0.6912, 0.929] series with outlier, and falls between [0.375, 0.957] when 

adjusted for outlier. The sampling distribution of Θ̂4 series with SLS is 25 % to 17 % high 

compared to the sampling distribution of Θ̂4 the series adjusted for SLS. However, in the 

case of series free of SLS the sampling distribution of Θ̂4 are approximately unbiased. For 

all values SLS cause bias which reduce through adjustment of SLS.  

For the series with SLS the sampling distribution of Θ̂4  yield high 𝐸(𝑺�̂�) , 

𝐸(𝑅𝑀𝑆�̂�) ,𝐸(𝑀𝐴�̂�), 𝐸(𝐴𝐶�̂�) and 𝐸(𝑀𝐴𝑆�̂�), but it becomes very small when adjusted for 

SLS. However, the series without SLS have minimum  𝐸(𝑆�̂�) , 𝐸(𝑅𝑀𝑆�̂�) , 𝐸(𝑀𝐴�̂�) , 

𝐸(𝐴𝐶�̂�)  and 𝐸(𝑀𝐴𝑆�̂�) compared to the series with SLS and adjusted for SLS. The 

sampling distribution of Θ̂4 series with SLS have 𝐸(𝑆�̂�)  5 % high as compared to the 

series adjusted for SLS. Similarly, 𝐸(𝑅𝑀𝑆�̂�) is 55 % to 75 % and 𝐸(𝑀𝐴�̂�)  is 58 % to 47 

% high. The sampling distribution of Θ̂4 ‘series with SLS’ have 𝐸(𝐴𝐶�̂�)  is higher than its 

band 0.05 line, but when ‘series adjusted for SLS’ the ACF of Θ̂4 values become smaller 

and become below band line 0.05 its first lag. Similarly, 𝐸(𝑀𝐴𝑆�̂�) is minimum in case of 

‘with outlier series’ while in case of ‘no SLS’ series and ‘adjusted for SLS’ series have high 
values (see Table A1 in Appendix13).  

                                                        
13 The tables in Appendix are available online. 
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4.2 Impact of SLS on Forecast for Different Sample Sizes  

We generate two series of sample size 50 and 100 from data generating process (DGP) 

following 2 cases; firstly for SAR (1) with Φ4 values [0.2, 0.4, 0.6, and 0.8] and secondly for 

SMA (1) with Θ̂4 values as [0.2, 0.4, 0.6, 0.8]. Forecasting performance in both models for 

the two sample sizes are observed for ‘with SLS’ series and series ‘adjusted for SLS’ series.  
Results are compared for observing the SLS impact in association with difference of sample 
size. 

4.2.1 Case of SAR (1)   

From the result for SAR (1) model we have observed in Table 3 that SLS of magnitude 5σ 
affecting series with two different sample sizes do not affect the estimated coefficient in the 
SAR(1) model . Similar behaviour is observed for series ‘adjusted for SLS’. Impact of sample 
size on forecast accuracy is not significant in SAR (1) model. We conclude that in series with 

small sample sizes, the large sized SLS causes upward bias in the sampling distribution Φ̂4, 
while SLS adjustment reduces the bias in both sample sizes in the same way. 

4.2.2 Case of SMA (1)  

For the case of SMA(1), the simulation results in Table 4 show that with an increase in 
sample size, there is no  change in coefficient values, i.e., coefficient estimates remain 
biased and approximately same at two sample sizes, i.e., n=50 and n=100. Measure of 
forecast accuracy remains the same and constant. So, we conclude that at all sample sizes 

large SLS causes similar upward bias in the sampling distribution Θ4̂ and similar effect on 

forecast accuracy measures, except for the SE, which decreases due to increase in sample 
size (see Table A2 and Table A3 in the Appendix). 

4.3 Impact of Various Locations of SLS on Forecast Accuracy 

In this section, simulation experiment is used to identify the impact of SLS occurring at 
different locations in SAR (1) and SMA (1) models, respectively. 

4.3.1 Case of SAR (1) Model  

From the results we observed that bias of sampling distribution Φ̂4  is high when ‘SLS occurs 

at start’ of the series, a very small reduction in bias is noticed when ‘outlier occurs at the 
middle’ of the series, while bias becomes minimum in the case ‘SLS occur at near the 
forecast origin’. The model diagnostic measures like SE and ME are approximately the same 
for all three cases. Minor changes in RMSE and MASE while no changes in ACF and MASE 
are observed due to different outlier location. To conclude, the location of the outlier have 
no effect on the forecast accuracy measure in the case of SAR (1) model (see Table A4 in 
the Appendix). 

4.3.2 Case of SMA (1) 

From the results listed in Table 2 we observe that bias of sampling distribution Θ̂4 is high 
when ‘SLS occurs at start’ of the series, a very small reduction in bias is noticed when ‘outlier 
occurs at the middle’ of the series, while bias becomes minimum in the case ‘SLS occur at 
near the forecast origin’. There are minor changes in model diagnostic measures like SE 
and ME due to different location of outliers. RMSE major changes is noticed due to different 
outlier location such as SLS near forecast origin leads to approximately 50 % less RMSE 
than when ‘SLS occur at start of the series’ in the SMA (1) model. Similarly, MAE value in 
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the case of ‘SLS at the beginning of the series’, approximately 61 % to 40 % high in case of 
‘outlier near forecast origin’. In case of ACF and MASE no changes are noticed due to outlier 
location. To conclude, the location of the outlier has effect on the forecast accuracy measure 
in the case of SMA (1) model: SLS occurring at the start of the series have more effect on 
forecast accuracy measure, while less effect on forecast measure is noticed in case of SLS 
occurring at the end of the series (see Table 2). 

Table 2. SMA-Hat 𝛉�̂� , Forecast Accuracy, with Different Location of SLS 

n=50 , W=5sigma,3.5 BP=7 

SMA Coeff SE ME RMSE MAE ACF MASE 

0.1 0.660 0.128 0.023 2.053 1.618 -0.204 0.456 

0.3 0.722 0.122 0.023 1.969 1.550 -0.205 0.276 

0.5 0.791 0.116 0.024 1.887 1.484 -0.204 0.256 

0.7 0.870 0.110 0.024 1.815 1.424 -0.199 0.234 

0.9 0.985 0.104 0.021 1.736 1.357 -0.191 0.204 

n=50 , W=5sigma,3.5 BP=25 

SMA Coeff SE ME RMSE MAE ACF MASE 

0.1 0.590 0.105 0.014 1.757 1.336 -0.180 0.529 

0.3 0.662 0.101 0.014 1.682 1.277 -0.179 0.276 

0.5 0.740 0.096 0.014 1.614 1.221 -0.176 0.256 

0.7 0.824 0.093 0.013 1.561 1.179 -0.169 0.234 

0.9 0.956 0.088 0.010 1.492 1.121 -0.159 0.204 

n=50 , W=5sigma,3.5 BP=38 

SMA Coeff SE ME RMSE MAE ACF MASE 

0.1 0.487 0.088 0.0159 1.477 1.098 -0.142 0.609 

0.3 0.576 0.084 0.0155 1.419 1.055 -0.137 0.276 

0.5 0.672 0.082 0.0159 1.369 1.017 -0.129 0.256 

0.7 0.780 0.080 0.0145 1.332 0.990 -0.118 0.234 

0.9 1.018 0.073 0.0119 1.231 0.911 -0.105 0.204 

Note: n* is the number of samples have four quarter so total observation 50*4, And 100*4. C.v* is 
the critical value for detecting of SLS. BP* is the break point where SLS occur. All measures have 
mean value in the table getting from 5000 number of iterations. 

4.4 Impact of SLS on Prediction Interval  

For the prediction interval of SAR (1) and SMA (1) model, respectively, series of sample size 
50 and 100 are generated under SAR (1) with Φ4 values [0.2, 0.4, 0.6, and 0.8] and SMA 

(1) model with Θ̂4 values as [0.2, 0.4, 0.6, 0.8] for the two cases, i.e., with SLS and without 
SLS. Then, one step ahead forecast for both cases is calculated and its 95% prediction 
interval (predict  ± 2*SD). The processes are iterated 5000 times, then the results are 

compared for all situations at different sample size. 



Institute for Economic Forecasting 

 Romanian Journal of Economic Forecasting – XXVI (1) 2023 
122 

4.4.1 Case of SAR (1) and SMA (1) Models 

We have observed that for the SLS occurring in the first quarter of series, the width of the 
prediction interval is large followed by the prediction interval of other quarters. While series 
have no SLS the width of the prediction is more precise and the width is almost the same for 
every quarter. From the results, we conclude that SLS of magnitude 5σ is very sensitive to 
prediction interval at all values of SAR (1), SMA (1) parameters.  
The prediction interval in case of SLS in SAR(1) model results in forecast interval for the first 
quarter as [6.9808, 1.8302] followed by the other quarters as [2.5892, -2.5613] ,[ 2.6101, -
2.5403], [ 2.6101, -2.5679 ], respectively, while in case of without SLS they are [1.9574, -
1.9514], [1.9546, -1.9542] , [1.9555, -1.9532], [1.9555, -1.9558], respectively. Similarly, in 
case of SMA (1) model with small parameter values, the prediction interval in case of SLS 
the forecast intervals for the four quarters are [5.9069, -2.4936], [4.3284, -3.4310] ,[ 4.3335, 
-3.4258], [4.5791, -3.3671], respectively, while in the case of without SLS they are [1.9543, 
-1.9486], [1.9518, -1.9511] , [1.9520, -1.9508], [1.9520, -1.9530]. Hence, prediction interval 
at all parameter values for SAR(1) as well as for SMA (1) model is very sensitive to SLS. 
To conclude, series that have SLS is in the first quarter of the series than no SLS, will not 
only affect the prediction interval of the first quarter, but will also affect the prediction interval 
of other quarters, or in other words SLS of magnitude 5σ not only affects quarter where it 
occurs but its effect is also on other quarters of the series, which is confirmed through 
prediction interval. Comparing the results of prediction interval of SAR (1) and SMA (1) 
models, results show that the prediction interval of SMA (1) model is more sensitive to SLS 
as compared to SAR (1) model. This is also confirmed by forecast error measures, which 
are more sensitive in the SMA (1) model than in the SAR(1) model (see Tables A5 and A6 
in the Appendix).  

5. Empirical Analysis 

This section contains the empirical study conducted for Pakistan using variables measured 
on monthly frequency, three monthly measured time series, namely Tax collection (2004 M1 
to 2016 M6) collected by Federal Board of Revenue, Money in circulation (2002 M1 to 2016 
M12) and Broad money (2006 M10 to 2016 M12). The data is taken from Federal Board of 
Revenue (FBR) annual reports, and International Financial Statistics (IFS). For the 
identification of outlier type, size and time of occurrence we have run the outlier detection 
and adjustment procedure suggested by Kaiser and Maravall (2001) modified by Asghar and 
Urooj (2017) with five possible types of outliers, i.e., AO, IO, LS, TC and SLS.  

5.1 Graphical Analysis of Raw Series  

This section contains graphical analysis of 3 monthly measured time series, i.e., Federal 
Board of Revenue (FBR) tax collection, broad money, and money circulation. The graphical 
representation of tax collection indicates seasonality with pair of SLS; one SLS is visualized 
at 2004M6 and second one is readable at 2006M11. Broad Money has weak seasonality with 
SLS visible at July 2007, while money circulation plot shows seasonal pattern along with a 
couple of outliers; SLS at 2009M11 along with LS at July 2015. Couple of AO outlier is also 
visible. We notice that we have recognized these outliers just by visualizing the raw data 
series. It requires mathematical verification, too (see Figure 1). 
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Figure 1: Graphical Analysis of Raw Series 

  

 
 

5.2 Detail of Outliers Detection  

In table 3, we find Two SLS along with two AO in the series of FBR monthly Tax collection, 
one SLS and one LS in money circulation, along with four AO, and two SLS in monthly broad 
money (for more details see Appendix for Tables A7-A13 and Figures 2-414). 

5.3 Impact of Outlier on SARIMA Model 

From the results of Tables A9 to Table A11 we observe that the selected model in the case 
of series ‘with SLS’ has high standard errors of the estimates, high standard error of the 
residual and high Akaike information Criteria (AIC). However, after the outlier detection and 
adjustment for outliers the model obtains low standard error of the estimates, small SE 
(residuals) value as well as minimum AIC statistic.  
From the three models we have applied on three series, we concluded that presence of SLS 
affects model estimate, standard error, residual standard error and AIC statistic of the model. 
However, the suggested procedure of Asghar and Urooj (2017) as modification of Kaiser 
and Maravall (2001) for detection and adjustment of outliers improves the results of the 
SARIMA models. 
  

                                                        
14 The tables and graphs in appendixare available online as Supplemental material. 
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5.4. Forecast Accuracy of the SARIMA Models    

We assess the performance of the selected SARIMA model accuracy in terms of mean error, 
root mean square error and mean absolute error, as well as mean absolute scale error and 
ACF of the models. From results of Table A10, we observe that SARIMA models have high 
forecast error measures, i.e., mean error, root mean square error, and mean absolute error 
as well as mean absolute scale error, and ACF of the models, because of outliers in the 
series. However, when the series is adjusted for the SLS, the forecast error reduces.   
From the results, we conclude that SLS leads to poor forecast. However, suggested 
procedure of Asghar and Urooj (2017) as modification to Kaiser and Maravall (2001) by 
including IO and SLS in the list of probable outliers along with AO, IO, LS, TC, and SLS for 
detection and adjustment of outliers improves the results of the SARIMA models and, in turn, 
improves the forecast errors. 

5.5. Impact of SLS on Interval Forecasts of SARIMA Models  

In this section, we evaluate the performance of the point and interval forecast of SARIMA 
models, using different series in the presence of SLS, through interval forecasts and 
graphical analysis. On the basis of the estimated model we perform one step ahead forecast 
for 12 months for each series by considering two cases; one ‘with SLS’ and other ‘adjusted 
for SLS’. After forecast, we get interval forecast for each forecasted month (results in Tables 
A11-A13). 
From the results, we conclude that monthly FBR tax collection, monthly Money Circulation, 
monthly Broad Money have high standard error for each forecasted month. The standard 

Table 3. Details of Outliers 

Monthly FBR Tax collection 

Type Index Time Size t-value 

AO 36 2006:12 28.65 3.475 

SLS 90 2011:06 36.48 3.481 

AO 120 2013:12 -81.95 -9.613 

SLS 138 2015:06 66.39 6.148 

Money in Circulation 

Type Index Time Size t-value 

SLS 95 2009:11 68.65 3.532 

AO 116 2011:08 92.08 6.694 

AO 130 2012:10 112.81 8.962 

AO 151 2014:07 129.08 8.880 

LS 163 2015:07 114.17 5.869 

AO 165 2015:09 183.98 13.557 

Monthly Broad Money 

Type Index Time Size t-value 

SLS 10 2007:07 136.4 5.151 

SLS 82 2013:07 187.7 4.431 

SLS 120 2016:09 569.8 8.689 
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error of each forecasted month becomes small when outliers are detected and adjusted. 
High standard error of the series with SLS leads to very large forecast interval; however, 
after detection and adjustment of SLS results shows more precise prediction intervals (see 
Appendix, Figure 5). The detailed empirical analysis shows that suggested procedure of 
Asghar and Urooj (2017) as modification of Kaiser and Maravall (2001) properly detects 
outliers in monthly time series and improves estimates. 

6. Conclusion 

In this study, we attempt to examine the consequences of outliers like SLS and other types. 
The earlier studies by Urooj (2016), Urooj and Asghar (2017), Asghar and Urooj (2017) and 
Urooj and Asghar (2020) examined the existence, impact and detection of AO, IO, LS, TC 
and SLS in time series data for various SARIMA(p,d,q)(P,D,Q)s

15 models also by collecting 
empirical evidence from time series data for Pakistan. However, these studies did not focus 
on the forecasting performance in the presence of outliers. In this study, we have examined 
the impact of SLS on point and interval forecasts through simulation experiment and 
empirically the case of monthly data of Pakistan. We attempt to answer three questions: 
How does the unrecognized seasonal level shift (SLS) affect the width of the prediction 
intervals? What is the impact of SLS on forecast for different sample sizes? And how does 
the impact of outlier vary due to the distance of outlier from the forecast origin?  

In order to study the performance of various time series models, we have simulated SARIMA 
models including SAR (1), i.e., (0, 0, 0) (1, 0, 0)4 and SMA (1), i.e., (0, 0, 0) (0, 0, 1)4 with 

SLS at Tth data point for different parameter values, sample sizes and time of occurrences. 

We compared the series ‘adjusted for SLS’ and series ‘with SLS’ using the modified 
procedure of Kaiser and Maravall (2001) as suggested by Asghar and Urooj (2017). We 
extended the strategy suggested by Asghar and Urooj (2017) to the forecasting in the 
presence of SLS by looking at forecast accuracy and prediction interval. The sampling 

distribution of Φ̂4,Θ̂4 (the parameters of the SAR (1) and SMA(1) parameters, respectively) 
are studied and a number of statistics, including ME, RMSE, MAE, ACF, MASE and 
Standard Error (SE), are  calculated to measure  forecast accuracy. One step ahead 

forecast and 95 % confidence band as (Mean ± 2SD) for SARIMA ‘with SLS’ and ‘without 

SLS’ are calculated and the results compared. 

We demonstrate that SLS significantly increases the bias in the SARIMA estimates, 
increases the inaccuracy of the SARIMA models and significantly affects the prediction 
intervals. We found that the SLS cause bias in the estimation of model parameter of SAR 

(1) and SMA (1). However, after detection and adjustment of SLS the bias in parameter 

estimates is remarkably reduced and forecast accuracy measure and prediction interval 
significantly improve. Further, the study found that forecast accuracy measures 

of SMA(1) and SAR(1) are very sensitive to SLS and perform poorly due to SLS. However, 

outlier detection and adjustment procedure reduce the measure of forecast errors, while the 
model error measures are more sensitive in SMA (1) model as compared to SAR (1) model. 
Measures of forecast error at different sample sizes are approximately the same in SAR (1) 
and SMA (1) model such as in sample sizes of  𝑛 = 50 𝑎𝑛𝑑 𝑛 =100, outlier detection and 

                                                        
15 Seasonal Autoregressive Moving Average (SARIMA (p, d, q)(P, D, Q)s ) Model, where s, p, d, 
q, P, D, Q are seasonal frequency order, non-seasonal and seasonal roots, order of integration 
and seasonal integration of the model as defined by Box and Jenkins (1976). AR(p), MA(q), 
SAR(P) and SMA(Q) are the special form models defined under SARIMA (p, d, q)(P, D, Q)s. 
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adjustment procedure reduce the bias in the coefficient estimate and minimize the forecast 
error measures in the same way. Further, the study found that the difference of location of 
SLS from forecast origin had the same effect on bias and forecast accuracy for SAR (1) 
model, while in SMA (1) model the SLS occurring at the beginning of the series have more 
effect than outlier occurring at the middle or end of the series due to  less bias in the 
parameter when SLS occurs at the end of the series. In terms of interval forecasts, if SLS is 
present in the first quarter of the series, then it will not only affect the interval forecasts of 
the first quarter, but will also affect the interval forecasts of other quarters in SAR (1) as well 
as SMA (1) models. Furthermore, interval forecasts of SMA (1) model is more sensitive to 
SLS as compared to SAR (1) model. The empirical study is conducted for Pakistan, using 
variables on monthly frequency. For the outlier detection and adjustment, we use the 
procedure suggested by Kaiser and Maravall (2001) and modified by Asghar and Urooj 
(2017) for five possible types of outliers, i.e., AO, IO, LS, TC, and SLS. Study concludes that 
ignoring SLS causes bias in parameter estimates for SARIMA (p, d, q) (P, D, Q) 12 and 
results in high forecast error and interval forecasts. However, when the series is adjusted for 
SLS, the forecast error measures become smaller and prediction interval improves. 

Our study concluded that in economic development, SLS is the outlier that is often not 
taken into consideration; however, financial and macro indicators exhibit patterns as 
such. Therefore, it is desirable to examine, identify and capture its impact. SLS have 
important properties in time series analysis, which are included in Seasonal adjustment 
software X-13 ARIMA-SEAT developed by the U.S. Census Bureau in collaboration with 
the Bank of Spain. Outlier detection procedures are suggested in different applications 
like data cleansing, data-mining tasks and most of the social science research utilizes 
one of these procedures.  
Further study is required for the outlier detection and adjustment, in the form of other 
time series models, i.e., multivariate models. Furthermore, in the presence of SLS the 
study of Tsay et al. (2000) can be extended to investigate the performance of forecast 
of the vector autoregressive moving average (VARMA).  

7. Limitation of the Study 

To carry the study of outlier’s detection, adjustment is an important debate found in the 
literature since many decades. But there is no unanimously theoretical framework which is 
accepted for the treatment of outliers. Various scholars developed different procedures and 
very rarely have they developed the same procedure. Our study focuses on the procedure 
of Maravall (2001), while other alternative procedures, i.e., Hat-matrix, standardize residual 
approach and DFITS, etc., can also be used for treatment of outliers. The study of Bollen & 
Jackman (1985) shows that this procedure has been very effective for treatment of outliers. 
So, we encourage others to not rule out other methods. Further, as argued by Dagum & 
Bianconcini (2010), the proposed iterative procedure is less vulnerable to spurious and 
masking effects during outlier detection and allows to jointly estimate the model parameters 
and multiple outlier effects. The estimation of intervention model allows to verify if there are 
any insignificant lags to be removed from the model. However, we may also adopt the 
modification identified by g Li & Chan (2005) by which we can add another step to the 
procedure as Re-identification of the model where we need to reidentify the ARIMA model 
underlying the adjusted data series. If the re-identification gives a different model, then 
repeat the step 2 of outlier detection by using this new model on the original unadjusted data 
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series. Otherwise, terminate the iteration cycle, and the estimated intervention model will be 
final. This method will be adopted and compared in forthcoming studies. 

Disclaimer 

Part of this paper is drawn from the first author's M.Phil. thesis stored in the HEC repository 
of the country. 
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