References Accardi, L.; Boukas, A. (2007). The quantum Black-Scholes equation; GJ-PAM; 2 (2): 155-170. Aerts, D., Amira, H., D.Hooghe, B., Posiewnik, A. and Pykacz, J. (in press). “Quantum games and their application in biology”, Foundations of Science. Anscombe, F., Aumann, R. (1963). “A definition of subjective probability”, Annals of Mathematical Statistics; 34: 199-205. Ar. B. (2005). “Resolving the trust predicament: a quantum game theoretic approach”, Theory and Decision, 59 (2): 127-174. Arrow, K. (1971). Essays in the theory of risk bearing, North Holland. Ausloos, M., Pekalski, A. (2007). ” Model of wealth and goods in a closed market”, Physica A, 373: 560-568. Baaquie, B. (2004). Quantum Finance, Cambridge University Press, Cambridge. Bacciagaluppi, G. (1999). “Nelsonian mechanics revisited”, Foundations of Physics Letters 12 (1): 1-16. Elementary Quantum Mechanical Principles and Social Science Romanian Journal of Economic Forecasting – 1/2008 55 Bagarello, F. (2006). “An operatorial approach to stock markets”; Journal of Physics A, 39: 6823-6840. Bender, D. and Orszag, S. (1978). Advanced mathematical methods for scientists and engineers , McGraw-Hill. Black, F., Scholes, M. (1973). “The pricing of options and corporate liabilities”, Journal of Political Economy; 81: 637-654. Bohm, D. (1952). “ A suggested interpretation of the quantum theory in terms of ‘hidden’ variables”, Part I and II; Physical Review 85: 166-193. Bohm, D. and Hiley, B. (1993). The Undivided Universe, New York: Routledge, 1- 397. Bohm, D. (1987). “Hidden Variables and the Implicate Order” in Quantum Implications: Essay in Honour of D. Bohm, edited by B. Hiley and F.Peat, New York: Routledge, 33-45. Bohm, D. and Hiley B. (1989). “Non-locality and locality in the stochastic interpretation of quantum mechanics”, Physics Reports 172 (3): 93-122. Bordley, R.F. (1998). “Quantum mechanical and human violations of compound probability principles: Toward a generalized Heisenberg uncertainty principle”, Operations Research 46: 923-926. Borland, L. (2002).” A theory of non-Gaussian option pricing”, Quantitative Finance; 2: 415-431. Bowman, G. (2005). “On the classical limit in Bohm’s theory”, Foundations of Physics 35 (4): 605-625. Broekaert, J., Aerts, D. and D.Hooghe, B. (2006); “The generalized liar paradox: A quantum model and interpretation”. Foundations of Science 11 (4): 399-418. Busemeyer, J. and Wang, Z. (2007). “Quantum information processing explanation for interactions between inferences and decisions”, Papers from the AAAI Spring Symposium (Stanford University); 91-97. Busemeyer ,J. and Wang, Z and Townsend, J.T. (2006). “Quantum dynamics of human decision making”, Journal of Mathematical Psychology 50 (3): 220-241. Choustova, O. (2006).” Quantum Bohmian model for financial markets”, Physica A, 374: 304-314. Choustova, O. (2007). “Toward quantum-like modeling of financial processes”, Journal of Physics: Conference Series 70 (38pp) Conte, E., Todarello, O., Federici, A., Vitiello, F., Lopane, M., Khrennikov, A. (2004). “A preliminary evidence of quantum-like behaviour in measurements of mental states” Proc. Int. Conf. Quantum Theory: Reconsideration of Foundations. Ser. Math. Modeling in Phys., Engin., and Cogn. Sc., vol. 10: 679-702, Växjö Univ. Press. Danilov, V.I. and Lambert-Mogiliansky, A. (2006a). “Non-classical expected utility theory”, Preprint Paris-Jourdan Sciences Economiques. Institute of Economic Forecasting Romanian Journal of Economic Forecasting – 1/2008 56 Danilov, V.I. and Lambert-Mogiliansky, A. (2006b). “Non-classical measurement theory: a framework for the behavioral sciences”, arXiv: physics/0604051. Debreu, G. (1959). Theory of value: an axiomatic analysis of economic equilibrium, J. Wiley. Decamps, M. and De Schepper, A. and Goovaerts, M. (2006). “A path integral approach to asset-liability management”, Physica A, 363: 404-416. Eisert, J. and Wilkens, M. and Lewenstein, M. (1999). “Quantum games and quantum strategies”, Physical Review Letters, 83: 3077-3080. Ellsberg, D. (1961). “ Risk, Ambiguity and the Savage Axioms”, Quarterly Journal of Economics, 75: 643-669. Fedotov, S. and Panayides, S. (2005). “Stochastic arbitrage returns and its implications for option pricing”, Physica A 345: 207-217. Franco, R. (2007). “ Quantum mechanics and rational ignorance”, arXiv:physics/0702163v1 Georgescu-Roegen, N. (1999). The Entropy Law and the Economic Process, Harvard University Press. Ghirardato, P., Maccheroni, F. and Marinacci, M. (2004). “Differentiating Ambiguity and Ambiguity Attitude”, Journal of Economic Theory, 118: 133-173. Gilboa, I. and Schmeidler, D. (1989). “Maxmin Expected Utility with a Non-Unique Prior” Journal of Mathematical Economics, 18: 141-153. Haven, E. (2005a). “ Analytical solutions to the backward Kolmogorov PDE via an adiabatic approximation to the Schrödinger PDE”, Journal of Mathematical Analysis and Applications, 311: 439-444. Haven, E. (2005b). “Pilot-wave theory and financial option pricing”, International Journal of Theoretical Physics , 44 (11): 1957-1962. Haven, E. (2007). “Private information and the ‘information function’: a survey of possible uses”, Theory and Decision, forthcoming. Hildenbrand, W. (1974). Core and equilibria of a large economy, Princeton University Press. Holland, P. (1993). The quantum theory of motion, Cambridge University Press. Hudson, R. L., Parthasarathy, K. R. (1984). “Quantum IUto’s formula and stochastic evolutions”, Comm. Math. Phys., 93; 301-323. Ilinski, K. (2001). Physics of Finance: Gauge Modeling in Non-Equilibrium Pricing, J. Wiley. Itô, K. (1951). “On stochastic differential equations, Memoirs”, American Mathematical Society, 4: 1-51. Jammer, M. (1974). The philosophy of quantum mechanics, J. Wiley, NY, USA. Khrennikov, A. Yu. (1999). “Classical and quantum mechanics on information spaces with applications to cognitive, psychological, social and anomalous phenomena”, Foundations of Physics, 29: 1065-1098. Khrennikov, A. (2002). “On the cognitive experiments to test quantum-like behavior of mind” Reports from Växjö University - Mathematics, Natural Sciences and Technology, Nr. 7. Khrennikov, A. (2004). “Information dynamics in cognitive, psychological and anomalous phenomena”, Ser. Fundamental Theories of Physics, v.138, Kluwer, Dordrecht. Khrennikov, A. (2007). “Classical and quantum randomness and the financial market”, arXiv: 0704.2865v1 [math.PR]. Khrennikov, A., Haven, E. (2006). “Does probability interference exist in social science?” Foundations of Probability and Physics -4 (G. Adenier, A.Khrennikov, C. Fuchs - Eds), AIP Conference Proceedings; 899: 299-309. Khrennikov, A., Haven, E. (2007). ”The importance of probability interference in social science: rationale and experiment”, to be submitted to Journal of Mathematical Psychology. Kreps, D. (1988). Notes on the theory of choice, Westview Press (Colorado-Boulder). La Mura, P. (2006). “Projective Expected Utility”, Mimeo, Leipzig, Graduate School of Management. Li, Y. and Zhang, J.E. (2004). “Option pricing with Weyl-Titchmarsh theory”, Quantitative Finance, 4: 457-464. Lux, Th., Marchesi, M. (1999). “Scaling and criticality in a stochastic multi-agent model of a financial market”, Nature; 397: 498-500. Machina, M. (1989). “Comparative statistics and non-expected utility preferences”, Journal of Economic Theory; 47 (2): 393-405. Machina, M. (1989). “Dynamic consistency and non-expected utility models of choice under uncertainty”, Journal of Economic Literature; 27 (4): 1622-1668. MacKenzie, D. and Millo, Y., “Negotiating a market, performing a theory: the historical sociology of a financial derivatives exchange”, American Journal of Sociology; 109: 107-145. Mantegna, R., Stanley, H. E. (1999). “An introduction to econophysics: correlations and complexity in finance”, Cambridge University Press Morrison M. (1990). “Understanding quantum physics”, Prentice-Hall. Nelson, E. (1967). “Dynamical theories of Brownian motion”, Princeton University Press. Otto, M. (1999). “Stochastic relaxational dynamics applied to finance: towards nonequilibrium option pricing theory”, European Physical Journal B 14: 383-394. Parthasarathy, K. R. (1992). “An introduction to quantum stochastic calculus”, Birkhauser-Boston. Panayides, S. : (2005). “Derivative pricing and hedging for incomplete markets: stochastic arbitrage and adaptive procedure for stochastic volatility”, Ph.D. Thesis, The School of Mathematics, University of Manchester. Institute of Economic Forecasting Romanian Journal of Economic Forecasting – 1/2008 58 Paul, W., Baschnagel, J. (2000). Stochastic Processes: from Physics to Finance, Springer Verlag. Piotrowski, E.W. and Sladkowski, J. (2003). “An invitation to quantum game theory”, International Journal of Theoretical Physics, 42: 1089-1099 Purica, I. (2004). “The cities: reactors of economic transactions”, Romanian Journal of Economic Forecasting; 1 (2): 20-37. Savage, L.J. ” The Foundations of Statistics”, NY, Wiley, 1954. Schaden, M. (2002). “Quantum finance: A quantum approach to stock price fluctuations”, Physica A, 316, 511. Segal, W. and Segal, I.E. (1998). “The Black-Scholes pricing formula in the quantum context”, Proceedings of the National Academy of Sciences of the USA, 95: 4072-4075. Shubik, M.: (1999). “Quantum economics, uncertainty and the optimal grid size”, Economics Letters, 64 (3): 277-278. Von Neumann, J., Morgenstern O. (1947). Theory of games and economic behavior, Princeton University Press.