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Abstract  
Polynomial interpolation can be used to approximate functions and their derivatives. 
Some autoregressive models can be stated by using polynomial interpolation and 
function approximation. 
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The main issue 
The major goal of this article is to state a general method in order to create forecast 
models, which can be used in time series approximation. This method is based on 
some fundamental mathematical formulas, such as polynomial interpolation and 
function approximation. 
In a time series, such as the exchange rate on daily or monthly basis, it is not possible 
to use real functions :f →R R  because the domain of definition, consisting of real 
numbers, cannot be associated with fixed steps, such as days or months.  
As it is known, any mathematical tool for function approximation uses derivatives. But, 

for a time series, the differential quotient +

+

−
−

1

1

i i

i i

y y
x x

 cannot be used if the denominator 

is not a real number! 
Furthermore, we will prove that it is possible to use derivatives, even for time series, 
by expressing derivatives approximation through function values, instead of differential 
quotients. More accurately, we will see that a derivative, corresponding to a value ty  

may be expressed by using only precedent values of the time series: 1 2,t ty y− − , etc. 

Finally, a Taylor polynomial approximation may be used in a time series forecasting, 
including derivatives, by using only precedent values. This technique evolves into a 
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general method, in order to create autoregressive models, as it will be stated in a 
dedicated section of this article. These models can be used in forecasting, as this 
paper will show it at the end. 
To begin with, let us consider the following classical framework. 
Given the set ( )1 1,x y , ( )1 1,x y , ... ( )1 1,x y  in 2R , ,i jx x i j≠ ≠ , find a polynomial which 
satisfies the condition:  

( ) , 1,i iP x y i m= ∀ =      
Apparently, it is possible to use a polynomial function, in any cases in which we have 
a set of statistical (or experimental) data, but we don’t know the exact function which 
denote the dependence between “x”-points and “y”-points.  
In fact, in most cases, the interpolation polynomial is not used “as it is”, being a very 
useful tool, in order to approximate some other operations, such as derivation or 
integration. 
The main result which underline our issue is the following: 
 
Theorem 1. There exists an unique polynomial: 

1 2( ) ...0 1 2 1
m mP x a x a x a x am m
− −= + + + +− −

, 

having the degree 1m − , which satisfies the condition (1). 
Demonstration. The interpolation conditions are: 

1 2 ...0 1 1 1 2 1 1 1
1 2 ...0 2 1 2 2 2 1 2

.........
1 2 ...0 1 2 1

m ma x a x a x a ym m
m ma x a x a x a ym m

m ma x a x a x a ym m m mm m

− −⎧ + + + + =− −⎪
⎪ − −+ + + + =⎪ − −⎨
⎪
⎪ − −⎪ + + + + =− −⎩

 

where the unknowns are , ,...0 1 1a a am−
. While the above system is Vandermonde, it 

results that there exists an unique solution. 
 

Lagrange’s formula 
 

It is quite easy to observe that the above theorem is „time and space” expensive, in 
order to determine the polynomial. This is the reason for introducing some other 
methods. 
Lagrange’s formula is based on the following family of particular polynomials: 

( ) ( )( ) ( )
( ) ( )( ) ( )

1 1 1

1 1 1

... ...
( ) , 1,

... ...
i i m

i
i i i i i i m

x x x x x x x x
x i m

x x x x x x x x
− +

− +

− − − −
Φ = =

− − − −
 

By definition, the Lagrange (interpolation) polynomial is: 



 Polynomial Interpolation and Applications to Autoregressive Models 

 Romanian Journal of Economic Forecasting – 1/2008  
 

121

  

1 1 2 2( ) ( ) ( ) ... ( )m mL x x y x y x y= Φ + Φ + + Φ  
Theorem 2. The Lagrange’s polynomial coincides with the interpolation polynomial. 
Demonstration. Indeed, the Lagrange’s polynomial has the degree 1m −  and it is 
easy to observe that the interpolation condition (1) is fulfilled: 

1 1 2 2( ) ( ) ( ) ... ( ) ( )i i i m i m i i i iL x x y x y x y x y y= Φ + Φ + + Φ = Φ =  
Obviosly, it is quite easy to calculate the above polynom. 
 

Interpolating an unknown function 
In many cases, the set of interpolated values belongs to the graph of an unknown 
function, i.e. ( ), 1,i iy f x i m= =  and the problem is: 

Find the polynomial P, which has the (maximum) degree 1m − , and satisfies: 

( ) ( ), 1,i iP x f x i m= =  
Taking into account the previous results, such a polynomial exists and it is unique. 
The case of the function interpolation has various applications, for example, in 
approximate derivation and integration of unknown functions. These applications are 
based on the following theorem, which explains the magnitude of the error made by 
approximating the function f, by the polynomial P. 
 

Theorem 3. Let us consider the function : ,f a b →⎡ ⎤⎣ ⎦ R , ( ),mf C a b∈ ⎡ ⎤⎣ ⎦  and the set of 

values 1 2, ,..., , , ,m i jx x x a b x x i j∈ ≠ ∀ ≠⎡ ⎤⎣ ⎦ , then, the interpolating polynomial P, 
satisfies: 

( )( ) ( )( )
1 2

,

1( ) ( ) sup ( ) ...
!

m
m

u a b
f x P x f u x x x x x x

m ∈⎡ ⎤⎣ ⎦

− ≤ − − −  

Demonstration. We will use the auxiliary function: 

( ) ( ) ( ) ( ) ( )1: , , ... ma b t f t P t a t x t xϕ ϕ→ = − − − −⎡ ⎤⎣ ⎦ R  

where a is defined by the condition ( ) 0, , 1,ix x x i mϕ = ≠ = , which implies: 

 
( ) ( )

( ) ( )1 ... m

f x P x
a

x x x x
−

=
− −

 (2) 

On the other hand, ( ) ( ) ( )1 ... 0mx x xϕ ϕ ϕ= = = = , thus we may use the Rolle’s 
theorem m-times, corresponding to each pair of above values. There exists m different 
values, so that the derivative 'ϕ  has the value 0.  

The above assertion may be used recurrently, for the successive derivatives of 
function ϕ , and finally it results that there exists ( ),a bξ ∈  so that: 

( ) ( ) 0mϕ ξ =  
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But, 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )( ) ( ) ( )1 ... 0 !

mm m m m
mt f t P t a t x t x f t m aϕ = − − − − = − −  

which shows that ( ) ( ) ( ) ( ) ! 0m mf m aϕ ξ ξ= − =  

The last result gives a new for a, i.e.:  
( ) ( )

!

mf
a

m
ξ

=  

and by using (2) it results: 

( ) ( )
( ) ( )

( ) ( )
1 ... !

m

m

f x P x f
x x x x m

ξ−
=

− −
 

In conclusion, there exists ( ),a bξ ∈ , which depends on 1, ,..., mx x x , so that: 

( ) ( )
( ) ( ) ( ) ( )1 ...

!

m

m

f
f x P x x x x x

m
ξ

− = − −  

and the conclusion is obvious, by using the modulus: 

( )
1 2

,

1( ) ( ) sup ( )
!

m
m

u a b
f x P x f u x x x x x x

m ∈⎡ ⎤⎣ ⎦

− ≤ − − −  

Examples: 
a) One point interpolation, (c,f(c)).  

P(x)=f(c) 
'

,
( ) ( ) sup ( )

u a b
f x P x f u x c

∈⎡ ⎤⎣ ⎦

− ≤ −  

b) Two points interpolation, (a,f(a)), (b,f(b)). 

( ) ( ) ( )x b x aP x f a f b
a b b a
− −

= +
− −

 

( )( )"

,

1( ) ( ) sup ( )
2 u a b

f x P x f u x a x b
∈⎡ ⎤⎣ ⎦

− ≤ − −  

 
Newton’s formula, based on divided differences 

Let us consider the function [ ]f a b: , →R  and 1 2, ,..., ,mx x x a b∈ ⎡ ⎤⎣ ⎦ , ,i jx x i j≠ ∀ ≠ . In 
what follows, we will denote by 1 2( ; , ,..., )mg x x x x  the interpolation polynomial, 
corresponding to the set of values ( ) ( ) ( )1 1 2 2, ( ) , , ( ) ,..., , ( )m mx f x x f x x f x . 

Definition 1. By definition, the divided difference of function f, with respect the points 
1 2, ,..., mx x x , is the coefficient of 1mx − , in 1 2( ; , ,..., )mg x x x x .  

We will denote this value by 1 2, ,..., mf x x x⎡ ⎤⎣ ⎦  
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Observation 1. 1 2 1 2, ,..., , ,...,m i i imf x x x f x x x=⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  for any permutation ( )1, 2,...,i i im  

Observation 2. Taking into account the two precedent examples, we have: 

( )f c f c=⎡ ⎤⎣ ⎦  

( ) ( )
,

f b f a
f a b

b a
−

=⎡ ⎤⎣ ⎦ −
 

Theorem 4 (Newton’s formula). Let f be the function 

: ,f a b →⎡ ⎤⎣ ⎦ R  and [ ]x x x a b x x i jm i j1 2, , ... , , , ,∈ ≠ ∀ ≠  
Then 

1 2 1 1 2 1

1 2 1 2 1

( ; , ,..., ) [ ] [ , ]( ) ...
[ , ,..., ]( )( )...( )

m

m m

g x x x x f x f x x x x
f x x x x x x x x x −

= + − +

+ − − −
 

Demonstration. First of all, we will consider the polynomial: 

( ) 1 2 1 2 1( ; , ,..., ) ( ; , ,..., )m mk x g x x x x g x x x x −= −  
which has the degree 1m −  and 1m −  zeros, i.e. 1 2 1, ,..., mx x x − ; consequently: 

( ) ( ) ( )1 2 1 1, ,..., ...m mk x f x x x x x x x −= − −⎡ ⎤⎣ ⎦  

because the power 1mx −  can be found only in 1 2( ; , ,..., )mg x x x x . 

By comparing the two formulas, it results: 

 1 2 1 2 1

1 2 1 2 1

( ; , ,..., ) ( ; , ,..., )
[ , ,..., ]( )( )...( )

m m

m m

g x x x x g x x x x
f x x x x x x x x x

−

−

=

+ − − −
  (3) 

The above formula can be used recursively: 

1 1( ; ) [ ]g x x f x=  (see first example) 

1 2 1 1 2 1( ; , ) ( ; ) [ , ]( )g x x x g x x f x x x x= + −  

1 2 1 2 1

1 2 1 2 1

( ; , ,..., ) ( ; , ,..., )
[ , ,..., ]( )( )...( )

m m

m m

g x x x x g x x x x
f x x x x x x x x x

−

−

=

+ − − −
 

and, by summing up, we obtain the Newton’s formula. 
 

Aitken’s formula 
Another way to express interpolation polynomial is based on Aitken’s formula, as it is 
stated by the following theorem. 
 
Theorem 5 (Aitken) 

1
1 2 1 2 1 2 3

1 1

( ; , ,..., ) ( ; , ,..., ) ( ; , ,..., )m
m m m

m m

x x x x
g x x x x g x x x x g x x x x

x x x x−

− −
= +

− −
 

Demonstration. All we have to do is to observe that the right side of the above formula 
represents a polynomial and this polynomial satisfies all the interpolating conditions, 



Institute of Economic Forecasting 
 

Romanian Journal of Economic Forecasting – 1/2008   124

  

i.e. it coincides with the values of function f, in each point ix . But, the interpolation 
polynomial is unique, which proves the Aitken’s formula. 
Observation. Taking into account the coefficients of 1mx − , on both sides of Aitken’s 
formula, it results the following recurrent formula of divided differences: 

1 2 1 2 3
1 2

1

[ , ,..., ] [ , ,..., ]
[ , ,..., ] m m

m
m

f x x x f x x x
f x x x

x x
− −

=
−

 

 
How to calculate the interpolation polynomial, based  

on the Newton’s formula 
In what follows, we present a MathCAD based strategy, in order to calculate the 
interpolating polynomial, by using the Newton’s formula. 
First, we define the values to be interpolated, by using the table “f” and two vector 
selections, “x” and “y”. 

f
0 1

0
1

2

3

-1 -1
-3 -29

-2 -9

3 31

:=

 
x f 0〈 〉:=  
y f 1〈 〉:=  
m 4:=   

The divided differences are calculated in a recursive way as it is shows below, by 
keeping only those are used in the Newton’s formula. 

difdiv x y, m,( )

i m j+ k−←

yi 1−

yi 2− yi 1−−

xi j− xi 1−−
←

k j m..∈for

j 2 m..∈for

yreturn

:=

 
 

The values of divided differences may be memorized in the “y” vector or into a new 
one. 

y difdiv x y, m,( ):=  
Finally, the polynomial is implemented by using a Horner’s like algorithm. 
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pol x y, u,( ) s ym 1−←

i m k−←

s yi 1− u xi 1−−( ) s⋅+←

k 1 m 1−..∈for

sreturn

:=

 
 

Derivate approximation 
Theorem 6. Let f be a function in 1[ , ]mC a b−  and 1 2, ,..., ,mx x x a b∈ ⎡ ⎤⎣ ⎦  then there exists 

( , )a bξ ∈  such that 
( 1)

1 2
( )[ , ,..., ]

( 1)!

m

m
ff x x x
m

ξ−

=
−

 

Demonstration. Les us consider ( ) ( ) ( )1 2; , ,..., mx f x g x x x xψ = − . Using the some 
technique as in the theorem 3, we can observe that ψ  has m different zeros, namely 

1 2, ,..., mx x x . Consequently, by using the Rolle theorem, there are 1m −  different 
zeros for the derivative 'ψ ; it results there are 2m −  different zeros for the second 

derivative ''ψ , etc. Finally, there exist ( , )a bξ ∈  such that ( ) ( )1 0mψ ξ− = , i.e. 
( ) ( ) ( ) ( )1 1

1 2; , ,..., 0m m
mf g x x xξ ξ− −− = . But, by using Newton’s formula, it results 

( ) ( ) ( )1
1 2 1 2; , ,..., 1 ! , ,...,m

m mg x x x m f x x xξ− = − ⎡ ⎤⎣ ⎦ , thus: 

( ) ( ) ( )1
1 21 ! , ,...,m

mf m f x x xξ− = − ⎡ ⎤⎣ ⎦  
Definition 2. By definition, a multiple divided difference is: 

1 2 1 20
[ , ,..., , , ] lim [ , ,..., , , ]p pf x x x u u f x x x u u

ε
ε

→
= +  

Remark. 1 2 1 2[ , ,..., , ] [ , ,..., , , ]p p
d f x x x u f x x x u u
du

=  

In order to approximate the derivate of a function f, the main idea is to approximate it 
by the derivate of the interpolation polynomial. 
Let us consider the following relation, which result from (3) by using interpolating 
points 1x , 2x , ..., mx  and u:  

1 2 1 2 1 2 1 2( ; , ,..., , ) ( ; , ,..., ) [ , ,..., , ]( )( )...( )m m m mg x x x x u g x x x x f x x x u x x x x x x= + − − − For 
x = u, we obtain: 

1 2 1 2( ) ( ; , ,..., ) [ , ,..., , ] ( )m mf u g u x x x f x x x u uπ= +  
where 

1,
( ) ( )i

i m

u u xπ
=

= −∏  

It results, by derivation and by applying theorem 6: 
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( 1) ( )
1 2

1 2
( ) ( )

'( ) '( ; , ,..., ) ( ) '( )
( 1)! !

m m

m
f f

f u g u x x x u u
m m

ξ ξ
π π

+

= + +
+

 

In conclusion, when we approximate '( )f u  by 1 2'( ; , ,..., )mg u x x x , then the error is: 
( 1) ( )

1 2( ) ( )
( ) '( )

( 1)! !

m mf f
u u

m m
ξ ξ

π π
+

+
+

 

Examples of derivate approximation 
1.Two points, 1x  and 2x  

1 2( ) ( )( )u u x u xπ = − − , 1 2'( ) 2u u x xπ = − −  

For 1x u=  and 2x u h= −  it results (2)
2

( ) ( )'( ) ( )
2

f u f u h hf u f
h

ξ− −
= + , which means 

that: 
( ) ( )'( ) f u f u hf u

h
− −

≈ , the error magnitude being (2)
2( )

2
h f ξ  

The above formula shows that for small values of h, we have a good approximation; 
say for 310h −=  the divided difference approximate the derivative with an error of tree 
decimal digits. 
2.Three points, 1x , 2x  and 3x . 

1 2 3( ) ( )( )( )u u x u x u xπ = − − − , 

( )( ) ( ) ( ) ( )( )1 2 1 3 2 3'( )u u x u x u x u x u x u xπ = − − + − − + − −  
For 1 2 3, , 2x u x u h x u h= = − = − : 

2
(3)

2
3 ( ) 4 ( ) ( 2 )'( ) ( )

2 3
f u f u h f u h hf u f

h
ξ− − + −

= +  

3.Second derivate 

 

1 2 3 1 2 3"( ; , , ) 2 , ,g u x x x f x x x= ⎡ ⎤⎣ ⎦  

( ) ( ) ( )1 2 3''( ) 2u u x u x u xπ ⎡ ⎤= − + − + −⎣ ⎦  

For 1 2 3, ,x u h x u x u h= − = = + : 

( ) ( ) ( )
1 2 3 1 2 3

2

"( ; , , ) 2 , , 2 , ,

2

g u x x x f x x x f u h u u h

f u h f u f u h
h

= = − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
− − + +

=
 

( ) 0uπ = , 2'( )u hπ = − , ''( ) 0uπ =  
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2
(4)

22

( ) 2 ( ) ( )"( ) ( )
24

f u h f u f u h hf u f
h

ξ− − + +
= −  

 
Autoregressive models 

We shall present two ways, in order to define some autoregressive models, based on 
polynomial interpolation. 
 
Use of Lagrange’s polynomial 
First, let us observe that if ( )ty  is a time series, then the interpolation polynomial, 
based on values 1,...,t m ty y− −  may be used in order to estimate ty . To do this it is 
enough to calculate Lagrange’s polynomial, as we can show in the following 
examples. 
 
1.Two points, formally denoted as ( )1 1,x y  and ( )2 2,x y , determines the Lagrange 
polynomial: 

( ) 2 1
1 2

1 2 2 1

x x x x
L x y y

x x x x
− −

= +
− −

 

Taking into account a constant step, 2 1 3 2x x x x h− = − = , we may calculate the value 

( ) 3 2 3 1
3 3 1 2 1 2

1 2 2 1

2
x x x x

y L x y y y y
x x x x

− −
= = + = − +

− −
 and the model is: 

1 22t t ty y y− −= −  
which corresponds to a linear model. 
 
2.Three points, formally denoted as ( )1 1,x y , ( )2 2,x y  and ( )3 3,x y , determines the 
Lagrange’s polynomial: 

( ) ( )( )
( )( )

( )( )
( )( )

( )( )
( )( )

2 3 1 3 1 2
1 2 3

1 2 1 3 2 1 2 3 3 1 3 2

x x x x x x x x x x x x
L x y y y

x x x x x x x x x x x x
− − − − − −

= + +
− − − − − −

 

Taking into account a constant step, 2 1 3 2 4 3x x x x x x h− = − = − = , we may calculate 

( ) ( ) ( ) ( )4 4 1 2 2 1 2 3
2 3 3 2 3 3

2 2
h h h h h hy L x y y y y y y

h h h h h h
⋅ ⋅ ⋅

= = + + = − +
− ⋅ − ⋅ − ⋅

 and the model is: 

1 2 33 3t t t ty y y y− − −= − +  
which correspond to a second degree polynomial. 
3. Four points, formally denoted as ( )1 1,x y , ( )2 2,x y , ( )3 3,x y  and ( )4 4,x y , 
determines, by using the some technique as above, the three degree model: 

1 2 3 44 6 4t t t t ty y y y y− − − −= − + −  
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Use of Taylor’s polynomial 
There are many mathematical tools in order to approximate functions. One of the most 
important is Taylor’s series associated to a function f. Let us suppose that the 
function : ,f a b →⎡ ⎤⎣ ⎦ R  is in ,C a b∞ ⎡ ⎤⎣ ⎦ , having all derivatives uniformly bounded, i.e. 

there exists 0M >  so that ( ) ( ) , , ,nf x M n x a b≤ ∀ ∈ ∀ ∈ ⎡ ⎤⎣ ⎦N , then: 

( ) ( ) ( ) ( ) ( )'
... ..., , ,

1! !

n
nf x f x

f x h f x h h x x h a b
n

+ = + + + + ∀ + ∈ ⎡ ⎤⎣ ⎦ , 

and the approximate formula holds: 

( ) ( ) ( ) ( ) ( )'
...

1! !

n
nf x f x

f x h f x h h
n

+ ≈ + + + , 

the error magnitude being at most 
( )

1

1 !
nM h

n
+

+
 

In some models, it is quite possible that we don’t know the derivatives of the function f. 
Thus, we have to approximate derivatives, the final approximation being depending on 
that. 
As for example, for 2n = , by using derivative approximation, it results:  

( ) ( ) ( ) ( ) ( )3 4 2 ( ) 2 ( ) ( )
2 2

f u f u h f u h f u h f u f u hf u h f u
− − + − − − + +

+ ≈ + +  

( ) 3 ( ) 3 ( ) ( 2 )f u h f u f u h f u h+ ≈ − − + −  
The above formula reveals a very important fact, if we consider a time series. In such 
a case, even the values are real numbers, the definition domain cannot be associated 
with one interval of real numbers. But, as we observe, the formula contains only 
function’s values, so, for a time series ( )ty  it may be expressed as: 

1 1 23 3t t t ty y y y+ − −≈ − +  
which means that the future value, 1ty + , can be predicted, approximately as we 
already show, as depending on three precedents values.  
It is quite remarkable that we have obtained the some autoregressive formula, by 
using the Taylor’s polynomial, as we already stated, by using the Lagrange’s 
polynomial ! 

Conclusions 
In time series analysis, it is not possible to use models based on derivatives of real 
functions :f →R R . For example, many statistical data are based on fixed periods of 
time, days, weeks, months, etc., which don’t have the meaning of real numbers or 
values.  
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But, some fundamental mathematical approximation formulas, such as Taylor’s or 
Lagrange’s, use derivatives. 
As we concluded in this paper, by using polynomial interpolation, it is possible to 
express a function or polynomial approximation, by using precedent values instead of 
argument values, i.e. by using some autoregressive formulas. 
 
Example 
We used data released by National Bank of Romania, representing the exchange rate 
EU/RON, in 2007, between January 15th and November 9th. Taking into account 
each four day group of values, we calculated the “next”, or “future” value for the 
exchange rate, by using the four point autoregressive model: 

1 2 3 44 6 4t t t t ty y y y y− − − −= − + −  
Thus, we obtained, for each day, an estimated value. The correlation coefficient, 
calculated between statistical data and expected values is 0,85, which seems to be 
sufficient, taking into account the challenging problem of the exchange rate forecast. 
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