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ON SOLVING SOME TYPES OF 
MULTIPLE ATTRIBUTE DECISION-
MAKING PROBLEMS 
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Abstract 

The paper considers various MADM problems with different attributes, including 
stochastic, fuzzy, numerical (cardinal) attributes. Some known MADM problems are 
presented and procedures to transform different problems into cardinal ones are 
proposed. For analysing stochastic and fuzzy MADM problems, informational 
measures as entropy and informational energy are used. Finally, a computer 
dedicated package is presented and an application is mentioned.  
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1.  Introduction 

A MADM (i.e. Multiple Attribute Decision-Making) problem can be formulated as 
follows (Andrasiu et. al., 1986; Chie-Bein Chen and Cerry M. Klein., 1997; Huang and 
Yoon, 1981; Swenson and McCahon, 1991; Vaduva and Resteanu, 2007; Yu, 1985; 
Zeleny, 1976; Zeleny,. 1982): there are n  decision alternatives to be taken and there 
are m  criteria or attributes used to determine the best (optimun) alternative decision. 
The attributes could be various. They could be real numbers, logical (extended) 
values (e.g. true false possible, less possible, etc), ranks (e.g. subjective marks 
assigned by human decidents) or linguistics appreciations or qualifying properties 
(such as good, bad, remarcable, etc.) or other ranking informations. In order to take a 
decision, to each criterion is associated a  "sense" for selecting decisions, namely, the 
best decision is selected if its  attribute has a minimum or a maximum value. The 
problem is to select the "best" decision alternative with respect to all criteria combined 
with  sense requirements. A vector P  represents the  importance given by decidents 
to decision criteria; originaly we call them  relative weights, but they could be 
transformed into probabilities.  
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The data of a MADM problem can be represented as in the following table  (Andrasiu,  
et. al., 1986; Chie-Bein Chen and Cerry M. Klein., 1997; Resteanu, Andreica and 
Vaduva, 2006; Swenson and McCahon, 1991):  
 

Decision data 
 

1C  2C  
... 

mC  
1A  11a  12a  

... 
ma1  

2A  21a  22a  
... 

ma2  
. . ... . … 

nA  1na  2na  
... 

nma  
P  1p  2p  

... 
mp  

sense  1sense  2sense  
... 

msense  
 
The entries mjniaij ≤≤≤≤ 1,,1  define the mn×   decision matrix A=(aij) The vector 

),...,,(= 21 ′mpppP  is usually a probability vector 1)=0,>(
=1

i

m

i
i pp ∑  specifying the 

"importance" of each criterion and the vector ),...,,(= 21 ′msensesensesensesense  (see 
the comments from above), specifies the requirements for selecting the best decision 
alternative (i.e. if the best intended decision alternative requires a maximum value or a 
minimum value of the alternative).  
The entries ija  could be real numbers, linguistic qualificatives (Resteanu, Andreica. 
and Vaduva, 2006), logical values or any other elements from a specified ordered set.  
There are various methods for solving a MADM problem, i.e. for determining an  
ordering or  ranking of alternatives (i.e. )((2)(1) ... nAAA ppp ) and then selecting the 
best decision alternative .)(nA   

The nature of a method is given by the entries ija  (Andrasiu et. al., 1986; Chie-Bein 
Chen and Cerry M. Klein., 1997; Soung Hie Kim and Chung Hee Ham, 1999; Vaduva 
and Resteanu, 2007). If ija  are deterministic real numbers then the problem is  
cardinal. The aim of the solution is to define the best order of alternatives, 
independent from the particular nature of the attributes. Sometime, the decision matrix 
can have a complex structure in the sense that its entries can have more indexes 
(Andrasiu. et. al., 1986; Huang and Yoon, 1981) as .1, dkaijk ≤≤  (The index k  may 
refer to several human decidents involved in decision process). Such a problem is a 
MADM problem  with several decidents. Practical MADM problems have different 
types of decision criteria (i.e. cardinal linguistic, stochastic, fuzzy, etc.). Sometime, 
before solving the MADM problem, all criteria must be transformed into cardinal ones. 
One aim of this paper is to illustrate how we can perform the transform of stochastic 
and fuzzy MADM criteria into cardinal criteria.  
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Any MADM method has to solve the following problems:  
1. To make the set of criteria homogenuous; because attributes are of different types 

(real numbers, ranks, linguistics appreciations), i.e. they have  different physical 
measures or meanings, we must transform them first into  abstract real numbers. 
Before this we must  scale the entries of A  which are not numbers. Because the 
non-numbers entries of A  belong to ordered sets, we will assign as a first step, 
positive integers to the values of attributes according to the relative order in the set. 
A special remark for fuzzy attributes (which are represented by  fuzzy numbers). 
These could be transformed first into cardinal attrributes by the  defuzzyfication 
operation. The same remark concerning stochastic entries of attributes, wich is 
discussed also later. Therefore, after the scaling, the matrix A  contains only real 
numbers and it is a  cardinal decision matrix.Then, the operation of  normalization 
comes, which will allow us to perform correct mathematical operations to derive the 
MADM solution.  

2. Since the weights represent relative measures of importance, it is necessary to 
determine the best probability (weight) vector P  which assignes importance of 
decision alternatives. This step gives the best vector of importance of alternatives.  

3. The third problem is to apply adequate mathematical models to perform  the best 
ranking of alternatives. Therefore this step gives the final solution to the MADM 
problem.  

In this paper we present some known methods for  normalization and some methods 
for selecting the weights of importance and some methods for ranking. Then, we 
analyze the MADM problem with stochastic and fuzzy attributes.  

2.  On the normalization problem 

There are various methods for normalization (Andrasiu et. al., 1986; Yoon and Wang, 
1985; Yu, 1985; Zeleny, 1976, 1982). All of them transform the cardinal decision 
matrix  A into a normalized matrix 1.),1(= ≤≤ ijij rrR  Here we summarize the  vectorial 
normalization which is based on the general formula of a norm 

 mjniaaaaa
|a|

a
r ij

n
jm

p

ij
ij ≤≤≤≤ ,10,1>,),,...,(=,= )(1,

1  (2.1) 

where: ,)(= 1/pp
iip X|x| ∑  with 1,2.=p  If ∞=p  then iip xmax|x| =  and this 

normalization is called "by liniar transforms" (Andrasiu, M. et. al., 1986; Huang, C.L. 
and Yoon, K., 1981). Alternative formulae for normalizations by linear transforms are 

 ,=,= maxsenseif
aa

aa
r

min
j

max
j

ij
max
j

ij
−

−
 (2.2) 

 .=,=,= ij
i

min
jmin

j
max
j

min
jij

ij aminaminsenseif
aa

aa
r

−

−
  (2.3) 

There are also other normalization methods but they are not frequently used.  
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3.  Methods for evaluating the importance weights 

3.1. The eigenvector method 
The importance weights could be fixed up by the decidents. But in most cases the 
human decident defines only the relative  importance of  criteria  specifying a matrix in 
the form 

 
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

mmmm

m

m

pppppp

pppppp
pppppp

B

/...//
......
/...//
/...//

=

21

22212

12111

 

(3.1) 

where: jiij ppb /=  is the  relative importance of criterion i  with respect the criterion 

.j  (For instance ijb
 
means the importance given by the decident to criterion i  with 

respect to criterion  j). One should note that ijb  are related to the objective importance 

of criteria given by unknownppppP im −′ ),,...,,(= 21  ( P  is a column vector!) and 
they satisfy properties  

 
.,,1,=,1= mkji

b
bb

b
b

jk

ik
ij

ji
ij ≤≤

                          (3.2) 
From the preceeding formulae we find  

 0,=)(..,= PmEBeimPBP −                   (3.3) 
where: E  is the unit matrix. Therefore, the best choice of P  is an  eigen vector of the 
matrix .B  Therefore, the choice of P  is obtained as follows (Andrasiu et. al., 1986; 
Huang. and Yoon, 1981):  

• solves the characteristic equation 0,=)( EBdet λ−  giving maxλ  the 
maximum  eigenvalue;  

• One solves the matrix equation ,= PBP maxλ  giving the corresponding eigen 

vector P  which is the best importance weights vector.  
One should note that ijb  are subjective numbers given by decidents. Some papers 
give hints on how to express the linguistics appreciations of the relative importance 
(such as: faible, reasonable small, small, big, reasonable big, etc) in terms of numbers 
(marks) from 1 to 9.  

3.2.  Least squares method  
This method assumes that the sum of squares of errors between  theoretical weights 

jij pb  and empirical ones ip  is minimum, i.e.  
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1.=0,>,=)(

1=

2

1=
i

m

i
iijij

m

j
ppminppb ∑∑ −  (3.4) 

Being a minimization problem with constraints we use the Lagrange multipliers 
(Andrasiu et. al., 1986; Huang and Yoon, 1981) method, namely  

 
1)}()({

=1

2

=1=1
−λ+− ∑∑∑ i

m

i
ijij

m

j

m

iP
pppbmin  (3.5) 

which gives the following system of 1+m  linear equations  

 0.=1,0,1=)()(
1=1=1=

−≤≤λ+−−− ∑∑∑ i

m

i
ijij

m

j
iiiiij

m

i
pmippbbppb  (3.6) 

From the system (3.6) we obtain ),(= λii pp  then from the last equation we obtain the 

solution *λ  giving finally the best weights .),1(= ** mipp ii ≤≤λ   

3.3.  The Entropy Method 
The previous methods used the subjective information given by decidents in matrix 

.B  This method used the elements 0>ija  of the matrix .A  The first step is to 
normalize (Andrasiu et. al., 1986; Huang and Yoon, 1981) the elements of the criteria 
(i.e. the columns of A ) as  

 .1,=

1=

mj
a

a
p

ij

n

i

ij
ij ≤≤

∑
 (3.7) 

Then, we calculate the  normalized entropy of the criterion j  as  

 ijij

n

i
j plogpkH ∑−

1=
=  (3.8) 

where: 
nlog

k 1=  is a normalizying constant which gives 10 ≤≤ jH  (resulting from 

Shannon's entropy). The measure of  diversity of the values of the criterion j  is then  
 .1,1= mjHd jj ≤≤−  
The importance weights given by this method are  

 

1.=,1,=
1=

1=

j

m

i
j

m

i

j
j pmj

d

d
p ∑

∑
≤≤  (3.9) 

If, apart from the matrix A , the decident gives a priori importance weights 

1,=,,...,, 1=21 j
m
im λλλλ ∑  then the method of entropy is improved giving the best 

importance weights as  

 ,1,=

1=

0 mj
p

p
p

kk

m

k

jj
j ≤≤

λ

λ

∑
           (3.10) 
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satisfying the condition 1.=0
1= j

m
j p∑  Let us note that instead of entropy given by (3.8) 

we can use  Onicescu's informational energy (see Onicescu, 1966; Onicescu and 
Stefanescu, 1979) given by  

 mjpe ij

n

i
j ≤≤∑ 1,= 2

1=
 (3.11) 

where: 11
≤≤ je

n
, ( ijp  given by (3.7)). In this case we take  

 ,=,1=

1=
k

m

k

j
jjj

d

d
ped

∑
−       (3.12) 

or if apriory subjective weights mjj ≤≤λ ,1  are given, then,  

 .=

1=

0

ii

m

i

jj
j

p

p
p

λ

λ

∑
 (3.13) 

Note that the interpretation of informational energy is inverse to the interpretation of 
entropy,  namely, when energy is maximum, the entropy is minimum and vice versa. 
This does not change the meaning of diversity.  

4. Some methods for solving MADM problems 

There is a large number of methods to solve MADM problems which depend of the 
information we have about the problem, such as:  

• Methods for problems without any information about criteria or about decision 
alternatives.To this group belong the method of dominance, the method 
MAXIMIN and the method MAXIMAX.  

• Methods using information about criteria (they are methods involving weights 
of importance of criteria). The set of this kind of methods is very large; we 
mention only some of them: conjunctive and disjunctive methods; 
lexicographic method and permutation method; the simple additive weighting 
method (SAW); the hierarchy additive weighting method; method of 
diameters; method of Onicescu; ELECTRE method; TOPSIS method (see 
later); method of hierarchic combinations; etc.  

• Methods using information about decision alternatives. Examples of this type 
are: method LINMAP; iterative weighting additive method; method of 
multidimensional scalling.  

In the papers (Resteanu, Andreica and Vaduva, 2006; Vaduva and Resteanu, 2008) 
we present a package and a site (called OPTCHOICE) devoted to learning and 
application of MADM methods. The methods implemented are the most known and 
used MADM methods. In the following we present some of these methods, illustrating 
two applications, and refer also to solving problems containing stochastic and fuzzy 
criteria.   
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In the next section, we present some known performant methods for solving cardinal 
MADM problems (Andrasiu et. al., 1986; Huang and Yoon, 1981; Yu, 1985; Zeleny, 
1982).  

4.1.  Some cardinal MADM methods 
Two of the best accepted MADM methods (Swenson, P.A. and McCahon, C.S., 1991) 
are SAW (Simple Additive Weighting) and TOPSIS (Technique for Order Preference 
by Similarity to Ideal Solution). We will present first these methods.  
4.1.1.  Simple Additive Weighting 
Let us consider A=||aij|| the decision matrix, 0., ≠∈ ijij aRa  (If some 0=ija , then by a 
translation 0,,:= ≠+ hhaa ijij  we obtain 0≠ija ). Assume that all criteria have the  
sense=max; If a cardinal (numerical) criterion jC  has the  sense=min then we change 

the entries from the column j  of matrix a  such as ija  becomes 
ija
1  and the sense of 

criterion jC  is now  max. If some attribute takes initially discrete  linguistic values, 
they will be transformed conventionally by the decident into some real numbers (e.g. 
marks). In the following we assume that 0.≠ija  The SAW method assumes that the 
probability vector P=(p1,p2,…,pm) of weights of importance is known.  
The SAW method consists in the following steps (Andrasiu et. al., 1986; Huang and 
Yoon, 1981; Swenson and McCahon, 1991):  
Step 1. Normalize elements of the decision matrix a , using one of the mentioned 
methods, obtaining the matrix ||=|| ijrR .  

As concerns the normalization, note again that 1.<0 ≤ijr   

Step 2. Calculate the values of the function RAf →:  ( A  is the finite set of 
alternatives) as  

 

ni
p

rp

Aff

j

m

i

ijj

m

j
ii ≤≤

∑

∑
,1=)(=

=1

=1                    (4.1) 

where: jp  are positive weights representing the relative importance of criteria (if jp  

are probabilities then 1=1= j
m
j p∑ ). 

Step 3. Order the values if  obtaining the ordered sequence .<...<< )((2)(1) nfff  To the 
sequence )(if  correspond ordering (or ranking) of the alternatives .,1)( niA i ≤≤  The 
best alternative is )(nA  corresponding to .)(nf   

In general, the result of SAW does not depend on the normalization technique. 
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4.1.2.  Technique of Order Preference by Similarity to Ideal Solution 
This method consists in the following steps (Andrasiu et. al., 1986; Huang and Yoon, 
1981; Swenson and McCahon, 1991):  
Step 1.  Normalize the decision matrix  a , obtaining  the normalized matrix R  (as in 
section 3).  
Step 2.  Build-up the  weighted normalized matrix ||=|| ijvV  where: 

.,1,1= mjnirpv ijjij ≤≤≤≤  

Step 3. Build-up the  ideal positive solution +V  and the  ideal negative solution −V  
defined as  

),...,,(=),,...,,(= 2121
−−−−+++ + mm vvvVvvvV  

where:  

 
⎪⎩

⎪
⎨
⎧

+
oneminimumaisjcriteriontheifvmin

onemaximumaisjcriteriontheifvmax
v

ij
i

ij
i

j =  (4.2) 

  
⎪⎩

⎪
⎨
⎧

−
oneminimumaisjcriteriontheifvmax

onemaximumaisjcriteriontheifvmin
v

ij
i

ij
i

j =  (4.3) 

Step 4. Calculate  distances between weighted normalized entries ijv  and each of the 
ideal solutions (one uses the Euclideean distance), namely  

 
.)(=,)(= 2

1=

2

1=

−−++ −− ∑∑ jij

m

i
jij

m

j
vvDvvD  (4.4) 

Step 5. Calculate for each alternative the  relative closeness to the ideal solution as  

 .=
−+

+

+ ii

i
i

DD
D

Q  (4.5) 

One should note that 1.<<0 iQ   
Step 6. Order the values of iQ  obtaining .... )((2)(1) nQQQ ≤≤≤  The best alternative is 

)(nA  corresponding to .)(nQ   

4.2.  Combining several solutions 
If we apply two MADM methods (i.e. based on SAW or on TOPSIS), we may obtain 
different solutions (maybe even different orderings of alternatives!). Practical 
experience shows that the  best alternative )(nA  is almost the same for any MADM 
method used. Finally we are interested to obtain one solution by combining the two 
ones. The following proposed procedure gives an unique solution.  
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Step 1. Formulate a new MADM problem with two criteria corresponding to the two 
solutions. The MADM decision matrix is an 2×n  with elements 2,1,1 ≤≤≤≤α jniij  
defined as  

 
⎩
⎨
⎧

α
2=

1=
=

jifQ
jiff

i

i
ij            (4.6) 

where: niQf ii ≤≤,1,  are the values calculated by SAW and TOPSIS methods, 
respectively. The weights assigned to criteria could be 0.5  each, or could be 
specified by the decident.  
Next, apply one of the cardinal methods presented in the previous section; here we 
propose the SAW method.  
Step 2. Perform a normalization of the matrix ¦¦,=¦¦ ijalpha α  according to one of the 
procedures specified in the section 3, obtaining the matrix 2.,1||,1=|| ≤≤≤≤ jnirR ij   

Step 3. Calculate the corresponding )(= ii AFF  by the formula (4.1);  

Step 4. Order the values iF  obtaining .<...<< )((2)(1) nFFF   

To the )(iF  corresponds the alternative .)(iA  Therefore, the ranking of alternatives is 
.... )((2)(1) nAAA ppp  The best solution is the alternative .)(nA   

Remark. Most of the cardinal MADM methods are based on calculation of a numerical 
function (such as f  given by (4.1) or Q  given by (4.5)) and the solution derives from 
ranking values that function.  
Note. If for an initial MADM problem there are m  solutions deriving from m  different 
methods, given by values of some functions mjg j ≤≤,1  (of the type f  or Q  from 
above), then, a new MADM cardinal problem can be formulated as in Step 1 of this 
section, with the decision matrix mjnidD ij ≤≤≤≤ ,1||,1=||  defined as  

 )(= ijij Agd  (4.7) 
with the probability vector P  either fixed-up by the decident, or determined as in 
section 3 by using the matrix B  of preferences , also given by the decident. Then, an 
algorithm (such as SAW or TOPSIS) can be applied obtaining the final  combined 
solution.  

5.  Processing of stochastic entries 

Assume that an entry ija  is a real random variable X  specified either as a discrete 
probability distribution in the form  

 1,=0,>,,
...,,
...,,

:
=121

21
i

k

i
ii

k

k ppRa
ppp
aaa

X ∑∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛  

or as a continuous probability distribution given by its probability density function 
(p.d.f.) )(xf  in the form  
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 1.=)(,<<<],,[),( dxxfbabaxxf~X
b

a∫∞−∞∈>  

In other words, the elements ii pa ,  in the discrete case or )(,, xfba  in the continuous 
case are given, for a stochastic MADM problem. Many of the methods for solving 
MADM problems are reduced to solving cardinal (deterministic) problems. This idea is 
applied here for solving stochastic MADM problems in the sense that we first 
transform a stochastic criterion into a cardinal one. More precisely, the stochastic 
decision entry ija  of the matrix |||| ija  is transformed into a cardinal (deterministic) 
entry .ijh   

The procedure consists in the following steps:  
Step 1. A stochastic entry X  is transformed into a  standardized stochastic entry Y  
in the form  

 
σ
XY =  (5.1) 

where: )(=2 XVarσ  is the variance of X  (i.e. σ  is the  standard deviation of X ).  
In the discrete case we have  

 22

1=

22

1=
=])[(=,=][= mapmXEpaXEm ii

k

i
ii

k

i
−−σ ∑∑  

and in the continuous case we have  

 ,)(=])[(=,)(=][= 2222 mdxxfxmXEdxxxfXEm
b

a

b

a
−−σ ∫∫  

assuming that m  and 2σ  exist.  

According to (5.1) the discrete distribution of Y  is  

 
σ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ i
i

k

k a
b

ppp
bbb

Y =,
...,,,
...,,,

:
21

21

    
                                (5.2) 

and in the continuous case the probability density function of Y  is  

 .=,=],,[),(=)(
σ

β
σ

αβα∈σσ>
bayyfyg~Y     (5.3) 

The  range of standardized r.v. Y  is α−β=ar , where, in the discrete case 
.=,= 1 kbb βα  If the range is ∞  then one finds a finite interval ],[ βα  such as: 

,=]),[( pYP βα∈  with p  close to 1 (for instance, if ),( σmNormalY a  then 

σ+βσ−α 3=,3= mm  with 1101= 4 ≈− −p . For distributions like )(λExp  or 
),( aLomax θ  the range is 0,=α  and β  is defined using the cdf )(xF  such as 

410,1=)( −≤−β ppF ).  

Step 2. The next proposed step is to assign to a stochastic entry Y  in the decision 
matrix the  information contained in the corresponding probability distribution. This 
information can be represented either by  Shannon's entropy or by  Onicescu's 
informational energy of .Y   
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In the discrete case the entropy of Y  is  

 ii

k

i
plogph ∑−

1=
=  (5.4) 

and the informational energy is  

 
.= 2

1=
i

k

i
pe ∑   (5.5) 

In the continuous case the entropy of Y  is  

 dxxflogxfdyyglogygh
b

a

))(()(=)()(= σσσσ−− ∫∫
σ

σ

β

α

 (5.6) 

and the informational energy is  

 
.)(=)(= 222 dxxfdyyge

b

a

σσ ∫∫
σ

σ

β

α

 (5.7) 

Now, the decision matrix of the problem has entries corresponding to the criterion jC  
in the form ijh  or ije , i.e. it is a cardinal one.  

Note. In the continuous case, the formula (5.7) says that the informational energy of a 
random variable X  having the density )(xf  is  
 )]([= XfEe     (5.8) 
and the entropy is  
 )].([= XflogEh −                                                (5.9) 
In Vaduva (1989) the following is presented: 
Proposition. 1 The probability density function )(vg  of the random variable )(= XfY , 
is  

 }.)(|{=)(),(=)( vxfxmesvAvAvvg ≥′−                   (5.10) 
For some particular distributions the p.d.f of )(= XfY  are (Vaduva, I., 1989):  

1.1.  For exponential distribution )(λExp  we have 
λ
vvg =)( , i.e. )(= XfV  is uniformly 

distributed on ].[0,λ  This suggests an inverse method for simulating ),(λ> Exp~X  
namely:  

• generate V  uniform on ];[0,λ   

• calculate ).(1=
λλ

−
VlogX  

1.2.  For the normal (0,1)N  distribution we have 1/2)]2(22[=)( −π− vlogvg  for 

.
2
10

π
≤≤ v   

1.3.  For the bivariate normal )( I0,N  (I=the 22 ×  unit matrix),the p.d.f. of ),(= 21 XXfV  
is ,2=)( πvg  i.e. V  is uniform. 
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Because the proof of this fact is related to the well known Box-Muller method for 
simulating this distribution, one obtains the following method of simulating this 

distribution, namely: if V  in uniformly distributed on ]
2
1[0,

π
 then, the random point 

),( 21 ′XX  on the curve VXXf =),( 21  is normally )(0,IN  distributed.  

In Vaduva, I. (1989) the pdf )(vg  is calculated for a bivariate −t distribution and for a 
bivariate Cauchy distribution; note that )(vg  is not allwys a uniform density.  
Densities )(vg  could be used to calculate entropy and informational energy.  
By direct calculation (Onicescu, 1966; Onicescu and Stefanescu, 1979), one can 
obtain informational energy for particular distributions, namely:  

• for the normal ),( σmN  distribution we have 
σπ2

1=e ;  

• for the exponential )(λExp  distribution we have 
2

= λe ;  

• for standard Cauchy distribution we have 
π2
1=e .  

If the calculation of e  or h  is easier with (5.8) and (5.9) then the p.d.f. of )(Xf  
should be used, as an alternative to (5.6) and(5.7).  
The stochastic criteria in a MADM problem could be processed in two ways:  

.10  Consider in the decision matrix for a stochastic criterion jC  the  information per 
range defined as  

 
.==

α−βα−β
ij

ij
ij

ij
e

aor
h

a  (5.11) 

Now instead of column j  in the initial decision matrix, include two columns: one with 
the mean value of the random criterion jC  conserving the initial sense ,jsense  and 
another column with entries from (5.7) with maxsense =  for entropy or minsense =  
for energy. Therefore, if the initial decision matrix (having m  criteria) contains s  
stochastic criteria and sm −  cardinal criteria, then the decision matrix will contain 

sm +  cardinal criteria. This cardinal problem will give the MADM solution of the initial 
problem.  

02 . An alternative procedure is to solve first separately the cardinal problem of s2  
criteria deriving from the initial s  stochastic criteria, as mentioned in the previous 
pct. .10  Then, build up a new MADM problem with the initial non-stochastic sm −  
criteria and fill it in with a new criterion consisting of the solution of the cardinal MADM 
problem of s2  criteria deriving from the s  stochastic criteria. The solution of the initial 
MADM problem will be the solution of the last cardinal problem containing 1+− sm  
criteria.The cardinal attributes of the last criterion are the  ranks of alternatives 
resulted for processing stochastic criteria, or the  function g  (of the form f  or Q ) 
which orders the set of stochastic criteria.  
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6. On processing fuzzy criteria 

6.1.  Introduction 
A fuzzy set ,A  (Vaduva. and Albeanu,  2004; Zimmermann, 1994) is defined in terms 
of a referential X  (a  crisp set) by its  membership function ,[0,1],)( XxxA ∈∀∈ϕ  which 
gives the  degree of ownership of Xx ∈  in .A  When A  is a discrete set, the degree of 
ownership is specified to each element of .A  Entries of fuzzy criteria of a MADM 
problem could be expressed in two ways: (1) as linguistic variables, (2) as fuzzy 
numbers (with the referential= RX = ).  
(1). Some details on  linguistics variables. Such a variable is defined as the quintuple 

),,),(,( MGXxTx  where x  is the name (label) of the variable, )(xT  is the  set of terms 
of x , X  is the  univers set, G  is a  grammer specifying the syntactic rules to produce 
a  linguistic value and M  is a  semantic rule to give the meaning of a linguistic value. 
For instance the meaning of a linguistic value ,t  denoted by ),(tM  is a  membership 
value associated to .t  
 Example. Let {1..100}=X  and =v  the linguistic value labeled as  age, and the set of 
linguistics values }.,,{=)( oldadultyoungvT  (These values are defined in terms of 
subintervals of X .) A term can be modified by a  modifier that modifies its meaning; 
i.e. very old, very young, etc. Modifiers are expressed in terms of  arithmetic 
operations such as  power. For instance, if a  is a  primary term ( [0,1]∈a , i.e a  is the 
membership value of term) then  

 .=;=;= 2alessaveryveryavery  (6.1) 

Therefore, the operation of power, )(0,, ∞∈pap  defines a large family of modifiers; 
note that for ∞=p  the modifier can be named  exact since all membership degrees 
less than 1.0  are  suppressed. 
(2). Some details regarding the modifier of a fuzzy number ),(xAϕ  which refers to an 
attribute entry of a MADM matrix, as a fuzzy set A  which is a continuous  membership 
function are given in (Vaduva, I. and Albeanu, Gr.,  2004; Zimmermann, H.J., 1994).  
For instance, the power modifier is in the form  

 ,)(=)( duuAm p
AXp ϕ∫  (6.2) 

and the  lag modifier is  

 ,)(=)( dxsxAm Aal −ϕ∫  (6.3) 

where: s  is the seize of lag; The fuzzy numbers used are of different types but the 
most familiar are:  
 triangular fuzzy number denoted by ),,( cma∆  as defined by the membership function  
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 trapezoidal fuzzy number denoted by ),,,,( dcbat  as defined by the membership 
function  
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For processing fuzzy attributes we propose the use of the  precision index based on 
the  Hartley entropy given by (6.7) bellow. It is defined in terms of the  cut of level α  
of a fuzzy set A  denoted by αϕ][  which is the crisp set  

 },)(|{=][ α≥ϕϕ α xx    (6.6) 
where: )(xϕ  is the membership function of .A  The (Hartley)  entropy of the fuzzy set 
A  (as defined by Higashi and Klir in 1983 cited in Vaduva and Albeanu,  2004) is  

 ,|)][(|=)( 2
1

0
αϕ α∫ dlogAH  (6.7) 

where: || A  is the cardinal of the crisp set .A  This  fuzzy entropy is used to define a  
precision index of the fuzzy set A  represented by its membership function which is 
given as  

 ,=)(=)( )(AH
H eAprApr −     (6.8) 

having the following properties  
).()(1;=)(1=)([0,1];)( BprAprthenBAifAcardAprApr ≥⊆↔∈      (6.9) 

Similarly to stochastic criteria we can introduce also the  fuzzy energy defined as  

 αϕ α∫ dAE 21

0
|)][(|=)(  (6.10) 

with the corresponding precision index  

 .=)( )(AE
e eApr −  (6.11) 

One should note that similarly to )(aprH  the )(Apre  satisfies the conditions  

).()(1;=)(=)(,1],[)( 11 BprAprthenBAifAcardeApreApr eeee ≤⊆↔∈ −−  

6.2.   Ordering of alternatives with respect to fuzzy criteria 
There are several known methods for ranking alternatives by fuzzy criteria. We 
present first two of them.  
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The MAXIMIN method. This method is based on the order relation for fuzzy numbers 
defined as:  
Definition 1 For the fuzzy numbers GF,  the relation ≥  is defined as  
 )}.(),({=)}(),({=),(

,,
vuminsupvsupuminsupGF gf

vuvu
G

uv
F

u
ϕϕϕϕϕ

≤≤
≥  (6.12) 

and the relation <  is defined as  
 ).,(1=),(< GFGF ≥ϕ−ϕ  (6.13) 
The MAXINNMIN method. If the decision matrix is in the form )(= ijA µ  where: ijµ  are 
fuzzy numbers, then the MAXIMIN method selects the alternative 

0i
A  such as  

 .=
0 ij

ji
ji minmax µµ  (6.14) 

The SAW fuzzy method. This method is based on the algorithm described in the 
subsection 4.1.1. The "cardinal" operations in that subsection are made now in terms 
of operations with fuzzy numbers defined as  

 
[0,1].),(=)();()()()(=)( ∈∀ϕϕηµ−η+µϕ µη+µ kxkxxxxxx k  (6.15) 

The ranking of alternatives is done according to order relations defined by 
(6.12),(6.13).  
The TOPSIS fuzzy method. In order to apply the TOPSIS method to criteria 
expressed as fuzzy numbers it is necessary to use also the  distance between fuzzy 
numbers. We remind first the  Hausdorf distance on .nR   

Definition 2 Let BA,  be sets in .nR  If |||| a  is the Euclidian norm of ,nRa ∈  then 
the following distances are Housdorf distances:  
 ||||=),( bainfBad

Bb
−

∈
 (6.16) 

 ||||=),( bainfAbd
Aa

−
∈

 (6.17) 

 
)},(),,({=),( AbdsupBadsupmaxBAd

BbAa ∈∈
                             (6.18) 

Definition 3 Distances between fuzzy numbers, coresponding to Housdorf distances 
are:  
 ),][,]([=),(

[0,1]
αα

∈α
∞ ηµηµ dsupd  (6.19) 

 ,)][,]([=),(
1

01 αηµηµ αα∫ ddd  (6.20) 

 

rr
r ddd

1
1

0
][,]([=),( ⎥⎦

⎤
⎢⎣
⎡ αηµηµ αα∫  (6.21) 

(Notations for fuzzy numbers as I (6.5) are used). 
Using distance between fuzzy numbers, all operations involved in the algorithm 
TOPSIS are defined for  all attributes represented as fuzzy numbers.  
New ways to handle fuzzy criteria. As we mentioned before, there are MADM 
problems with s  fuzzy criteria and sm −  cardinal entries. In this case, one way could 
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be to use all algorithms for cardinal methods, using fuzzy operations and orderings 
when required. But could be also three possible alternatives:  
(a). To perform a separate ordering of alternatives with respect to fuzzy criteria 
obtaining an order of alternatives described in terms of fuzzy numbers of attributes. 
Then, perform a  defuzzyfication operation for obtaining a cardinal criterion. The sm −  
cardinal criteria with the last criterion (obtained from fuzzy criteria) will form a cardinal 
MADM problem with 1+− sm  criteria.  
(b). To perform the operation of defuzzyfication of all fuzzy entries, obtaining a 
cardinal MADM problem with m  criteria. The solution of the last problem is the 
solution of the original problem. In both situations we propose the following way to use 
fuzzy criteria, similar to the stochastic criteria, namely:  
(c).  To attach to every fuzzy citerion an INFORMATIONAL criterion defined in terms 
of precision index. Thus, to each fuzzy  criterion will correspond two criteria: one the 
criterion itself and the other criterion a cardinal one, say, K  defined in terms of 
precision index with the  sense=max for )(KprH  and the  sense= min for ).(Kpre  After 
defuzzyfication of fuzzy criteria one obtains a decision problem with cardinal entries 
and sm +  criteria.  
There are different  defuzzyfication procedures. We specify only two which are 
suitable for fuzzy (continous or discrete) attributes in MADM problems:  
cog = center of gravity defined as  

 

,
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)(

=)(,
)(
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=)(
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1=
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coa = center of area  defined as 

 ).(=)(,)(=)(
)(=

)(

1=
)(

)(
yjydxxdxx A

q

Acoaj
jA

Acoa

j

sup
x AcoaA

Acoa

inf
X

ϕϕϕϕ ∑∑∫∫  (6.23) 

Note that )(Acoa is a kind of empirical  median in the discrete case, therefore it can be 
calculated using this similitude.  
In practice it might happen that for some criteria some of their values be cardinal and 
the other ones fuzzy. Then, one way to handle such a criterion is to do first 
defuzzyfication of fuzzy attributes and so the whole criterion becomes cardinal.  

7.   On two applications of MADM 

7.1.  Introduction 
A reasearch project  Excellency Level Tools for Multi-Attribute Decision Making Field's 
Promotion developed by the National Institute for Research and Dervelopment in 
Informatics of Romania, the University of Bucharest and the Academy of Economic 
Studies in Bucharest, was developed during 2005-2008 with the following 
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components: a Computing Package for analyzing and solving MADM problems; a 
module (e-course) for learning MADM applications; and a module for certifying 
(testing) the user of the package. All these functions are incorporated in an IT product 
called OPTCHOICE (see reference Resteanu, Andreica. and Vaduva., 2006; Vaduva 
and Resteanu, 2008). Types of MADM methods implemented in OPTCHOICE are: 
MAXIMIN,MAXIMAX, lexicographic, with ordinal preferences, conjuctive, disjunctive, 
elimination by aspects, permutation, linear assignment, SAW, Hierarchical Additive 
Weighting (HAW), diameters, Onicescu, ELECTRE, TOPSIS, TODIM, Pareto, 
Saphier-Rusu, minimization of deviation, scores, hierarchical combinations, LINMAP, 
multidimensional scaling with ideal solution, Saaty, etc. Using some algorithms from 
OPTCHOICE we performed two applications which are presented for short in the 
following.  

7.2.  Ordering faculties of the University 
A University consists of 19 faculties and they must be ordered (ranked) according to 
12 criteria. The faculties are identified by a  code:1,2,...,19 and the criteria with the 
corresponding  sense  and  weights vectors are presented in the following table  
 

List of criteria, sense and weights vectors 

No  Criteria Sense Weights 
1 Total number of state students Max 0.09 
2 Number of students paying fees per member of staff Max 0.07 
3 Total number of students per member staff Max 0.12 
4 Average salary per professor Min 0.12 
5 Average salary per reader (senior lecturer) Min 0.06 
6 Average salary per lecturer Min 0.06 
7 Percentage of professors from total staff Min 0.10 
8 Percentage of readers from total staff Min 0.07 
9 Percentage of lecturers from total staff Min 0.07 
10 Surplus/deficit of the faculty (mil. currency) Max 0.12 
11 Number of auxiliary staff (secretaries, technicians.) Min 0.06 
12 Average salary per member of auxiliary staff Min 0.06 
 
In the table "surplus" is a positive amount of money while "deficit" is a negative one.  
The solution requird by the University senate is to find a decreasing order of the 
faculties. Note that according to weights assigned, criteria 1, 3, 4 and 10 are the most 
important, while salaries for low level staff and auxiliaries are less important. The 
figures in the table were collected from the files of faculties. The number of students is 
adjusted according to some coefficients of the Ministry of Education (e.g. one student 
from the faculties of natural sciences is 1.3 to 1.6 as compared to a student from 
humanistics who has the coefficient = 1).  
The following table presents the decision data. 
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Decision data 

No. 1 2 3 4 5 6 7 8 9 10 11 12 
1 2675 1.34 45 9383 5341 4921 0.29 0.17 0.35 2.67 13 1335 
2 1950 0.72 35 7907 2462 2139 0.29 0.15 0.34 0.98 11 1325 
3 3324 0.67 31 9680 5680 3341 0.17 0.17 0.32 -0.27 14 1100 
4 1857 0.55 28 8901 4710 2552 0.17 0.10 0.28 -0.21 8 1436 
5 606 1.68 33 6534 2453 2537 0.27 0.13 0.36 0.13 2 1269 
6 4143 0.15 6 6336 3546 2284 0.27 0.19 0.30 -11 76 1033 
7 1007 0.41 21 5602 3477 1714 0.42 0.07 0.17 -0.85 3 2332 
8 331 0.31 13 11467 3055 1654 0.12 0.13 0.5. 0.68 1 2008 
9 3125 0.11 8 5367 3087 2049 0.26 0.22 0.30 -0.47 78 926 
10 2323 0.56 31 7358 3843 2033 0.17 0.05 0.29 -2.78 31 926 
11 1457 0.37 15 4912 2963 2028 0.41 0.21 0.21 -2.13 5 990 
12 312 0.03 9 110 1754 1965 0.01 0.12 0.24 -0.48 1 714 
13 2744 0.20 20 5738 2300 1910 0.24 0.21 0.31 -6.12 7 1138 
14 2854 0.18 10 4757 3367 2419 0.37 0.15 0.19 -8.27 21 1049 
15 3370 0.09 7 5255 2875 1874 0.29 0.17 0.26 -5.87 27 1056 
16 662 0.75 24 5027 3850 2594 0.14 0.18 0.14 -0.65 4 1072 
17 4049 0.73 13 5067 2806 1486 0.19 0.21 0.34 -5.84 14 1044 
18 1314 0.11 9 4508 2526 1614 0.23 0.22 0.34 -2.42 72 1165 
19 1694 0.95 21 5702 2688 1443 0.13 0.17 0.27 1.79 6 1536 

  
Since all input data are  cardinal there were applied only two of the methods reported 
(Swenson and McCahon, 1991) as beeing good with respect to their complexity, 
namely SAW and TOPSIS. The results obtained by these methods are presented in 
the following table. The order of the faculties resulting from the SAW metdod is serial, 
while the order resulted from TOPSIS is somehow different. Although,  the first two 
faculties have the same rank as well as faculties  9-19. Overall we conclude that 
SAW and TOPSIS methods give a similar order of the alternatives. One can see that 
criterion 10 (surplus/deficit) having a high weight ( 0.12=10p ) is very important for the 
ordering of alternatives. Furthermore, alternatives 16-19 have close values for 
functions f  and .Q  Note also that alternatives 1 and 2 have the same rank for both 
methods.The best and the last ranked alternatives have the same rank for both 
methods, which is considered the main aim of MADM applications. By comparying 
values of functions f  and Q , which have close values for alternative which have 
close, different ranks, one can accept the ranking given by the method for wich 
differences of figures of the corresponding function are comparably larger (in our case 
the SAW method). 
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Results of a MADM application 

Faculty f of SAW Rank of f  Q  of TOPSIS Rank of Q  
1 0.574702 1 0.706133 1 
2 0.48130 2 0.403615 2 
3 0.416766 3 0.365562 4 
4 0.388023 4 0.358544 5 
5 0.377665 5 0.356807 3 
6 0.316790 6 0.339552 7 
7 0.309472 7 0.347743 6 
8 0.299454 8 0.329757 8 
9 0.295305 9 0.325576 9 
10 0.288292 10 0.317848 10 
11 0.261160 11 0.311862 11 
12 0.240736 12 0.305434 12 
13 0.193280 13 0.274758 13 
14 0.133284 14 0.257312 14 
15 0.073655 15 0.233541 15 
16 0.038269 16 0.206828 16 
17 0.021641 17 0.204988 17 
18 -0.084386 18 0.157250 18 
19 -0.215411 19 0.155256 19 

8.  On applying the MADM method for processing 
survey and pool data 

In this section we refer in short to an application of MADM to a problem requested by 
a privat TV Channel from Romania,  Realitatea TV. There were eight fields of social 
and political activities. The problem was to select the most representative Romanian 
personality in one year, with the highest notoriety in each field. (So far there were four 
edditions of this project; we refer only to the one which was proposed by us, but 
unfortunately not used.) A group of selectors defined a list of 20 persons from each 
field. The three  criteria were the following: the ranking given by specialists in each 
particular field; the rakning given by members of the association of each field; the 
ranking given by the whole population watching TV (i.e.  people, TV viewers).  
Suggestions for collection of data. The survey and pool data were collected 
referring to the starting list established by the groups of selectors for each field. The 
appreciations by the individuals of each "criterion" were recorded in terms of marks 
(integer numbers from 1 to 10 = the largest mark). In fact, there were eight MADM 
problems with three criteria each and collected data consisted in empirical probability 
distributions by marks for each of the alternative and for each field. (All attributes are 
therefore empirical distributions.) These distributions of each attribute are transformed 
into  fuzzy numbers as follows: the minimum mark a  with positive frequency and the 
maximum mark b  of positive frequency define the interval (support) of the 



Institute for Economic Forecasting 
 

 Romanian Journal of Economic Forecasting – 1/2012 60 

  

membership function; if the empirical distribution (e.d.) has only one mode, then that 
modal point is the peak of a triangular fuzzy number, while if the e.d. has several 
modes, then the two extreme modes (minimal and maximal) are peaks of  trapezoidal 
numbers. As the data collected from the population are of a very large sample size, 
there were considered for each alternative only the  percentage extracted from pool 
data, i.e. the percentage of respondents who prefered that alternative. (Note that the 
public could include also some other alternatives, but as they are expected to have 
very small frequencies, they will be ommited!) Thus, from the people’s vote, we 
associate to each alternative having probability (frequency) = p  a  binomial 
distribution ),,( pnBin  where n  is the number of participants to the vote. As n  is 
very large, according to the  Central Limit Theorem the number of people X  who 
gave the vote to that alternative is  normally distributed 

.)(1=),)(1,( pnppnpnpN −− σ  The fuzzy number associated to that attribute 

is a symmetrical one with support ],3,3[ σσ +− npnp  and the peak is .np   

Therefore, one of two ways may be chosen: to associate to attributes (i.e. entries) in 
the decision matrices fuzzy numbers as described, or to associate to attributes of the 
first two criteria probability distributions (selected according to a  test of goodness of 
fit) and for the third criterion (the vote of people), the normal distribution as mentioned.  
After transforming fuzzy entries or stochastic entries into cardinal ones, the 
processing might be performed with SAW and TOPSIS. Even if the procedure was not 
applied to real data, we expect that the best alternatives, for these two methods,will be 
similar to those in the case of section 7.1. 
Finally we underline that even the technique described in this section was not applied, 
it might be interesting as a methodological approach, mainly to collecting stochastic or 
fuzzy data. 
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