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Abstract 

The paper’s main objective is to examine the efficiency of renewable energy 
development in the EU using 2009 national data. We apply nonparametric techniques 
to determine efficiency estimators that provide an insight into the quality of renewable 
energy policy and its impact on the EU countries. We use nonparametric techniques 
to determine the DEA efficiency estimates and a bootstrap algorithm that corrects the 
efficiency estimates and also provides confidence intervals for the bias-corrected 
efficiency estimates. Moreover, our analysis reveals the energy policy impact by 
country on the development of renewable energy markets. The implications of the 
results are discussed in relation to the current developments in the EU renewable 
energy market and recent policy initiatives. 
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1. Background  

Despite several initiatives to promote renewable energy development in the EU 
countries, little research has been carried out to investigate the efficiency of these 
policies. There is an increasing need for a comparative analysis of the effectiveness of 
the reforms made by these countries in the renewable energy market. In order to 
measure the efficiency in the EU renewable energy market, we used non-parametric 
techniques to compute efficiency estimates for EU countries’ renewable energy 
markets, based on extensive international research and on personal interpretation of 
the efficiency of the energy sector.   
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Empirical data for 2009 regarding the indicators used in the models were collected 
from the European Commission. We employ the Data Envelopment Analysis (DEA) 
technique to obtain efficiency estimates. In addition, we use Bootstrap estimation 
methods to obtain more accurate estimates. Due to the sample size, we use an 
aggregate input that is meant to reduce the dimensions and avoid the curse of 
dimensionality.   
 The remainder of the paper is organized as follows. A brief overview of the 
literature in Section 2 places this study in the larger research context. The 
methodology is described in Section 3, and in Section 4 we present the data and 
variables of the models. The results are discussed in Section 5, followed by a brief 
conclusion.  

2. Literature review 

Measuring efficiency using parametric and non-parametric techniques is increasingly 
popular among researchers from different fields, as well as among practitioners. The 
applications can be made for different areas of research, such as: economics, social 
science, technology, etc. There are two ways to measure efficiency: parametric and 
nonparametric approaches. Because they are more flexible compared to the 
parametric approaches, we considered the non-parametric techniques and we combi-
ned them with the last years’ algorithms as bootstrapping the confidence intervals. 
In recent years, data envelopment analysis (DEA) has gained large popularity in 
energy and environmental research (see, for example, Lins et al., 2012; La Rovere et 
al., 2010; Fare et al., 2004; Boyd et al., 2002; Zaim, 2004; Arcelus and Arocena, 2005; 
Picazo-Tadeo et al., 2005 and Zhou et al., 2007). In the field of measuring the 
efficiency of energy utilities when environmental regulations are imposed, we can cite 
the research made by  Korhonen and Syrjanen (2003), Agrell and Bogetoft (2005) and 
Hattori et al. (2005).  
One of the key elements of the energy market restructuring and development is the 
electric power distribution. For this reason, studies using non-parametric techniques 
were elaborated in order to identify the technical efficiency of the electric power 
distribution industry, e.g. Edvardsen and Førsund (2003), Jamasb and Pollitt (2003) 
and Giannakis et al. (2005). The emerging market of renewable energy is not covered 
in many studies regarding the efficiency of its development  and this research 
attempts to fill in the gap in the literature regarding the efficiency measuring of the 
policies implemented to support the development of the EU renewable energy market. 

3. Methodology 

The efficiency analysis of the EU renewable energy sector uses nonparametric 
techniques in order to determine the efficiency estimates. The steps of this analysis 
are the following: first, we apply Data Envelopment Analysis (DEA); second, we use 
the bootstrap estimation algorithm in order to determine bias-corrected efficiency 
estimates and, third, a reduction in the dimensional space together with the bootstrap 
algorithm to obtain better information. Factor analysis is also employed as a prior step 



 The Renewable Energy Development: A Nonparametric Efficiency Analysis 

 Romanian Journal of Economic Forecasting – 1/2012 7 

  

of this investigation. The DEA techniques presented in this paper were defined by the 
work of Coelli et al. (2005), which represents the guidebook for our applications. 
Data Envelopment Analysis (DEA) is commonly used to evaluate the efficiency of a 
number of decision units (firms, countries, sectors, etc.). Coelli (1995), among many 
others, indicated that the DEA approach has one main advantage in estimating the 
efficiency scores: in contrast to parametric analysis (e.g., Cobb-Douglas function) it 
does not require to assume a functional form to specify the relationship between 
inputs and outputs. 
DEA uses linear programming in order to construct a non-parametric frontier over the 
data set. All observed points lie below or on the frontier and efficiency measures are 
computed relative to this frontier. Farrell (1957) was the first to use a non-parametric 
approach to define a production frontier. A linear programming problem is solved for 
each firm in a sample of N firms. Each problem has as solution an efficiency score 
taking values between zero and unit (Aldea and Ciobanu, 2011).  
For our study of the energy sector, we use an output orientation model under the VRS 
(Variable Returns to Scale) assumption, based on the following specification4:  
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where: Y is the output matrix,  X is the input matrix, Yi is the ith column of matrix Y and 
represents the outputs vector of firm/unit i, Xi

  is the input vector of firm i, and N1 is an 
1×N  vector of unit values. The optimum solution for output orientation is ∞≤φ≤1 .5 

The term 1−φ  represents the proportional increase in outputs that must be achieved 
by the firm i using the same amount of inputs. The term φ/1  defines the technical 
efficiency score that varies between zero and unit. 
Bootstrap algorithm for DEA estimators   
We shall briefly explain the bootstrap algorithm for DEA estimators as in Aldea and 
Vidican (2007a, b and 2009) and Aldea and Ciobanu (2011).  
In 1979, Efron introduced the bootstrap procedure in order to analyze not only the 
efficiency scores but also how sensitive they were to the sampling variation. The basic 
idea is how to simulate repeatedly or replicate the data generating a process and how 
to apply the initial estimator to each simulated sample. In the end, the final estimators 
replicate the sampling distribution of the original estimation.  
In Simar and Wilson (2000a, 2007), the general principles of the bootstrap algorithm 
are fully explained. In this paper, we only briefly explain the bootstrap method, using 
the same denotation as Simar and Wilson (2007). The bootstrap procedure is used to 

                                                           
4 Defined by Coelli et al. (2005) in Chapter 6. 
5 Initially, Φ is the efficiency score defined by Farrell (1957) for an output-oriented model with 

CRS assumption. 
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replicate finite sample data6 nX  generated by the initial data generation process (P) 
by a number of replicas (B) that tend to infinity. Doing so, there will be two worlds: the 
real and the bootstrap world. In the bootstrap world, the algorithm constructs a world 
similar to the real one but the estimators from the real world become here the true 
ones, which include the data generation process ( P̂ ) over the production set ( Ψ̂ ) and 
the efficiency measure )y,x(ˆVRSλ  (variables returns to scale are assumed). A new 

data set *
n

X  will be obtained in the bootstrap world from the estimator of the data 

generation process in the real world ( P̂ ), which is now known. For each point in the 
bootstrap world, a new estimator )y,x(ˆVRSλ  is obtained. This way, the new estimator 

)y,x(ˆ*
VRSλ  from the bootstrap world is an estimator of the estimator from the true 

world )y,x(ˆVRSλ , based on the sample generated in the bootstrap world *
n

X . The B 

samples generated by the use of P̂  and the application of the original estimator to 
these bootstrap samples will find a set of pseudo estimates )y,x(ˆ b,VRSλ , 
where B,...,b 1= . The distributions of these bootstrap values will lead to a Monte Carlo 
approximation of the sampling distributions )y,x(ˆVRSλ conditioned by P̂ . By the law of 
large numbers, B replicas must tend to infinity such as these approximations have 
errors that tend to zero. Also, the sample size should tend to infinity for the bootstrap 
to be consistent. Simar and Wilson (2007) suggest B=2000 replicas so that the 
confidence intervals provide a good approximation.  
In 1998, Simar and Wilson presented a bootstrap procedure based on confidence 
intervals. Their idea was to use bootstrap estimates of the bias in order to correct the 
bias of the DEA estimators. Their algorithm, which we apply in this paper, is based on 
bootstrapping confidence intervals, bias corrections and smoothing techniques (Aldea 
and Ciobanu, 2011).  
Briefly, using Simar and Wilson (1998 and 2007b), the steps to follow when we 
implement the homogenous bootstrap algorithm are:  

Step 1. Compute the efficiency estimates ˆ ˆ ( , ),  1,2,...,i i i ix y i nλ λ= =  based on the 

initial selection { }( , ),  1,2,...,n i iX x y i n= = ; 

Step 2. Select a bandwith h; 

Step 3. The set { }2 1 2 1 2
ˆ ˆ ˆ ˆ ˆ ˆ, , ..., , (2 ), (2 ), ..., (2 )n n nD λ λ λ λ λ λ= − − −  is defined and 

* * *
1 2, ,..., nβ β β  are generated by drawing with replacement; 

Step 4. * * *
1 2, ,..., nε ε ε  are drawn indipendenlty from the kernel function K(); 

compute: ** * ,  1,2,...,i i ih i nβ β ε= + = ,  

                                                           
6 We use the same denotation as Simar and Wilson (2007). 
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Step 5. Compute ***
iβ  as the standardized value of **

iβ  ( 1,2,...,i n= ), using 
** *

*** *
2 2 2 1 2(1 )
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= −∑  is the sample variance of the *

iβ  and 2
Kσ is the 

variance of the probability density function used for the kernel function .  These values 
are later used  to compute the new efficiency estimates 

; 

Step 6. Define the bootstrap sample { }* *( , ), 1, 2,...,n i iX x y i n= = , 

where * * 1ˆ
i i i iy yλ λ−= ; 

Step 7. Apply DEA technique to the generated set  { }* *( , ), 1, 2,...,n i iX x y i n= =  used 

as a reference set and compute the new efficiency estimates *ˆ ( , )x yλ ; 

Step 8. Repeat Steps 3-7 for B times until we get the bootstrap estimates 

{ }*ˆ ( , ),  1, 2,...,b x y b Bλ = . 

The bias is explained by: ˆ ˆ( ( , )) ( ( , )) ( , )VRS VRSBIAS x y E x y x yλ λ λ≡ −  (which is a 
negative number).  

Using the bootstrap estimates{ }*ˆ ( , ),  1, 2,...,b x y b Bλ = , the bias of the estimator 

ˆ ( , )VRS x yλ  can be estimated by the following relation:  

1 *
,

1

ˆ ˆ ˆ( ( , )) ( , ) ( , )
B

VRS VRS b VRS
b

BIAS x y B x y x yλ λ λ−

=

= −∑   

The new estimator ˆ̂ ( , )VRS x yλ corrected with the previously explained bias is: 

1 *
,

1

ˆ̂ ˆ ˆ ˆ ˆ( , ) ( , ) ( ( , )) 2 ( , ) ( , )
B

VRS VRS VRS VRS VRS b
b
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The standard deviation in Tables 1 and 2 used for a 95% confidence interval is the 
sample variance of the bootstrap values *

,
ˆ ( , )VRS b x yλ , computed as 

2
2 1 * 1 *

, ,
1 1

ˆ ˆˆ ( , ) ( , )
B B

VRS b VRS b
b b

B x y B x yσ λ λ− −

= =

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
∑ ∑ that provides an estimate of the 

variance of ˆ ( , )VRS x yλ  - the output-oriented efficiency estimator. 
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 One of the recurrent problems of the efficiency analysis is given by the small size of 
the sample. The “curse” of dimensionality shows that if we work with small samples 
the efficiency estimates are better than the real ones and that is enough reason to 
question their reliability. If this is the case, one option is to reduce the dimensions by 
aggregating the inputs and/or the outputs in order to get a two dimensional space: one 
input-one output. Mouchart and Simar (2002) show how we should proceed in order to 
obtain the aggregated input (which is also our case). The main idea is to make a linear 
combination of the inputs and we get an aggregated input that also includes the 
information given by all the initial inputs (see Mouchart and Simar, 2002, for further 
information).  

4. Data  

The analysis is made from the perspective of efficiency of the measures to support the 
sustainable development of renewable energy market in each EU country, and we 
employ two models described below: 
• The EIDG Model uses one output (effectiveness indicator for energy from RES) 

and three inputs (energy intensity of the economy, energy dependency, the 
greenhouse gas intensity of energy consumption) and  

• The EIG Model uses one output (effectiveness indicator for energy from RES) and 
an aggregated input based on two of the previous inputs (energy intensity of the 
economy and the greenhouse gas intensity of energy consumption).  

The database used includes 27 countries. We defined several inputs and outputs for 
each model, which are presented as follows: the output, namely the effectiveness 
indicator for energy from RES is estimated as a ratio of the share of renewable energy 
in gross final energy consumption in 2009 to the target level of this indicator for 2020. 
For this indicator, we collected data from EurObserv’ER. In order to reflect sustainable 
development of the renewable energy market and by considering the data availability 
constraint we selected as inputs of the models the following indicators, available in the 
EUROSTAT database: energy intensity of the economy, energy dependency, the 
greenhouse gas intensity of energy consumption. 

5. Results 

We computed the DEA efficiency estimates, DEA efficiency corrected-estimates and 
bootstrap 95%- confidence intervals using FEAR 1.15 (designed by Paul W. Wilson7, 
Clemson University, U.S.), which is a library that runs R 2.12.0.   
R 2.12.0 is a software package that can be used to manipulate and compute data, as 
well as graphic representations. The software package is a synthesis of the new data 
analysis methods and it employs the S language that writes most of the functions 
used.    

                                                           
7 FEAR 1.15, designed by Paul W. Wilson, Clemson University, U.S.A. is a software library that 

can be linked to the R package. 
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FEAR 1.15 is a software library that can be connected to R 2.12.0. The FEAR routines 
allows the user to compute the DEA efficiency estimates for technical, allocative and 
total efficiency assuming different returns to scale (constant, variable or non-
increasing).   
As a previous step of the investigation, we use the Factor Analysis and 73% of the 
initial data are recuperated. Two factors are computed and a graphic representation is 
shown in Annex 1.  As one may see in Annex 1, we should focus our analysis on 
countries like Malta, the Netherlands and Bulgaria.   

5.1. DEA estimates and Factor Analysis 
We performed the multistage DEA output-oriented model with variable returns to scale 
(VRS) that generated efficiency estimates for the 27 countries used in the sample.  
5.1.1. The EIDG Model 
The VRS output-oriented DEA model generated average efficiency estimates for the 
27 countries, taking on values between 0.020 and 1, with an average of 0.75 over the 
period of time considered – 2009. Although the sample average is not very high, the 
limited number of DMUs (decision making unit) might be a reason for the high 
variation in the efficiency estimates. We found 11 countries with unit efficiency 
estimates: the Czech Republic, Denmark, Estonia, Ireland, Latvia, Hungary, the 
Netherlands, Austria, Romania and Sweden. Due to the sample size, this large 
number of efficient countries was expected.  
This result is justified for countries like Estonia, Latvia, Austria, Romania, and 
Sweden, which reached the highest renewable energy share in the gross final energy 
consumption in 2009 as compared to the target of this indicator for 2020. This 
evolution was accompanied by a decrease in their energy dependence, energy 
intensity of the economy, the greenhouse gas intensity of energy consumption.  
There is only one country with a relative high efficiency estimate: Belgium – 0.86. This 
country could increase the outputs by almost 14% with the available resources. Other 
countries with relatively high efficiency estimates are Portugal – 0.81 and Finland – 
0.82.  
On the opposite side, the least efficient countries are Malta (0.0206), Luxembourg 
(0.257) and the UK (0.266).  
5.1.2. The EIG Model 
Other studies also argue that the DEA results are more meaningful when there are 
enough DMUs to allow for a more varied comparison relative to the number of 
variables (outputs and inputs). However, when there are no more available data, the 
only option that we have is the dimensional reduction in the initial input space.  
By using an aggregated input, we rerun the analysis and obtain different and better 
results than those of the previous model. The average efficiency for the new model is 
0.693, which is not very different from the average of the first model, as it was 
expected to be. We also notice that the number of efficient countries is much lower: 
only 4 (Latvia, Hungary, the Netherlands and Sweden), as compared to 11 countries 
in the first model. As we can see, these 4 countries are among the efficient countries 
found by the first model.    
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Among the countries with high efficiency estimate we find Estonia– 0.94, Austria – 
0.98, Romania – 0.95 and Finland – 0.82 (these countries were among the efficient 
ones in the EIDG Model). The least efficient countries are Malta (0.206), Luxemburg 
(0.257) and the UK (0.195). More information about these efficiency estimates are 
obtained using the following bootstrap corrected-efficiency estimates.   

5.2 Bootstrap on the DEA estimators 
Using FEAR 1.15 package that implements Simar and Wilson’s (1998) bootstrap 
procedure, 2000 bootstrap samples are generated in order to estimate the confidence 
intervals for the distance functions that measure the technical efficiency. With the DEA 
routine we computed the Farrel output distance functions under variable returns to 
scale assumptions. We applied the bootstrap procedure for the DEA VRS efficiency 
estimates for one year (2009) to both EIDG Model and EIG Model for the reduced 
space.  
Table 1 displays the results obtained with FEAR 1.15 showing the original efficiency 
estimates, the bias-corrected estimates and the 95% confidence intervals. As we can 
see, the bias is large relative to the variance in each case, so we prefer the bias-
corrected estimates to the original estimates. The original estimates are placed 
outside the estimate confidence intervals – the last two columns, but the bias-
corrected efficiency estimates are inside the interval. The table shows that no DMU is 
actually placed on the frontier.  

Table 1  
The EIDG Model, output bias-corrected efficiency estimates (B=2000) 

DMU 
VRS 

Efficiency 
estimates 

VRS-Corrected 
Efficiency 
estimates 

Bias Standard 
Deviation

Lower 
Bound 

Upper 
Bound 

DMU01 0.8663 0.7402 -0.19656 0.013406 0.6153 0.8550 
DMU02 0.7525 0.6987 -0.10233 0.00391 0.6333 0.7472 
DMU03 1 0.7627 -0.31119 0.054953 0.5052 0.9860 
DMU04 1 0.7639 -0.30908 0.052928 0.5052 0.9851 
DMU05 0.5567 0.4914 -0.23864 0.016978 0.4380 0.5526 
DMU06 1 0.7921 -0.26251 0.022759 0.6474 0.9869 
DMU07 1 0.7600 -0.31578 0.0514 0.5052 0.9837 
DMU08 0.5581 0.4860 -0.26594 0.025281 0.4143 0.5513 
DMU09 0.6907 0.6269 -0.14744 0.007402 0.5612 0.6859 
DMU10 0.6662 0.5738 -0.24177 0.015187 0.4934 0.6549 
DMU11 0.5704 0.5114 -0.20235 0.013855 0.4520 0.5644 
DMU12 0.5676 0.5008 -0.23519 0.013636 0.4446 0.5599 
DMU13 1 0.8374 -0.19423 0.007504 0.7439 0.9833 
DMU14 0.7628 0.7124 -0.09278 0.003449 0.6506 0.7588 
DMU15 0.2577 0.2339 -0.39466 0.059159 0.2086 0.2565 
DMU16 1 0.7759 -0.28883 0.034847 0.5827 0.9848 
DMU17 0.020619 0.0191 -3.74049 6.747292 0.0173 0.0206 
DMU18 1 0.7601 -0.31566 0.054742 0.5052 0.9860 
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DMU 
VRS 

Efficiency 
estimates 

VRS-Corrected 
Efficiency 
estimates 

Bias Standard 
Deviation

Lower 
Bound 

Upper 
Bound 

DMU19 1 0.8074 -0.23857 0.015303 0.6874 0.9856 
DMU20 0.6197 0.5354 -0.2541 0.017782 0.4718 0.6114 
DMU21 0.8144 0.7489 -0.10747 0.004708 0.6745 0.8102 
DMU22 1 0.8560 -0.16827 0.008024 0.7340 0.9838 
DMU23 0.701 0.6375 -0.14207 0.006562 0.5767 0.6966 
DMU24 0.7628 0.7219 -0.07424 0.002692 0.6639 0.7604 
DMU25 0.8247 0.7475 -0.12527 0.004682 0.6792 0.8182 
DMU26 1 0.8141 -0.22842 0.013526 0.6942 0.9854 
DMU27 0.2665 0.2276 -0.64193 0.202288 0.1832 0.2629 
Source: Own calculations. 

By analyzing Table 1, we find quite significant differences between the efficiency 
estimates and the bias-corrected efficiency estimates for the analyzed year. The latter 
are much lower. The average efficiency for the new model is 0.634.  We see that the 
11 countries that were initially efficient are no longer after bootstrapping was applied. 
The unit efficiency countries have now much lower efficiency estimates. For instance, 
Denmark has now a 0.76 efficiency estimate. Among the most efficient countries we 
find: Latvia (0.83), Austria (0.80), Romania (0.85) and Sweden (0.81). The corrected 
efficiency estimates for Portugal and Finland are now almost similar: 0.748 and 0.747, 
respectively.  
The least efficient countries are the same, but their efficiency estimates are even 
lower. The previous inefficient countries have a much lower efficiency score: Malta – 
0.019 and UK – 0.22.    
A similar analysis is made for the EIG Model and Table 2 displays the results obtained 
with FEAR 1.15 showing the original efficiency estimates, the bias-corrected estimates 
and the 95% confidence intervals.  

Table 2  
The EIG Model, output bias-corrected efficiency estimates (B=2000) 

DMU 
VRS 

Efficiency 
estimates 

VRS-Corrected 
Efficiency 
estimates 

Bias Standard 
Deviation

Lower 
Bound 

Upper 
Bound 

DMU01 0.7507 0.630597 -0.25371 0.018285 0.5350 0.7328 
DMU02 0.7525 0.719923 -0.06013 0.00245 0.6636 0.7515 
DMU03 0.7434 0.664383 -0.15999 0.009347 0.5841 0.7339 
DMU04 0.6804 0.626574 -0.12626 0.005202 0.5705 0.6759 
DMU05 0.5567 0.521795 -0.12016 0.006515 0.4763 0.5549 
DMU06 0.9466 0.847812 -0.12309 0.003665 0.7640 0.9335 
DMU07 0.5439 0.460352 -0.33368 0.033387 0.3953 0.5344 
DMU08 0.5289 0.470429 -0.235 0.018449 0.4137 0.5211 
DMU09 0.6907 0.644803 -0.10306 0.004345 0.5888 0.6872 
DMU10 0.6011 0.539664 -0.18939 0.013876 0.4749 0.5937 
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DMU 
VRS 

Efficiency 
estimates 

VRS-Corrected 
Efficiency 
estimates 

Bias Standard 
Deviation

Lower 
Bound 

Upper 
Bound 

DMU11 0.536 0.504625 -0.116 0.006442 0.4635 0.5346 
DMU12 0.4965 0.433016 -0.29529 0.020433 0.3837 0.4860 
DMU13 1 0.877144 -0.14006 0.004951 0.7754 0.9793 
DMU14 0.7628 0.72818 -0.06233 0.0025 0.6704 0.7617 
DMU15 0.2577 0.246266 -0.18017 0.021346 0.2268 0.2573 
DMU16 1 0.842728 -0.18662 0.009668 0.7258 0.9789 
DMU17 0.020619 0.019749 -2.13529 3.230367 0.0182 0.0206 
DMU18 1 0.736076 -0.35856 0.055187 0.5052 0.9769 
DMU19 0.9816 0.882405 -0.11452 0.005029 0.7779 0.9688 
DMU20 0.6082 0.556879 -0.15153 0.006899 0.5068 0.6024 
DMU21 0.8144 0.762068 -0.08432 0.003084 0.6953 0.8112 
DMU22 0.9587 0.913374 -0.05176 0.001642 0.8408 0.9572 
DMU23 0.701 0.666002 -0.07496 0.00319 0.6121 0.6995 
DMU24 0.7628 0.727573 -0.06347 0.002545 0.6704 0.7616 
DMU25 0.8247 0.773516 -0.08024 0.00294 0.7067 0.8224 
DMU26 1 0.893923 -0.11866 0.003215 0.8070 0.9855 
DMU27 0.1958 0.186041 -0.26791 0.040742 0.1710 0.1954 
Source: Own calculations. 

The average efficiency for the corrected efficiency estimates is 0.625; lower than 
before the bootstrap efficiency estimates were computed.  We can see in Table 2 that 
the countries that were efficient have by almost 30% lower efficiency estimates, such 
as: the Netherlands (with unit efficiency estimate) has a 0.73 corrected efficiency 
estimate, Latvia – 0.877, Hungary – 0.842 and Sweden – 0.893.  But, as we can see, 
Estonia, Romania and Austria are now placed among the high efficient countries, 
though not unit efficient. The UK, Malta and Luxembourg are the least efficient 
countries, with efficiency estimates even lower than before. 
These results are similar to those obtained for 2008 available data (Aldea and 
Ciobanu, 2011). Countries such as Latvia, Hungary, the Netherlands, Estonia, 
Romania, and Bulgaria have improved their efficiency by comparison with their 
efficiency estimates for 2008. 
We can mention that the bootstrap efficiency estimates are computed as Farrel 
distance functions, which is no impediment because they represent the reciprocal of 
Shepard distance factors.  
Figure 1 shows that corrected efficiency estimates are different and they vary around 
the initial ones.  
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Figure 1 
Efficiency estimates and bias-corrected efficiency estimates – The EIG Model 

 
Source: Own calculations. 

Conclusions 

Even considering the small sample size, we notice that the non-parametric methods 
used to determine efficiency estimates show interesting results. Using these 
techniques together with the bootstrapping algorithm make us fully understand the 
estimators’ significance giving an insight into the evolution of renewable energy.  
Furthermore, the reduction in the dimension space used to compute the efficiency 
estimates with the EIG Model gives us much more reliable information.  
The results indicate the countries with higher efficiency in implementing the reforms in 
renewable energy market and their impact on indicators such as the energy intensity 
of the economy, energy dependence, the greenhouse gas intensity of energy 
consumption. The countries with high efficiency estimates can be considered as best 
practice examples in supporting the development of renewable energy market. 
Future research requires an analysis of the environmental factors (that can be classi-
fied neither as outputs nor as inputs) of the efficiency estimators in the renewable 
energy based on Bădin, Daraio and Simar (2010a, b) and Bădin and Simar (2009).    
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Annex 1  
Variables projection for 27 countries (the EIDG Model) 

 
Source: Own calculations. 


