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PERSPECTIVES ON RISK 
MEASUREMENT: A CRITICAL 
ASSESSMENT OF PC-GARCH AGAINST 
THE MAIN VOLATILITY FORECASTING 
MODELS  
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Abstract 

The paper makes a critical assessment of the Principal Components-GARCH (PC-
GARCH) model and argues why, when dealing with hundreds or thousands of 
variables, this model comes up as the most appropriate to be used. The suitability 
originates from the perspective of quality/cost ratio of volatility forecasts, allowing for a 
trade-off between quality and costs when computational efforts are significant. PC-
GARCH not only provides a method that allows for simpler volatility modeling, 
reducing significantly the computational time and getting rid of any problem that may 
arise from complex data manipulations, but also improves the modeling process 
quality by ensuring a stricter control of noise due to more stable correlation estimates. 
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1. Introduction 

The paper offers a critical assessment of the Principal Components-GARCH (PC-
GARCH) model and support for the rationale behind one idea: the PC-GARCH model 
is the most appropriate model to use when evaluating the volatility of the returns of 
very large groups of stocks, containing hundreds or even thousands of variables. The 
appropriateness of the model is seen from the perspective of the quality/cost ratio of 
volatility forecast provided by PC-GARCH when compared to any other alternative 
model. Although an empirical study will follow to present how PC-GARCH works and 
to reveal the strengths of such a method, the test will not be used in order to compare 
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PC-GARCH directly with other methods, for which there would have to be tested 
hundreds of variables for each model considered, reason why direct empirical 
comparisons with similar models will not be undertaken. Conclusions regarding PC-
GARCH will stem from the theoretical content described, and from the procedure itself 
as revealed, even as presented with only seven sets of variables; while extensive 
empirical exercises with more models tested, which would empirically quantify the 
gains in both forecast accuracy and cost (time, resources etc.) of PC-GARCH, are left 
for subsequent studies. However, the conclusions of the paper enforce the idea that 
PC-GARCH reveals its superiority when working with hundreds of variables, or even 
with thousands of variables. Such a conclusion can be reached by balancing two 
factors: i) the quality of the results, understood as the model’s capacity to grasp the 
relationship between the exogenous variables and the endogenous ones, by taking 
into account the autocorrelations and interaction effects that may exist within the 
data2; and ii) the time or the amount of computational efforts needed to obtain such 
results.  
Some previous papers on this topic evaluated the benefits of using the principal 
component analysis in orthogonal models. Alexander (2000) described an analysis 
developed within an Orthogonal GARCH context, but without any methodology offered 
for principal components in a GARCH model. Burns’ (2005) paper offered such a 
methodology for PC-GARCH, but without any empirical implementation. However, 
none of the papers has emphasized the cost factor component of such methods. 
The present study addresses two issues not fully explored previously. It attempts to 
provide a ranking/benchmarking analysis of volatility forecasting models looking at the 
cost factor and also by putting in balance the amount of computational efforts needed 
and the quality of the results, and applies, in support of the proposed solution, a 
method (principal component) to a multivariate GARCH, not previously empirically 
implemented (although described in his methodology by Burns, 2005). As a further 
contribution, the implementation that follows includes elements of GARCH testing that, 
to my knowledge, have not been discussed in any previous papers. Due to their 
complexity and to the size of the panel of data taken into account some models need 
to estimate too large a number of parameters. In this case, the model estimation may 
take too long, and the quality of the results does not necessarily make up for the 
length of the time when that is considerable. Sometimes, a trade-off between output 
(represented by the quality of the results) and costs (measured by the amount of time 
spent to obtain such results, and other computational efforts that may exist) may 
prove useful. In other words, one may find useful to obtain results that weight in terms 
of accuracy about eighty percent but with the computational time reduced to one third. 
For the first type of factors, the one that concerns the quality of the results, we will 
assert that the GARCH models clearly outperform more basic models in terms of 
predictive accuracy. However, the analysis will go further and the PC-GARCH model 
will be highlighted as an effective solution when also addressing the second type of 
factors, namely costs. 
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The remainder of the paper is structured as follows: first we present the main issues 
regarding the ranking of the performances achieved by volatility forecasting models 
and we show that there is no consensus as to the accuracy of the forecasts, 
according to the literature reviewed. Then, a new criterion will be proposed, that of 
quality/cost ratio, and according to it the PC-GARCH will be justified as an ideal tool to 
be used for large data matrices. To serve those ends, a presentation of the PC-
GARCH model follows. We offer a brief resume of the Principal Component Analysis 
and PC-GARCH model. However, the PC-GARCH discussion will continue in a 
subsequent paper that will provide a link between the theoretical discussion and an 
empirical setting. Both the theoretical and the empirical parts, from both papers, are 
developed in order to offer a complete understanding of how PC-GARCH works. They 
will both contribute to the main conclusion of the research that will state the superiority 
of PC-GARCH in terms of quality/cost criterion as against any alternative models 
when one deals with large portfolios of data. 

2. Assessing the quality of the volatility forecasting 
techniques 

2.1. Advances in volatility modeling  
Various techniques designed to obtain reliable volatility forecasts have been 
continuously produced during the last three decades. They range from extremely 
simplistic models that employ the so-called “naive” (random walk) assumptions to 
relatively complex conditional heteroskedastic models of the ARCH group (until 
GARCH and derivatives of it). The most debated univariate volatility models are the 
Autoregressive Conditional Heteroskedastic (ARCH) model compiled by Engle (1982) 
and the Generalized ARCH (GARCH) model compiled by Bollerslev (1986). 
Numerous extensions of them gained importance, such as the exponential GARCH 
(EGARCH) model of Nelson (1991) or the conditional heteroskedastic autoregressive 
moving average (CHARMA) model proposed by Tsay (1987). Other models used for 
volatility forecasting were the random coefficient autoregressive (RCA) model of 
Nicholls and Quinn (1982), and the stochastic volatility (SV) models compiled by 
Melino and Turnbull (1990), Taylor (1994), Harvey, Ruiz and Shephard (1994), and 
Jacquier, Polson and Rossi (1994), among others. 
Comprehensive reviews of the literature have been written by Bollerslev, Chou and 
Kroner (1992), Bera and Higgins (1993), Bollerslev, Engle and Nelson (1994) and 
more recently Andersen, Bollerslev, Christoffersen and Diebold (2005). Each model 
brings with it strengths and weaknesses, and given the coexistence of such a large 
number of models, designed to serve to similar purposes, it is essential to compare 
and rank them properly in order to assess those with superior predictive capacities. 
In such a large panel of models compounded for volatility forecasting purposes, a 
general consensus on classifying models in terms of forecast accuracy has not yet 
been reached. This is due to the fact that the literature contains contradictory 
evidence as regards the quality of volatility forecasts. Subjectivism arises from various 
sources, starting with the fact that conditional evidence is unobserved and there is no 
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natural and intuitive way to model the conditional heteroskedasticity, so that each 
model will try to capture features considered important by the author and, ultimately, 
from the fact that models with poor forecasting capacities in all empirical tests have 
not been yet identified.  
Although the “clustering” effect of the returns’ volatility has long been recognized, it 
seems that only since the GARCH model was proposed by Bollerslev (1986) could 
such temporal dependencies be formally modeled using econometric models. This 
boosted the empirical success of the GARCH-class of models, numerous papers 
reporting their success in modeling in-sample volatility of asset prices. However, many 
other papers have suggested the little success of standard volatility models to explain 
ex post squared returns (Cumby, Figlewski and Hasbrouck, 1993; Figlewski, 1997; 
Jorion, 1995), recommending the simple moving averages technique for such a 
purpose. Soon after, a few papers have addressed such problem and restated the 
usefulness of the GARCH models in providing accurate forecasts (Andersen and 
Bollerslev, 1998; Andersen, Bollerslev and Lange, 1999). They addressed the latent 
character of volatility, or inherently unobserved, stochastically evolving through time. 
Stock volatility consists of intraday volatility and variation between days. Unlike price, 
which may be described as a flow variable and which can be measured 
instantaneously, volatility is a stock variable and cannot be directly measured since it 
is not a directly observable variable. The non-observable character of volatility was a 
persistent problem posed by econometricians, which makes impossible its exact 
measurement, but rather its estimation. The non-observability of volatility of stock 
return results in difficulties related to the assessment of accuracy of different 
forecasting models. As such, the latent character of volatility converts the problem of 
volatility assessment into a filtering one in which the “true” volatility is not determined 
exactly, but only extracted out of a time series with some degree of error. However, 
the volatility estimates provided by the models will be compared with the “true” 
underlying volatility. The errors will be then a factor of choosing the model that 
provides the forecasts or of how the true volatility has been estimated. The previously 
mentioned papers highlighted a novel point of understating the possible sources of 
conflicting findings with respect to the models’ performance ranking. Therefore, the 
reference authors underlined the fact that the failure of some GARCH-class of models 
to provide the most accurate forecasts was not a failure of the GARCH-class of 
models itself, but rather a failure to specify correctly and accurately the true volatility 
against which the forecasting performance has been measured. They observe that the 
standard method of employing ex post daily squared returns as measures of “true” 
volatility of the daily forecasts is flawed because an estimate compounded in this way 
comprises a large and noisy independent zero mean constant variance error term that 
is unrelated to the actual volatility. Andersen and Bollerslev were among the first who 
proposed that instead of daily squared returns, cumulative squared-returns from intra-
day data be used as a more accurate way to express the “true” underlying volatility. 
Such a measure, called “integrated volatility”, paves the way towards a more 
meaningful and accurate volatility forecast evaluation. This represents a significant 
step forward in the forecasting debate, because it opens the perspective towards 
investigating high frequency data for a meaningful, improved way of modeling the 
daily volatility in empirical estimations. 
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The above-mentioned literature review reveals the ongoing debate about which 
models rank best from the point of view of the quality of their forecasts (the upper term 
of the quality/cost perspective on which we attempt to rank models). However, as 
reasoned by Matei (2009), the GARCH models may still be considered ultimately as 
better forecasters, in line with the common sense belief existing both in academia and 
business. Papers that showed GARCH models’ supremacy in any context have not 
yet been written, although most of them rank GARCH among the better models. We 
take the study of Matei (2009) as the evidence according to which we will consider 
that GARCH gives better forecasts and continue the discussion with the lower term of 
the criterion, that involving costs. In the next section, we will justify the cost-cutting 
role of the PC-GARCH models, and their capacity of improving forecastibility of the 
classic GARCH models, which make them an ideal solution in applications involving 
large data matrices, containing hundreds or thousands of variables. 

3. Why PC-GARCH? 

GARCH splits the variance forecasts into two components - autocorrelations, or 
volatility in the past, and innovations, or exogenous shocks in the volatility of returns. 
Using GARCH(1,1) leads us immediately to the question of how much of the 
innovation is truly "exogenous" and how much is it explained by "other factors" not 
considered in the model. To improve the model, we could begin by considering other 
explanatory variables that could influence the volatility of our estimate (in other words, 
to endogenise some of the exogeneity). However, adding explanatory variables leads 
us to a particular weakness of the GARCH: the parameter estimation problem. Due to 
correlations (usually not zero) between the variables used in the GARCH, the problem 
requires substantial amounts of data and computational power to come up with a 
reasonably robust estimate. Thus, we aim to improve the volatility forecast of an asset 
compared to that obtained with GARCH, but using a more tractable method that 
handles multiple independent variables. This is accomplished by using PC-GARCH.  
In what follows, we discuss the issues of multivariate GARCH estimation uncovered in 
the previous sections. We know that the number of parameters in a multivariate 
GARCH increases at the rate of the square of the number of variables. For example, 

using n variables will necessitate estimation of 
2

1)n(n + parameters; this is because 

each additional variable brings with it terms of correlation with the other variables, and 
each of these correlation terms has its own parameter. The dimensionality of the 
problem and, hence, the computational power requirement is rather large. Further, a 
robust parameter estimation imposes demanding data requirements. Apart from 
estimation problems, there are practical issues of stability of prediction: a large 
number of parameters as inputs to the model would frequently result in unstable 
estimates. Due to the inherent data-fitting nature of every statistical procedure, there 
may be noise in the estimation period that is captured as signals into this model. 
One of the methods proposed to make the problem tractable is the PC-GARCH 
(another algorithm that also uses Principal Components but is different in its 
implementation is that called Orthogonal GARCH). In this study, a simple model will 
be used to illustrate the power of this method; in particular, the power of the Principal 
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Component Analysis (PCA) used in conjunction with GARCH to solve the problems 
stated above.  
As noted earlier, the increased dimensionality of the multivariate GARCH is due to the 
large number of covariances between the independent variables that enter the 
parameter space. Therefore, making these covariances zero reduces the dimension 
of the problem to n (or we will have to estimate only n parameters, each for the 
GARCH and ARCH). Thus, PCA is the tool to be used to simplify the problem and 
make it tractable. PCA is a method of transforming original independent variables into 
orthogonal factors. Thus, using n (possibly correlated) independent variables and 
applying PCA reduces the number of parameters to be estimated to 2n+1 instead of 

2
1)n(n +  (a linear instead of a quadratic increase in the number of parameters to be 

estimated). Thus, the PCA method helps us reduce the modeling problem into n 
univariate GARCH models. The methodology for the analysis to be followed in the 
paper is that developed by Burns (2005). There are alternative methods developed in 
the literature that use PCA in conjunction with GARCH; such examples are Alexander 
(2000) and van der Weide (2002).  
Briefly stating the problem in mathematical terms, we have the variable y which is 
dependent on k independent variables. The n historical observations of each of these 
k independent variables are arranged in a matrix X of dimension n x k, and the  
historical observations of the dependent variable are arranged in a n x 1 matrix, Y. In 
very general terms, we wish to find the function f that maps the independent variables 
onto the dependent variable: Y = f(X). To summarize, the problem of finding this 
general function is that 
1. even a small increase in k makes the problem computational and data intensive 

and, 
2. some of the independent variables are correlated: they contain common 

information, and we wish to coalesce similar information into a single variable that 
represents that information and have uncorrelated independent explanatory 
variables. 

3.1 Principal Component Analysis (PCA): A brief introduction  
to the method 

Principal Component Analysis is an algorithm used in Factor Analysis. Factor Analysis 
is a generic method given to a class of multivariate statistical methods that has as its 
main goal to identify the underlying structure in a data matrix. Specifically, the Factor 
Analysis has two primary uses: summarization and data reduction. Summarization 
results from describing the data with a much smaller number of variables, while 
reduction comes from transforming the data matrix into a score matrix, in which each 
column stands for a factor. 
The Principal Component Analysis is a method used for extracting uncorrelated 
sources of information in the data. From a set of k stationary returns, up to k 
orthogonal stationary variables will return, called Principal Components (PCs) or 
variates. PCA is a classical technique to derive such uncorrelated variates. An output 
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of the method also states how much of the total variation in the original data is 
explained by each PC. 
Due to the high sensitivity of the results to re-scaling data, before proceeding to the 
analysis, the standard procedure is to normalize the data. Thus, we assume that each 
column in the stationary matrix has mean zero and variance one, after previously 
subtracting the sample mean and dividing by the sample standard deviation. 
We start with the matrix X with columns (x1, x2,…,xk), where }ki,x{ i ≤≤1  is such that 
X’X is a k x k symmetric matrix, having one on its diagonal. Ω = X’X is the variance-
covariance matrix of the variables in X, and thus is positive and definite. Each 
principal component will be then a combination of these columns:  
 km,km,m,m xa...xaxap +++= 2211 , km ≤≤1   (1) 
In a matrix form, (1) can be written as P = XA, where A is called the matrix of the 
eigenvectors of Ω. The weights mia ,  for each ix  are chosen from the set of 
eigenvectors of the correlation matrix Ω such that:  
1. The Principal Components (PCs) are orthogonal. Thus, we impose the 

orthogonality condition to the matrix P of the principal components (as this is the 
main property of such PCs) and, accordingly, we have to find the matrix A of 
weights that fulfils this condition. In other words, we want to know which are the 
ai,m’s such that their matrix, multiplied by an X matrix of observations, gives an 
orthogonal matrix. 

2. The first principal component explains the maximum amount of total variation in X, 
the second component explains the maximum amount of the remaining variation, 
and so on. 

We know from matrix algebra that if we choose the matrix A to be composed of 
orthogonal unit eigenvectors of X’X, then the resulting PCs are orthogonal. It means, 
then, the only condition for P to be orthogonal is that the columns of A are orthogonal. 
We next order the columns of A in descending order. Thus, if A(ai,j), }k,...,{j,i 1∈  then 
the mth column of A, denoted by )'a,...,a,a(a m,km,m,m 21=  is the (k x1)th eigenvector 
corresponding to the eigenvalue mλ , and the column must be ranked so that 

021 >λ>>λ>λ k... . 
We now define a new matrix  as the diagonal matrix of the eigenvalues of Ω (with  
on the diagonal), and we note that X’XA=AΛ, from where it results that Λ =A’X’XA = 
A’ΩA. Also, we have (XA)’XA = A’X’XA = Λ. The above relationship then becomes 
 Λ = P’P = A’X’XA = A’ΩA (2) 
Since Λ is a diagonal matrix, and it is the variance-covariance matrix of P, this implies 
that the components (columns) of P are uncorrelated. Since A is orthogonal, A’=A-1 
and P’P=Λ. A’=A-1 is equivalent to X=PA’ that is Xi=wi1P1+ wi2P2+...+ wikPk where Xi 
and Pi denote the columns of X and P, respectively. Thus, each data vector is a linear 
combination of the principal components. The proportion of the total variation in X, 
explained by the mth principal component, is λm/(sum of the eigenvalues). 
Thus, the operation of scaling the original variables with the matrix of orthogonal unit 
eigenvectors A gives us uncorrelated components (PCs) that we could use to reduce 
the earlier multivariate GARCH problem to a set of univariate GARCH problems.  
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3.2 Methodology  
The results of Matei (2009) will be used and, accordingly, the superiority of GARCH 
models will be assumed. However, as noted earlier, there are significant costs 
attached to using GARCH. Because of this concern, at this point we address the 
second factor that supports second part’s main conclusion, using Principal 
Component Analysis (PCA) may be an effective and at hand solution. PCA does two 
things that improve the model: one is that it reduces the dimensionality of the problem, 
and the other is that it excludes autocorrelations in the data. The only subjective point 
in the problem is the cut point the user has to choose. In other words, how much of 
the preciseness should be sacrificed for how much time saved. This ability of choosing 
the output to time report gives the user of the model flexibility, allowing for tailored 
options according to activities and companies’ specific features. 

4. Experimental study 

4.1 Data setting 
The task is to estimate the volatility of the return of a particular portfolio formed of 
inter-correlated stocks (Adobe, Apple, Autodesk, Cisco, Dell, Microsoft and 3M) using 
PCA in conjunction with the GARCH model. The selection of these seven stocks has 
been driven by the fact that PCA works best when there is a reasonable amount of 
correlation between the variables; there is good reason to suppose that the chosen 
seven US stock returns would be correlated. 
We are thus in a position to argue that Microsoft, for instance, is not influenced only by 
its own past, but also by the past of the other shares included in this selected portfolio. 
As a hypothetical example, a lot of volatility in Microsoft returns could signal the 
uncertainty in the technology sector; the next day Adobe would take into account3 the 
uncertainty in the technology sector induced by Microsoft and extrapolate that into the 
uncertainty forecasts of its activity. While limiting my study to the seven stock return 
series mentioned above, we do not suggest that these are the only shares that matter 
- this study is simply a means to demonstrate the power of the technique and claim 
that this model is “the best” in forecasting volatility of portfolios with large 
intercorrelated time series. 
The data range between February 16th, 1990, and June 18th, 2009. This gives us a 
total of 5044 return observations. As discussed above, the choice of these equity 
returns is determined by their high (as expected) correlations, which makes their 
cases ideal for applying PCA. However, the seven stocks are fundamentally different 
too, which seems interesting to isolate the effects of their composition. First, there will 
be a review of the data used. 

                                                           
3Through the aggregation of the trades of market participants. No particular information 

transmission mechanism is supposed here, only that some such mechanisms hold. 
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4.2 Preparing data for the PCA 
The selected data consists of n = 5044 observations of returns for each of Adobe, 
Apple, Autodesk, Cisco, Dell, Microsoft and 3M. We want to find the principal 
components. Since each component is a linear combination of the centered variables, 
we must first obtain these centered variables by subtracting the mean of each xi. 
Thus, the mean of each of these stock returns will be calculated (thus, Adobe, Apple, 
Autodesk, Cisco, Dell, Microsoft and 3M have their mean returns over the sample 
period) and this will be then subtracted from x. We thus obtain the matrix of the 
centered variables. To obtain the matrix of the principal components, we multiply X by 
A matrix, where  is the matrix of loadings. We have then ),...,,( 721 ppp== PXA . 
We want to find a matrix A that, when multiplied with the matrix of the centered 
variables, X, gives us an orthogonal matrix P with which we can work (in each cell of P 
we shall have a principal component that will be a linear combination between the 
centered variables, x’s and a’s). If we decide to use a number of PCs smaller than the 
original number of variables, we would lose some information, but keep data P 
uncorrelated, which still can explain Y (see Alexander, 2000, for details). Thus, to find 
P we must find A that solves XA = P and we impose the orthogonality condition for P, 

that is 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

70

01

var...
.........

...var
)(Var P . 

4.2.1 Solving orthogonality 
By definition, the variance-covariance matrix P is equal to P’P. Using the property that 
(AB)’ = B’A’, we find that Var(P) = P’P= (XA)'XA = A’X’XA, and X’X = Var(X). We call 
X’X = Var(X) =Ω, from which it results that Var(P) = P’P = A’ Ω A.  
Since one of our initial problems was that some elements were correlated, we want a 
P such that it is composed of orthogonal elements. Thus, next we impose the 
orthogonality condition on P. From a larger matrix of data X, we want to obtain the 
matrix P of smaller or equal dimension that has only uncorrelated values, each 
element of P being a linear combination of the elements of X.  
To see the meaning of the term “uncorrelated elements of P”, let us call 

),...,,( 721 ppp=P , then )',...,,( 721 ppp=P' , and )(PPP' Var= , which is 
symmetric. Orthogonality of P means that . This implies that 

))(),...,(()( 71 ppdiagVar σσ=P . Thus, we see that the variance-covariance matrix 
of a matrix of orthogonal elements is a diagonal matrix. From matrix algebra, we use 
the result that the matrix A is the matrix of orthogonal unit eigenvectors of Ω. 
4.2.2 Finding the matrix of Principal Components 
Let us sum up the problem: we want to use x’s to explain the y’s, but the x’s are too 
many (k is too large). We chose to make k smaller, so that we must pick factors that 
explain most of the variation (or as much as possible with a k that makes the problem 
tractable). We are looking to find the linear relationship of x’s that gives us the 
orthogonal p’s. 
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In our problem, p’s are the new x’s, so we have to rearrange the P matrix in the 
descending order of columns to see which p’s are the highest. Once we rearrange it, 
we impose the P = XA condition (where A is the matrix of factor loadings and X is the 
matrix as defined above). According to the matrix notation, this translates into a  

matrix having ))xx(a(i

_
iiki∑ =

−7
1 , 71,...,k =  on the column, and where ija ; 71 ≤≤ j,i  

represent the factor loadings. We have thus linear transformations of the x’s that give 
us p’s; in other words we have transformed the x’s into orthogonal p’s. This means 

that ))xx(a(p i

_
iikik ∑ =

−= 7
1 , 71,...,k = .. 

We know x’s, but we do not know a’s. What is left to do is that we have to find the a’s 
that give us the orthogonal factors, since a’s signify the weights of each of the x’s. For 
this, because we want orthogonality, we impose the restriction that the resulting 
covariance matrix is just a diagonal matrix (as done before); after this, we reduce x’s 
to 721 p,...,p,p . Once we enter all the x’s and all y’s, the software gives us the factor 
loadings (a’s) and the eigenvalues (λ’s, that are actually the ) that come from the 
condition of orthogonality ))p(),...,p((diag)(Var 71 σσ=P . The eigenvectors are actually 

the columns of A (A=

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞
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⎜
⎜
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⎦
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...
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...

...

...
). They are orthogonal and 

are of unit length. After we find the factor loadings and the eigenvalues, we can pick 
up p’s (which now are uncorrelated, since we impose the orthogonality condition) that 
show the highest variance (that is given by the eigenvalues). 
We now have the orthogonal P whose values are a linear combination of the 
independent variables X. We now can work with P to make forecasts on the variations 
of Y. 

5. PC-GARCH implementation - The algorithm 

The algorithm uses as reference the work of Burns (2005); it uses five of the seven 
steps described for handling a multivariate GARCH with univariate estimations, in 
order to obtain formulations of standardized innovations expressed in terms of 
principal components. The new formulations will allow a more efficient GARCH 
dissemination between autocorrelations and innovations, improving the estimation 
exercise by obtaining independent innovations; this highlights one of the PC-GARCH 
strengths. As described in detail in earlier sections, PC-GARCH will be used to enable 
a tractable version of multivariate GARCH. This tractability arises from the lack of 
correlation among the multiple variables used, reducing the parameter set to a 
manageable number. In this section, a brief overview of the algorithm will be provided 
and in the next, we shall advance with further details. 
Firstly, a univariate GARCH for each of the seven price returns will be estimated; this 
step establishes whether a multivariate GARCH is required in the first place. If the 
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univariate GARCH models sufficiently describe “reality”, the errors of these models 
must be uncorrelated. Strong correlation between the errors implies the presence of a 
common factor that drives the seven return series simultaneously. Instead of simply 
using the autocorrelations of the same stock, we can exploit the autocorrelations 
among the various stock time series. In more intuitive terms, a correlation among the 
errors of the return series implies that ‘there is information’ in the other returns that 
can be used to forecast the volatility of each return series. Recall here that GARCH is 
a technique that splits variances into those caused by autocorrelation (effects of the 
past) and innovations (errors, defined essentially as the difference between the 
predicted and the observed values). Thus, a correlation between the errors implies 
that what the univariate GARCH model presumes to be innovations are not truly 
innovations, but can be explained by movements in the other stock returns.  
Since our test yields that a multivariate GARCH is reasonable in this scenario, the 
next step is to find the seven uncorrelated factors that drive the price returns. As noted 
in the theoretical discussion above, since we have seven variables (that are not 
collinear, even if they are highly correlated), we work in a seven-dimensional 
environment where each dimension represents the returns of a stock. These seven 
dimensions are, as we saw, highly correlated; hence not orthogonal. As stressed 
repeatedly, these non-orthogonal but highly correlated variables result in tractability 
problems, and thus we want to identify orthogonal (uncorrelated) factors that we could 
conveniently use. 
The PCA is applied on the residuals of the previous GARCH; we try to find seven 
uncorrelated sources of “errors”, these “errors” being the innovations obtained from 
the earlier univariate GARCH. Intuitively, what we try here is to isolate the seven 
different factors that drive innovations. Since we try to find the factors that drive stock 
returns of the same country, we expect to find one factor whose effect on all these 
returns is large, and six other stock-specific factors.  
An output of the principal component analysis is the matrix of coefficients. This matrix 
will be used to estimate the new residuals due to each PC. For reasons we shall go 
through in greater detail in the presentation below, we do not drop any of the principal 
components, but use all seven. These new residuals are thus orthogonal to each 
other, and running a multivariate GARCH on them is equivalent to running seven 
separate univariate GARCH models. This reduction of multivariate GARCH to a set of 
univariate GARCH models is a key reason for the popularity of the PC-GARCH 
technique. The univariate GARCH models will be duly run on each of these 
transformed residuals. Intuitively, what was previously “unexplained” will now get 
“explained” on the basis of the seven orthogonal factors. But clearly, our aim has been 
to obtain a GARCH model of the stock return volatilities, and not the GARCH model of 
the transformed residuals. Thus, we need to transform these GARCH models back 
into the space of return volatilities. This is easy: we note that pre-multiplying by the 
inverse of the matrix of coefficients and post-multiplying by the matrix of coefficients 
gives us back our desired original variance-covariance matrix (in this case, this is a 
set of seven GARCH models). This will be explained in greater detail in the section 
below.   
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5.1 Step one: Estimating the dimensions (p,q) of the GARCH models 
As discussed earlier, the first step in running a PC-GARCH algorithm is to begin with a 
univariate GARCH and check the necessity of adding extra variables. 
The rationale is rather practical - to use a parsimonious model if it is “good enough”, 
where the validity of the model depends on the user's requirements. Thus, the attempt 
here should be to use the best possible univariate GARCH model. This means that 
the coordinates p and q of GARCH(p,q) must be selected in order to optimize the 
trade-off between the extra parameters and the extra predictive ability achieved. The 
selection of the variables p and q is optimized independently of the other models 
under consideration. 
Since the aim is to illustrate the PC-GARCH approach, we simply choose a 
GARCH(1,1) and fit each of the daily return volatilities. The formula for the 
GARCH(1,1) model is 2

11
2

110
2

−− εβ+σα+α=σε+= ttttt ,Cy . 
We may see from the results that we can reject the null hypothesis that α0 and α1 are 
separately equal to zero (since the t-values are outside +/-1.96 interval, thus we are in 
the rejection region). In other words, it is appropriate to model the time series of 
volatility as a GARCH(1,1). We pause to consider the “visual effect” of the 
GARCH(1,1) decomposition; also contrasting this with the decomposition after the PC-
GARCH procedure. 
5.2 Step two: Obtaining residuals of GARCH(1,1) and standardizing them 
From the above methodology, we see that the GARCH(1,1) models for Adobe, Apple, 
Autodesk, Cisco, Dell, Microsoft and 3M are as follows: 
ADOBE: 2

1
2

1
624 0280971010063100612 −−

−− ε+σ+×=σε+×= ttttt ...,.y  

APPLE: 2
1

2
1

624 084086810109552100918 −−
−− ε+σ+×=σε+×= ttttt ...,.y  

AUTODESK: 2
1

2
1

624 10208380101962105114 −−
−− ε+σ+×=σε+×= ttttt ...,.y  

CISCO: 2
1

2
1

624 0710920010179103019 −−
−− ε+σ+×=σε+×= ttttt ...,.y  

DELL: 2
1

2
1

624 0490950010593103211 −−
−− ε+σ+×=σε+×= ttttt ...,.y  

MICROSOFT: 2
1

2
1

624 0690920010416100110 −−
−− ε+σ+×=σε+×= ttttt ...,.y  

3M: 2
1

2
1

624 031095701066210893 −−
−− ε+σ+×=σε+×= ttttt ...,.y . 

For each day (of the 5044 days of our sample), we calculate the volatility forecast and 
call this σt. We use this calculated variance forecast to obtain the standardized 

residuals of the daily returns. In other words, we calculate 
t

_
tt yy

σ
−  as for each t we 

know the return yt. Thus, we now have a matrix of standardized residuals, R. This 
matrix is of 5044 x 7 dimension (days x number of stocks). If the univariate 
GARCH(1,1) was an “adequate description” of “reality”, we should find that the 
columns of R have zero mean (which they do by our construction), and a variance of 
unit (which needs not be true, since we use the forecast variance estimate, and not 
the true variance) and the covariance between the rows should be zero (meaning that 
there are no “common factors” outside the explanation provided by autocovariance of 
daily residuals). 
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As regards the comparison of the residuals, of the conditional standard deviations, 
and of the returns, we split the variance into variance innovations and conditional 
standard deviations in order to investigate if the fitted innovations exhibit volatility 
clustering (see Appendix, Figures 1 to 7). From the visual inspection of the graphs of 
each stock we can observe volatility clustering in innovations and returns. As 
previously said, we want to see if the innovations in the seven price returns are 
uncorrelated, which will show us the necessity of performing a PC-GARCH. As a hint 
for their correlation, we see in these graphs that innovations vary around 
approximately identical dates, due to probably common factors that influence all of 
them. Also, we can observe that for each stock 11 α+β  is very close to 1, which 
means it is very close to the integrated, non-stationary boundary given by the 
constraints stated for a standard GARCH model. 
We saw that the previous fitted innovations display volatility clustering. However, if we 
plot the standardized innovations (the innovations divided by their conditional standard 
deviation), they appear generally stable with little clustering. The existence of GARCH 
effects and of correlation between innovations that disappears after treating the data 
makes us conclude that the GARCH model is a suitable model to be used to explain 
the variances of the seven stocks. Thus, our intuitive choice of the seven stock returns 
is justified, and we proceed to the next stage. 

5.3 Third step: Principal component analysis of standardized residuals 
We have seen details of the PCA method above, so we just confine ourselves to 
reporting the major results here. The matrix of standardized residuals is the matrix on 
which we will perform the PCA, because we wish to identify the common causes of 
what the GARCH(1,1) model leaves out as unexplained innovations. 
We perform the Principal Component Analysis to the standardized innovations. The 
PCA gives us seven mutually orthogonal linear combinations of the standardized 
residuals. The latent output gives us the eigenvalues. Accordingly, we can calculate 
their power, meaning the percentage of variation that each principal component 
explains. 
We see that most of the variance is explained by the first principal component, to 
which the change in volatility of all seven return series contributes by a very similar 
magnitude. This accord with the initial intuition that since all seven are stock prices 
based in the US IT sector, there is a large common factor that moves all of them in the 
same direction.  
We can observe that P1 (=0.3793*Adobe standardized innovation + 0.3639*Apple 
standardized innovation + 0.3448*Autodesk standardized innovation + 0.4337*Cisco 
standardized innovation + 0.4022*Dell standardized innovation + 0.4201*Microsoft 
standardized innovation + 0.2804*3M standardized innovation) is the first principal 
component that explains almost 43% of the variance of the standardized residuals. 
The second factor explains about 12% of the variance in standardized residuals - we 
note that this it is positively weighted by Apple, Cisco, Dell and Microsoft, but 
negatively weighted by Adobe, Autodesk and 3M. The third factor explains only 11% 
of the variance in the standardized residuals, and this seems to be positively driven by 
the Adobe and Autodesk returns, while negatively driven by Apple, Cisco, Dell, 
Microsoft and 3M. The rest of the principal components weigh less than 10% each.  
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Thus, we obtain, in decreasing order, seven PCs that drive the standardized excess 
returns - which the GARCH model earlier called innovations. We see that they are not 
really all innovations: that most of this innovation is driven by one major factor that 
drives all seven stocks together. We could now choose, for the sake of parsimony, to 
keep just this first PC that explains about 43% of the so-called innovations, and leave 
the rest out. But, a technical issue is that leaving out any of the principal components 
may occasionally lead to meaningless results since we not guarantee that the 
resulting variance covariance matrix is positive and definite (see Alexander, 2000). 
Since in this particular case we do not have too many variables, we can include all the 
factors to ensure that our results are always meaningful. 

5.4 Fourth step: Running GARCH(1,1) on the PCs 
Once again, recalling that the GARCH(1,1) model is 

2
11

2
110

2
−− εβ+σα+α=σε+= ttttt ,Cy , we run this model on the newly obtained PCs. 

Thus, we have a GARCH model that predicts the volatilities of the seven PCs. 
However, we began with the aim of obtaining volatility forecasting models for the daily 
return series. We shall see that this is achieved through a simple linear transformation 
in the next section. 

5.5 Fifth step: Obtaining the GARCH model of the indices 
We note that the GARCH(1,1) models that we obtained previously are for the principal 
components. For instance,  gives us the volatility forecast of 
each PC. One may see that since these seven PCs are orthogonal to each other, we 
can write their variance-covariance matrix in a diagonal form. In other words, recalling 
our earlier discussion, we re-visit equation (2) Λ = P’P = A’X’XA = A’ΩA. We now 
have Λ, which consists of the volatility forecasts of the seven PCs. Using the property 
that A’=A-1, we see that AΛA’ = AA’ΩAA’ = Ω. Thus, the simple linear transformation 
of pre-multiplying the forecasts by the matrix A and post-multiplying by A’ gives us the 
volatility forecasts of the seven standardized return series. The seven equations we 
obtain are presented below. 
 
Formula 1: Multivariate PC-GARCH model for ADOBE daily return volatility. 
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Formula 2: Multivariate PC-GARCH model for APPLE daily return volatility. 
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Formula 3: Multivariate PC-GARCH model for AUTODESK daily return volatility. 
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Formula 4: Multivariate PC-GARCH model for CISCO daily return volatility. 
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Formula 5: Multivariate PC-GARCH model for DELL daily return volatility. 
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Formula 6: Multivariate PC-GARCH model for MICROSOFT daily return volatility. 
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Formula 7: Multivariate PC-GARCH model for 3M daily return volatility. 
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These equations are used in the following manner:  
1. Use the matrix of principal components to calculate the seven PCs from the daily 

returns. 
2. Calculate the volatility and innovation in the returns on the PCs. 
3. Substitute the values calculated above in the appropriate multivariate GARCH 

model to obtain the volatility forecasts. 
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6. Conclusions on using PC-GARCH 

We saw that PC-GARCH is a useful tool to reduce the dimensionality of the 
multivariate GARCH problem and to obtain robust and stable estimates using 
orthogonal PCs. While we have mentioned its many benefits, we would like to 
conclude with visual evidence of how the "innovation" claimed by the GARCH(1,1) is 
not really innovation. We present the decomposition of Adobe, Apple, Autodesk, 
Cisco, Dell, Microsoft and 3M volatilities after the PC-GARCH in Figures 8 to 14 in the 
Appendix. We see a marked difference between the graphs of innovations displayed 
previously. What is extremely noticeable is that volatility peaks that occurred at the 
same time (especially the high volatilities during 1993, 1995, 2006, 2008 and 2009) 
are not considered to be "innovations" anymore, but are considered explained by the 
simultaneous rise in the innovations of the others. Thus, the innovations are "truly 
innovations", which perhaps could be explained by other factors. However, while 
every model can be improved, the improvement usually comes at a cost. One of the 
costs is that of over-fitting the model to the sample data, which makes out-of-sample 
model performance crucial for understanding which model to use. We leave this, as 
we should, in the hands of the user. 
The scope of the empirical part was to reveal the superiority of PC-GARCH in terms of 
quality of results/costs involved when dealing with large samples of data. It has 
empirically proved how large GARCH correlation matrices can be obtained by using 
only univariate GARCH estimation techniques on principal components of the original 
return series. The advantages of such method are as follows: 

• It minimizes computational efforts (by transforming multivariate GARCH 
models into univariate ones), reducing significantly the computational time 
and getting rid of any problem that may arise from complex data 
manipulations; 

• It ensures a tight control of the amount of “noise” due to reducing the number 
of variables to fewer principal components. This may prove beneficial since it 
may result in more stable correlation estimates; 

• Such method produces volatilities and correlations for all variables in the 
system, including those for which direct GARCH estimation is computationally 
difficult. 

GARCH forecasting techniques offer some key advantages, like flexibility and 
accuracy, for which practitioners find them effective and easy to use, especially in 
activities like back-office risk management and front-office trading systems. However, 
this may be put at risk if a feasible method that helps the manipulation of large 
covariance data matrices is not also implemented. Given the considerable difficulties 
in data estimation that may arise when dealing with such large GARCH covariance 
matrices, and given the need for using mean-reverting covariance forecasts in value-
at-risk-models, PC-GARCH contribution is notable. Designed to capture variability of a 
returns sample by few orthogonal casual factors, and assigning the rest of variation to 
“noise” factors, the use of principal components analysis permits the transformation of 
optimization procedures into univariate time series. This enables reduction in 
computational density, as the whole matrix of variances and covariances can be 
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derived out of simple linear transformations of factor variances. Used in several real-
world settings, in no case has the PC-GARCH been found defective. Its superiority 
has been found in all cases, starting from bivariate or trivariate settings with hundreds 
of variables, up to multivariate ones dealing with several thousands of time series. 
The current paper could be extended by estimating different univariate and 
multivariate GARCH models with Bayesian statistics techniques. Further research 
could also include extensions to other multivariate GARCH models, like VEC, BEKK, 
CCC, TVC and DCC models, and the employment of new developments like semi-
parametric estimation, more flexible DCC and factor models, finite mixtures of GARCH 
models, and incorporation of high frequency data in multivariate modeling. 
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Appendix 

Figures 1 to 7: GARCH decomposition of Adobe, Apple, Autodesk, Cisco, Dell, 
Microsoft and 3M daily returns over the sample period. Data source: Datastream. 
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Figures 8 to 14: GARCH decomposition of Adobe, Apple, Autodesk, Cisco, Dell, 
Microsoft and 3M standardized residuals over the sample period. Data source: 
Datastream. 
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