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Abstract 
Using two monthly yield datasets over the periods 1970-2000 and 1990-2019, respectively, 
we re-examine previous findings that yield forecasts based on AR models for the dynamic 
factors obtained from the Nelson-Siegel curve outperform the random walk forecast and 
other competitors. Our empirical results do not support these findings. Only the forecasts 
based on AR models for the differenced yields outperform the random walk forecast. In 
general, the 1-month-ahead forecasts based on the dynamic factors come out worse than 
those based on the yields. In the case of 12-months-ahead forecasting, all forecasts perform 
poorly, particularly those based on AR models fitted to undifferenced time series. Seemingly 
more positive results obtained in previous studies are explained by a focus on a too short 
evaluation period. 
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1. Introduction 
Identifying and forecasting the factors that drive the term structure of interest rates is of great 
importance for pricing financial assets, managing portfolios and financial risk, and 
conducting monetary policy. Numerous models have been proposed for the description of 
the yield curve. Most of them turned out to be useless for forecasting purposes. However, 
the class of dynamic factor models seems to constitute an exception. Using a model with 
three factors, Diebold and Li (2006) obtained forecasts of the yield curve by estimating 
univariate autoregressive (AR) models for the individual factors as well as vector 
autoregressive (VAR) models for all three factors. The fact that the AR models fared better 
than the VAR models (which may depend on the respective forecast period; see Favero et 
al., 2012) was explained by the fact that the three factors were not highly correlated with 
each other. Apparently, the forecasts based on the former models were much more accurate 
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at long horizons than various benchmark forecasts based on slope regression, forward rate 
regression (Fama and Bliss, 1987), forward curve regression (Cochrane and Piazzesi, 
2005), principal components, AR models, VAR models, and error correction models (ECMs). 
While the dynamic factor model used by Diebold and Li (2006) might perform well 
empirically, it has the theoretical disadvantage that it admits arbitrage possibilities (see 
Filipović, 1999; for a remedy of this theoretical weakness see Christensen et al., 2011; Niu 
and Zeng, 2012). 
Subsequent papers dealing with out-of-sample forecasting referred to these findings but did 
not provide any corroborating evidence. Although Matsumura et al. (2010) studied a large 
number of linear term-structure models, none of these models could consistently outperform 
the random walk model. The inclusion of macroeconomic variables or no-arbitrage 
restrictions did not improve the out-of-sample fit. Muvingi and Kwinjo (2014) compared the 
3-factor model only with a 4-factor extension (Svensson, 1994) but did not include standard 
benchmarks. In Chen and Niu’s (2014) study, the factor-forecasting approach (no matter 
whether AR models or VAR models were used) was inferior to the random walk model. The 
authors attributed this poor performance to non-stationarities and therefore proposed local 
AR (LAR) models with time-varying parameters. In addition, they also tried LAR models with 
exogenous variables (LARX models). Of course, the latter models are not directly 
comparable to those employed by Diebold and Li (2006). 
In order to resolve the discrepancy between the conflicting empirical results, we take a 
second look at the study of Diebold and Li (2006) and reanalyze their data set. Our focus is 
on the continuous assessment of the forecasting performance as opposed to the use of a 
single measure of forecast accuracy such as the mean of the squared forecast errors (MSE) 
or the mean of the absolute forecast errors (MAE). We also introduce meaningful nontrivial 
benchmarks. Finally, our findings are checked by extending the study period both into the 
past and into the future.   
The rest of the paper is organized as follows. In the next section, we describe the modeling 
framework and the data used. We also run some standard analyses which help to 
understand the nature of the data. In Section 3, we compare the performance of various 
forecasting methods. Section 4 concludes. 

2. Data and Models 
Let Pt () be the price at time t of a bond with par value 1 and residual time to maturity  (in 
months). The yield of this bond at time t is defined as the annualized interest rate, i.e.  
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Since both the estimation and the interpretation of the estimated parameters are 
compromised by the similarity of the two nontrivial regressors, Diebold and Li (2006) 
propagated the slightly modified model       
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and interpreted the model parameters as dynamic factors representing level, slope and 
curvature, respectively (for the interpretation of the parameters of similar models fitted to the 
discount curve rather than to the yield curve see Litzenberger et al., 1995). The loading on 
the first factor is a constant and therefore does not decrease as  increases. The loading on 
the second factor starts at the maximum and then decays quickly towards zero. The loading 
on the third factor increases from 0 to a maximum and then decays to zero (see Figure 1.d). 
The factors are therefore also called long-term, short-term, and medium-term, respectively.  
As pointed out by Chen and Niu (2014), under a fixed t, any non-stationarity in the yields 
can be solely attributed to non-stationarities in the factors. Diebold and Li (2006) set 
t=0=0.0609 for all t. This value is commonly thought to ensure that the loading on the 
medium-term factor achieves its maximum at 30 months (average of two and three-year 
maturities). Clearly, it does not really matter that the value of t implying a maximum at 30 
months is actually given by 0.0598 rather than 0.0609 because the maturity of 30 months 
was set arbitrarily in the first place. A different choice of the maturity would have a much 
greater effect. For example, we must set t=0.074720 and t=0.049813 for a maximum at 24 
months and 36 months, respectively. Alternatively, a fixed t can also be chosen by 
optimizing the fit for the data set used. However, if the first forecast is made in the m+1st 
month, only the first m months can be used for the optimization in order to avoid the danger 
of a data-snooping bias. For the data set and m=108 used by Diebold and Li (2006), we 
obtain 0.06174 and 0.06569 by minimizing the MSE and the MAE, respectively. These 
values are relatively close to the optimal values 0.06553 and 0.06867 for the whole sample. 
All computations were carried out with the free statistical software R (R Core Team, 2017). 
Diebold and Li (2006) used monthly yield data (obtained from end-of-month price quotes 
for U.S. Treasuries) from January 1985 to December 2000 (n=192) at maturities of 3, 6, 
9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108, and 120 months (for a study on 
daily data see Sambasivan and Das, 2017; for studies on international data see Kaya, 
2013; Shang and Zheng, 2018). In the following, we use a much longer time series 
(n=372) beginning in January 1970 and extending through December 2000 (thankfully 
made available by Francis X. Diebold on his homepage). Given the K=17 time series of 
yields at different maturities, estimates t1̂ , t2̂ , t3̂  of the time-varying model 
parameters 1t, 2t, and 3t can, for each t, be obtained by OLS when t is fixed. 
Observing that the 3-factor model (with t=0.0609) is capable of replicating a variety of 
yield curve shapes (see also Figure 1.h), 
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Figure 1 
Analysis of Yields and Factors  

 
Notes:   
(a) Yields at maturities of 3 (gray), 36 (darkgray), and 120 (black) months  
(b) Log periodogram of 36-m yield at first 15 frequencies j plotted against 2 log(sin(j /2)))  
(c) Changes of 36-m yield  
(d) Factor loadings: long-term (gray), short-term (darkgray), medium-term (black) 
(e) Factors representing level (gray), slope (darkgray) and curvature (black) 
(f) Log periodogram of slope at first 15 Fourier frequencies j plotted against 2 log(sin(j /2)))  
(g) Changes of slope  
(h) Yield curves (lines) fitted to yields (points) at different times: month=1 (black, dotted), n/4 
(darkgray, dashed), n/2 (gray, solid), 3n/4 (darkgray, dotted), n (black, solid) 
 
Diebold and Li (2006) claimed that forecasting the yield curve is equivalent to forecasting 
the three factors. Using augmented Dickey-Fuller tests, they found indications of unit roots 
in the factors. This finding can be confirmed by a more robust analysis in the frequency 
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domain. A steep increase of the periodogram in the neighborhood of frequency zero is a 
possible indication of a pole at frequency zero. The integrability of the spectral density, which 
is required for stationarity, depends on the steepness of the increase. Assuming that the 
spectral density in the neighborhood of frequency 0 can be approximated by  

f() ~ C
d-iωe

2
1


 = 4-dC sin2d( 2

ω ) 

and 
log f() ~ log 4-dC + d(2 log(sin( 2

ω ))), 

respectively, and plotting the first log periodogram ordinates log(I(j) against 
2log(sin(j/2))), we can check whether the slope d is greater than 0.5, which is inconsistent 
with stationarity. Figures 1.b (obtained from the 36 months yields) and 1.f (obtained from the 
second factor) suggest that the factors and the yields are indeed non-stationary. 
Many economic and financial time series are non-stationary before differencing and do not 
have large autocorrelations after differencing. Usually, good forecasts are obtained by fitting 
low-order AR models to the differences. The order 1 is often the best choice. However, 
Diebold and Li (2006) use only the random walk model, which corresponds to an AR model 
of order 0 for the differences. They consider nontrivial AR models for the yield and factor 
levels, VAR models for the yield and factor levels as well as for the yield changes but take a 
pass on the most promising models, namely AR models for the yield and factor changes 
(depicted in Figures 1.c and 1.g). Based on ample empirical evidence from the 
macroeconomics literature, one might expect that these omitted models have, a priori, the 
best chance to actually outperform the random walk model. They are therefore included in 
our study on yield-curve forecasting, the results of which will be presented in the next section.   

3. Out-of-Sample Forecasting 
In this section, we compare the performance of various term-structure forecasts for the 
forecast horizons of h=1 and h=12 months. We forecast recursively with expanding window 
length m36, hence the data from January 1970 to December 1972 are used to forecast the 
yields in January 1988 and the data from January 1970 to November 2000 are used to 
forecast the yields in December 2000. Figure 2 shows the cumulative absolute 1-step-ahead 
forecast errors for the maturities of 3 (2.a), 12 (2.b), 36 (2.c), and 120 (2.d) months relative 
to the random-walk benchmark. Averages over all 17 maturities are shown in 2.e. Since the 
cumulative squared 1-step-ahead forecast errors are essentially comparable (but are clearly 
more erratic due to their sensitivity to outiers), only the averages over all 17 maturities are 
shown in 2.f. Overall, only the forecasts based on the differenced yields are slightly better 
than the benchmark. Apparently, the factors are not helping at all. The forecast based on the 
last yield performs better than the forecast based on the most recently fitted yield curve. 
Similarly, the forecasts based on AR(1) models for the yields perform better than those 
based on AR(1) models for the factors. Finally, forecasts based on AR(1) models for the 
differenced yields outperform forecasts based on AR(1) models for the differenced factors. 
In view of the non-stationarities in both the yields and the factors, it is not surprising that 
differencing has, in general, a positive effect.  
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Figure 2 
1-Month-ahead Forecasting 

 

Notes: Cumulative absolute errors of 1-month-ahead forecasts of monthly yields at different 
maturities relative to random-walk benchmark (a: 3 months, b: 12, c: 36, d: 120, e: average over 
all 17 maturities; f: average over all 17 maturities for cumulative squared errors; black vertical line: 
start of forecasting period of Diebold and Li, 2006).  
Black, solid: Random-walk forecasts based on yields 
Black, dashed: Forecasts based on AR(1) models for the yields 
Black, dotted: Forecasts based on AR(1) models for the differenced yields 
Gray, solid: Random-walk forecasts based on fitted 3-factor model 
Gray, dashed: Forecasts based on AR(1) models for the factors 
Gray, dotted: Forecasts based on AR(1) models for the differenced factors 
 
The Diebold-Mariano (1995) test can be used to test the null hypothesis that two forecasts 
have the same accuracy. In our case, the results of pairwise testing confirmed that only the 
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forecasts based on AR(1) models for the differenced yields can keep up with the benchmark. 
The details are given in Table 1. The results obtained with the modified Diebold-Mariano test 
(Harvey et al., 1997) are not reported because they are practically identical. The actual 
testing was carried out with the help of the function DM.test of the R package multDM (in 
contrast to Table 1, the specifications “more” and “less” in this function refer to the altenative 
hypothesis rather than to the null hypothesis).  
 

Table 1 
Diebold-Mariano test (5%) based on Squared/Absolute Forecasting Errors: 
Number of Rejections for 17 Maturities of the Hypothesis that Forecasts are 

More/Less Accurate than Benchmark (Random Walk for Yields)  
Forecasts SE 

“less” 
AE 

“less” 
SE 

“more”
AE 

“more” 
AR(1) model for the yields 0 0 17 14 
AR(1) model for the yield changes 0 4 0 0 
Random walk for the factors 0 0 3 3 
AR(1) model for the factors 0 0 8 14 
AR(1) model for the factor changes 0 0 15 15 

 
Given the disappointing performance of the 1-step forecasts, we do not expect that long-
term forecasts are of any use. However, encouraged by the findings of Diebold and Li (2006), 
we still take a closer look at the forecast horizon of h=12 months.    

The coefficients jtjtc ̂,ˆ  and jtjtd ̂,ˆ  in the yield forecasts 
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respectively. Analogously, the more straightforward yield forecasts )(hty 
  and )(

hty  
based on autoregressive models for the yield levels and the yield changes, respectively, are 
defined.    
Figure 3 shows the cumulative absolute 12-step-ahead forecast errors for different maturities 
as well as averages over all 17 maturities. Again, the cumulative squared forecast errors are 
only shown for the averages. There are no forecasts that consistently outperform the random 
walk benchmark. The forecasts based on autoregressive models for the levels come out 
worst. However, Figure 3 also shows that it is possible to find subperiods where these 
forecasts slightly outperform the benchmark. The longest of these subperiods starts in early 
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1984. Luckily, Diebold and Li (2006) chose just that starting point for their comparison of the 
different forecasts.  

Figure 3 
12-Months-ahead Forecasting  

 

Notes: Cumulative absolute errors of 12-months-ahead forecasts of monthly yields at different 
maturities relative to random-walk benchmark (a: 3 months, b: 12, c: 36, d: 120, e: average over 
all 17 maturities; f: average over all 17 maturities for cumulative squared errors; black vertical line: 
start of forecasting period of Diebold and Li, 2006). 
Black, solid: Random-walk forecasts based on yields 
Black, dashed: Forecasts based on AR(1) models for the yields 
Black, dotted: Forecasts based on AR(1) models for the differenced yields 
Gray, solid: Random-walk forecasts based on fitted 3-factor model 
Gray, dashed: Forecasts based on AR(1) models for the factors 
Gray, dotted: Forecasts based on AR(1) models for the differenced factors 
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4. Conclusions 
In general, the approximation of individual yields by a smooth parametric function has two 
effects. A bias is introduced and the variance is reduced. The usefulness of the 
approximation depends on the sizes of these effects. In the simplest case of random walk 
forecasting, there are two forecasts that must be compared. The first forecasts a future yield 
simply by the present yield and the second forecasts a future yield by the approximated 
present yield. In our empirical study of monthly yields from January 1970 to December 2000, 
we find that the use of the approximation reduces forecast accuracy indicating that the bias 
effect outweighs the variance effect. Similarly, when we apply autoregressive models to the 
levels and the differences of the yields and the factors (the time-changing parameters of the 
approximation), respectively, we always find that the forecasts based on the yields are better 
than those based on the factors. Overall, only the forecasts based on autoregressive models 
for the yield changes slightly outperformed the benchmark (random walk for yields). This 
outperformance appears to be genuine because it is corroborated by some significant results 
obtained with the Diebold-Mariano (1995) test.   
Of course, there is still room for further development of the factor approach. There are 
numerous possibilities. But in view of the relatively small sample size, any such attempt 
would quite rightly raise the suspicion of data snooping. When all the basic variants of factor 
forecasting appear to be completely useless, we should possibly leave it at that. Moreover, 
when the quality of short-term forecasts is poor, it does not make sense to bother with long-
term forecasting. A comparison of several bad long-term forecasts will most likely result in a 
random outcome. Just by chance, each forecast will be much better than its competitors in 
certain subperiods and much worse in others. This is also the case for the forecast 
propagated by Diebold and Li (2006). It performs very poorly before 1994 and between 1995 
and 1999. However, some lucky hits in 1994 and in 2000 suffice to squeeze out a narrow 
lead over the benchmark in the subperiod from 1994 to 2000, which has been used by 
Diebold and Li. However, already a slight extension of this subperiod into the past causes a 
dramatic deterioration in the performance of their forecast.  
To find out what happens when we extend the forecasting period into the future, we 
downloaded a newer dataset (with the help of the R package Quandl) beginning in January 
1990 and extending through January 2019. This dataset includes daily yields at maturities 
of 1, 2, 3, 6, 12, 24, 36, 60, 84, 120, 240, and 480 months. After omitting the two shortest 
and the two longest maturities (because of too many missing values), we transformed the 
eight remaining daily yield series to monthly series by retaining only the last quotes of each 
month. Compared to the dataset studied above, the number of maturities was practically 
halved. However, the possible negative effects of this reduction on the estimation of the yield 
curves are dampened by the smoothness of the yield curves and the fact that the range (3-
120 months) has remained unchanged. Figure 4, which is analogous to Figure 2, shows first 
that the forecasts based on AR(1) models for the differenced yields are again the only ones 
that outperform the benchmark and second that the forecasts based on factors have further 
fallen behind those based on yields, which is not surprising in view of the fact that the number 
of maturities has dropped considerably. The implications of this fact are less severe for long-
term forecasts, which are very erratic anyway. Indeed, Figure 5, which is analogous to Figure 
3, shows that the forecasts based on AR(1) models for the factors still perform similarly to 
those based on AR(1) models for the yields, which are clearly not affected by the total 
number of maturities. Apart from short subperiods, both forecasts come off very badly. The 
financial crisis does not seem to have an important effect on their performance. 
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Figure 4 
1-Month-ahead Forecasting (New Data) 

 
 
Notes: Cumulative absolute errors of 1-month-ahead forecasts of monthly yields at different 
maturities relative to random-walk benchmark (a: 3 months, b: 12, c: 36, d: 120, e: average over 
all 17 maturities; f: average over all 17 maturities for cumulative squared errors; black vertical line: 
start of forecasting period of Diebold and Li, 2006). 
Black, solid: Random-walk forecasts based on yields 
Black, dashed: Forecasts based on AR(1) models for the yields 
Black, dotted: Forecasts based on AR(1) models for the differenced yields 
Gray, solid: Random-walk forecasts based on fitted 3-factor model 
Gray, dashed: Forecasts based on AR(1) models for the factors 
Gray, dotted: Forecasts based on AR(1) models for the differenced factors 
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Figure 5 
12-Months-ahead Forecasting (New Data) 

 

Notes: Cumulative absolute errors of 12-months-ahead forecasts of monthly yields at different 
maturities relative to random-walk benchmark (a: 3 months, b: 12, c: 36, d: 120, e: average over 
all 17 maturities; f: average over all 17 maturities for cumulative squared errors; black vertical line: 
start of forecasting period of Diebold and Li, 2006). 
Black, solid: Random-walk forecasts based on yields 
Black, dashed: Forecasts based on AR(1) models for the yields 
Black, dotted: Forecasts based on AR(1) models for the differenced yields 
Gray, solid: Random-walk forecasts based on fitted 3-factor model 
Gray, dashed: Forecasts based on AR(1) models for the factors 
Gray, dotted: Forecasts based on AR(1) models for the differenced factors 
 
Our results suggest that factor models do, in general, not allow more accurate term-structure 
forecasting. The forecasts based on AR(1) models for the factors are particularly bad. The 
common practice of using them as benchmarks for the evaluation of new forecasting 
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methods should therefore be discouraged in order to avoid overly optimistic conclusions. An 
obvious alternative would be to use forecasts based on AR(1) models for the differenced 
yields (in addition to the random walk forecasts). Apart from suitable benchmarks, the length 
of the forecast period is also critical. Anything can happen in a short period of a few years. 
The more sophisticated a forecasting method is, the longer the forecast period should be. 
For example, when the factor models are fitted locally in order to ensure stationarity, 
sophisticated testing procedures are required, which typically depend on a set of 
hyperparameters (Chen and Niu, 2014). In such a case, a forecast period of about ten years 
might probably be too short, particularly when the comparison of the competing forecasts is 
based on a single numerical measure rather than on the whole time course.  
Clearly, increasing the length of the time series just by switching from monthly to daily data 
does not necessarily help a great deal when the forecast horizon remains unchanged. 
However, we could still try to construct additional predictors from the daily data either in a 
well-thought-out manner (e.g., local sample moments such as variances, autocovariances 
and cross-covariances) or, more erratically, with the help of machine learning algorithms. A 
further issue for future study is to augment conventional measures of forecast accuracy such 
as the MSE and the MAE with a measure of economic usefulness (e.g., for the prediction of 
economic downturns since the term spread is a strikingly accurate predictor of future 
economic activity; see Bauer and Mertens, 2018; for further interactions between the 
macroeconomy and the yield curve see Diebold et al., 2006). 
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