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Abstract 
Genetic algorithms can be used in order to solve optimization problems. Such a 
technique may be used in order to solve differential equations. 
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The main issue 
There are some fundamental econometric issues which lead to differential equations. 
For example, taking into account the demand-supply equilibrium, we may consider the 
variation of the price as being a ratio of the difference between demand and supply. 

( )( ) ( )P a D t S t
t

∆
= −

∆
 

where a is a positive constant. Assuming small values for t, we obtain the differential 
model: 

( )'( ) ( ) ( )P t a D t S t= −  

When demand exceeds supply, the right part represents a positive value, which 
implies that P is an increasing function. 
Formally, we may consider the general Cauchy problem 

0 0' ( , ), ( )y f x y y x y= = , 

where x is the independent variable and ( )y y x=  is the dependent variable. 

By using the classical assumption:  

[ ] [ ]0 0 0 0: , ,f x X x X y Y y Y− + × − + →R  

is continuous and satisfies the Lipschitz condition 
 1 2 1 2( , ) ( , )f x y f x y L y y− ≤ −  
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it results there exists a single solution y. 
There are many methods used to find the solution, but, in practice, we always solve 
the problem by using numerical methods, the Runge-Kutta method being the best 
known. The main goal of this article is to underline the possibility of using a different 
method, based on genetic algorithms. 

Basics of genetic algorithms 
Admissible solutions. As in the case of the Runge-Kutta method, by using the 
genetic algorithm we will find the values of the unknown function 

[ ]( ), : ,y y x y a b= → R , according to a finite set of equidistant values of the independent 

variable 0 1 ... nx a x x b= < < < = , ix a ih= + , b ah
n
−

= .  

We denote by ( ), 1...i iy y x i n= =  the values of the unknown function y, in accordance 
with the given division. Thus, the vector 1 2( , ,..., )ny y y  is an admissible solution. 

Population. By using the biological pattern, we will consider the population as being a 
subset of all chromosomal combinations, i.e. a subset of admissible solutions. Given 
an instant t, we denote the population by ( )tP . One individual 1 2( , ,..., )ny y y y=  is 
characterized by its genetic heritage, i.e. the iy  values. 

Selection. The individuals in a biological population are, more or less, adapted. Thus, 
in order to simulate biological (natural) selection, we will select, in each stage, only 
one subset of individuals, namely those who are best adapted. The surplus of 
individuals is eliminated, taking into account the decreasing values of the performance 
function.  
In order to evaluate each individual, we will use the following approximate formula for 
the derivative: 

 
1'( ) i i

i
y y

y x
h

−−
≈

        

1'( ) .i i
i

y y
y x const h

h
−−

− ≤ ⋅
 

Consequently, the discrete form of the Cauchy problem will be: 

 
1 ( , ), 1...i i

i i
y y

f x y i n
h

−−
= =

 (1) 
The above system is, generally, nonlinear.  
Finding the vector 1 2( , ,..., )ny y y  which satisfies the above conditions is our goal.  

Of course, for an admissible solution, we do not have the equality (1) and, 
consequently, we have to consider the error formula: 

 

2
1 ( , )i i

i i
y y

f x y
h

−−⎛ ⎞−⎜ ⎟
⎝ ⎠  
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The performance function, associated to an individual 1 2( , ,..., )ny y y y=  will be: 

 

2
1

1

( ) ( , )
n

i i
i i

i

y y
F y f x y

h
−

=

−⎛ ⎞= −⎜ ⎟
⎝ ⎠

∑
 

An individual from ( )tP  will be better adapted if its chromosomal heritage implies a 
smaller value of the function F. 
Offspring. Two individuals can generate offspring by combining their chromosomal 
sequences. Thus, by using a cross-over operation, 1 2( , ,..., )ny y y  and 1 2( , ,..., )nz z z  will 
generate: 

 1 2 1( , ,..., , ,..., )k k ny y y z z+  and 1 2 1( , ,..., , ,..., )k k nz z z y y+  
Mutation. Each chromosome may suffer some modifications, which may be 
hazardous or may result as genetic acquisitions, if we assume that “education and 
instruction” have as result a better performance.  
Formally, we will consider that iy ε±  is a mutation for iy . 

Convergence issue 
We denote by tu  the best adapted individual in the population, at the instance t, i.e. 
the individual in the population ( )tP  which has the minimum value of the function F. In 
a previous paper1 we have already stated that the sequence ( ) 0t t

u
≥

 converges, its limit 
being the solution of the optimization problem inf F . 
While the solution is the limit of a convergent sequence, by applying the genetic 
algorithm, the following assertion is true: 
For 0ε > , there is a 1 2( , ,..., )ny y y y=  such that: 

 

2
1

1

( ) ( , )
n

i i
i i

i

y y
F y f x y

h
ε−

=

−⎛ ⎞= − <⎜ ⎟
⎝ ⎠

∑
 

It results there is a 1 2( , ,..., )ny y y y=  such that  

 

1 ( , )i i
i i

y y
f x y h

h
−−
− <

 
Taking into account the approximation of the derivative, we have 

 

1 1'( ) ( , ) '( ) ( , )i i i i
i i i i i i

y y y y
y x f x y y x f x y Ch

h h
− −− −

− ≤ − + − <
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The last relation shows that the final value 1 2( , ,..., )ny y y y=  is an approximate solution 
of the Cauchy problem, for small values of h. 

Algorithm 
Evolution may be expressed as an algorithm, which uses the basics of life: population, 
offspring, mutation and selection. We adapted the general algorithm, as described 
bellow: 
Step 1. Generate a population, corresponding to an initial moment t, ( )tP . The initial 
population consists of a set of M vectors, having as chromosomes some uniform 
perturbation of the initial condition, i.e. 0 1 0 2 0( , ,..., )m m m

ny y yε ε ε± ± ± , 1..m M= , 0j
iε > . 

Step 2. Let be 1t t← + ; generate offspring. Only the best adapted individuals will 
participate. Given two individuals 1 2( , ,..., )ny y y  and 1 2( , ,..., )nz z z  we will select the 
closest chromosomes, i.e. the value k such that 

1..
mink k i ii n

y z y z
=

− = −  and the 

algorithm will generate two new individuals 1 2 1( , ,..., , ,..., )k k ny y y z z+  and 

1 2 1( , ,..., , ,..., )k k nz z z y y+ . 

Step 3. Applying random mutations. 
As we stated in a previous paper1, the algorithm will converge to an optimal value if 
the mutation will respect the gradient of the function 

2
1

1 2
1

( , ,..., ) ( , )
n

i i
n i i

i

y y
F y y y f x y

h
−

=

−⎛ ⎞= −⎜ ⎟
⎝ ⎠

∑ . 

Step 4. Evaluate individuals, by using the performance function F. 
Step 5. Eliminate some individuals, in order to keep the constant population. 
Step 6. Continue with step 2, while ending condition has not yet been reached. 
The ending condition will be a posteriori: 

 ( ) ( )1t tF u F u h−− <
,  

tu  being the best performance individual in ( )tP . 

Conclusion 
Genetic programming may be used in order to find numerical solutions for differential 
equations. As well as the Runge Kutta method, we can find approximate values of the 
unknown function, with respect to equidistant values for the independent variable. 

                                                           
1 Mateescu G.D., op cit. 
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We used the above algorithm for the equation ( )3 2'( ) 2 , (1) 0y t t t y= − =  in order to find 

an approximate solution [ ]: 1,2y → R . We selected a population having 30 individuals, 
classified by the performance function. At each step, the first 10 individuals will 

generate 20 new members (offspring). For 1
10

h = , the final vector y is 

 (0,0.01,0.05,0.13,0.26,0.45,0.71,1.07,1.53, 2.11, 2.83)  
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