# An Unbiased Estimator for the Parameter of a Homographic Distribu AN UNBIASED ESTIMATOR FOR THE PARAMETER OF A HOMOGRAPHIC DISTRIBUTION USED IN ECONOMY

### Poliana ŞTEFĂNESCU<sup>\*</sup> Ştefan ŞTEFĂNESCU<sup>\*\*</sup>

## Abstract

In a previous study, ( $\xi$ tefănescu, P.,  $\xi$ tefănescu,  $\xi$ t., 2006) we suggested two possible estimators for the unknown value of the parameter  $\theta$  which characterize a homographic type HG( $\theta$ ) distribution.

In the current paper we shall prove that the proposed estimators of  $\theta$  based on the median of the r.v. X, X ~ HG( $\theta$ ), always over- evaluate the real value of  $\theta$ . For this reason we determined an adjusted multiplicative factor such that the median type estimators to become unbiased.

The theoretical results were confirmed experimentally by using a Monte Carlo stochastic simulation technique.

**Key words:** homographic distribution, unbiased estimator, Monte Carlo technique, generating random variables.

JEL Classification: C13, C15

### **1**. Introduction

Other authors (Isaic-Maniu, AI., Vodă, V. Gh., 2005) have investigated the properties of a homographic type random variable (r.v.) X having  $F(x;\theta)$  as cumulative distribution function (c.d.f.), where

$$F(x;\theta) = \frac{x}{x+\theta}, \ x \ge 0 \quad , \quad \theta > 0$$
(1)

47

In the following we shall denote by  $X \sim HG(\theta)$  if the r.v. X has the c.d.f.  $F(x;\theta)$ .

The distribution  $HG(\theta)$  is well used for modeling some economic aspects, especially to describe the failure of different financial markets<sup>1</sup>.

Associate Professor, Ph.D., Faculty of Mathematics and Informatics, University of Bucharest, e-mail : stefanst@fmi.unibuc.ro.



– Romanian Journal of Economic Forecasting – 2/20<del>06</del>

Associate Professor, Ph.D., Faculty of Sociology and Social Work, University of Bucharest, e-mail : \_\_\_\_\_poliana@sas.unibuc.ro.

### Institute of Economic Forecasting

The probability density function (p.d.f.)  $f(x;\theta)$ ,  $x \ge 0$ , of the r.v. X, X ~ HG( $\theta$ ), has the form

$$f(x;\theta) = \frac{\theta}{(x+\theta)^2}, x \ge 0, \ \theta > 0$$
<sup>(2)</sup>

Depending on the values of the parameter  $\theta$ , the c.d.f.-s  $F(x;\theta)$  are enough different (see Figure 1), suitable to study peculiar situations.

Figure 1



Therefore, it is very important to obtain good estimators of the parameter  $\theta$ . But, in our case, the classical moment method to estimate  $\theta$  is in general unworkable since: **Proposition 1.** For any  $a \ge 1$  and  $\theta > 0$ , if  $X \sim HG(\theta)$  then we have

$$Mean(X^{a}) = \infty \tag{3}$$

Proof: Indeed,

$$Mean(X^{a}) = \int_{0}^{\infty} x^{a} f(x;\theta) dx \ge \int_{1}^{\infty} x^{a} f(x;\theta) dx \ge \int_{1}^{\infty} x f(x;\theta) dx = \int_{1}^{\infty} \frac{x\theta}{(x+\theta)^{2}} dx = \int_{1}^{\infty} \frac{x}{(x+\theta)^{2}} dx$$

Romanian Journal of Economic Forecasting – 2/2006 –

**B**R

<sup>&</sup>lt;sup>1</sup> Isaic-Maniu, Alexandru, Vodă, Viorel Gh., "On a homographic distribution function", *Economic Computation and Economic Cybernetics Studies and Research*, Vol. 39, No.1-4(2005), 11-18.

$$=\theta\left[-\frac{x}{x+\theta}+\ln(x+\theta)\right] \begin{vmatrix} x=\infty\\ x=1 \end{vmatrix} = \infty$$

Moreover, if  $x_1, x_2, x_3, ..., x_n$  are n independent observations from the r.v. X, X ~ HG( $\theta$ ), then the maximum likelihood estimation<sup>1</sup> is reduced to find the real roots of a n-degree polynomial equation in  $\theta^2$ . For this reason, like the moment method also the standard maximum likelihood estimator procedure is not so easy to be applied<sup>3</sup>.

But, for any  $X \sim HG(\theta)$ , we get

$$Pr(X \le \theta) = F(\theta;\theta) = \frac{\theta}{\theta + \theta} = \frac{1}{2}$$
 (4)

Therefore,  $\theta$  is just the median indicator of the r.v. X. This fact was used in a previous study<sup>4</sup> to estimate  $\theta$ .

In the following, we shall try to establish some statistical properties of the estimators based on the median coefficient.

### The Gross Median Type Estimator

For any sample  $x_1, x_2, x_3, ..., x_n$  obtained from the r.v. X, X ~ HG( $\theta$ ), the experimental median coefficient x<sup>\*</sup> has the form

$$\mathbf{x}^{*} = \begin{cases} \mathbf{x}_{(m+1)}; & \text{if } n = 2m + 1\\ (\mathbf{x}_{(m)} + \mathbf{x}_{(m+1)})/2; & \text{if } n = 2m \end{cases}$$
(5)

where  $\mathbf{x}_{(1)}$ ,  $\mathbf{x}_{(2)}$ ,  $\mathbf{x}_{(3)}$ , ...,  $\mathbf{x}_{(n)}$  are just the values  $\mathbf{x}_1$ ,  $\mathbf{x}_2$ ,  $\mathbf{x}_3$ , ...,  $\mathbf{x}_n$  sorted in an increasing order, that is  $\mathbf{x}_{(1)} \le \mathbf{x}_{(2)} \le \mathbf{x}_{(3)} \le \ldots \le \mathbf{x}_{(n)}$ .

By applying different statistical methods and using the computer we can generate independent random values  $x_1, x_2, x_3, ..., x_n$  of an arbitrary r.v. X<sup>5</sup>. More exactly:

**Proposition 2.** If U has an uniform distribution on (0, 1] interval, U ~ U((0, 1]), and

$$T = \frac{\theta(1-U)}{U} \tag{6}$$

Then, T ~ HG( $\theta$ ).

<sup>&</sup>lt;sup>5</sup> See for example Gentle, James E., *Random number generation and Monte Carlo methods*, Springer -Statistics and Computing, New York, 1998.



– Romanian Journal of Economic Forecasting – 2/20<del>06</del>

<sup>&</sup>lt;sup>1</sup> Papoulis, Athanasios, Probability and statistics, Prentice Hall, New Jersey, 1990.

<sup>&</sup>lt;sup>2</sup> See also Isaic-Maniu, Alexandru, Vodă, Viorel Gh., "On a homographic distribution function", Economic Computation and Economic Cybernetics Studies and Research, Vol. 39, No.1-4(2005), 11-18.

<sup>&</sup>lt;sup>3</sup> More details in Ştefănescu, Poliana, Ştefănescu, Ştefan, "Estimating the parameter of a homographic distribution", Economic Computation and Economic Cybernetics Studies and Research, Vol. 40, No. 1(2006), 10 pgs. (forthcoming).

<sup>&</sup>lt;sup>4</sup> Ştefănescu, Poliana, Ştefănescu, Ştefan, op cit.

#### Institute of Economic Forecasting

*Proof:* Let G(t) be the c.d.f. of the r.v. V. Then, for any  $t \ge 0$ , we shall show that G(t) is just F(t;  $\theta$ ), that is T ~ HG( $\theta$ ). Indeed,

$$G(t) = \Pr(T \le t) = \Pr\left(\frac{\theta(1-U)}{U} \le t\right) = \Pr\left(U \ge \frac{\theta}{t+\theta}\right) =$$
$$= \int_{\theta/(t+\theta)}^{1} du = 1 - \frac{\theta}{t+\theta} = \frac{t}{t+\theta} = F(t;\theta)$$

**Remark 1.** Any programming language has implemented specialized procedures to generate U((0, 1]) random variables<sup>1</sup>. Specifically, in Microsoft Excel language the name of this procedure is *Rand*.

Taking into consideration all the previous aspects we suggest the algorithm  $A1(n,\theta)$  to validate the quality of the estimates x<sup>\*</sup> given by (5).

Algorithm  $A1(n,\theta)$  (the median procedure).

Step 0. Inputs: n,  $\theta$  (n  $\ge$  2,  $\theta$  > 0).

m = Int(n/2) (Int( $\lambda$ ) is the integer part of the real number  $\lambda$ )

Step 1. Generate n independent U((0, 1]) random values  $u_1, u_2, u_3, \dots, u_n$ .

Step 2. 
$$x_i = \frac{\theta(1-u_i)}{u_i}$$
,  $1 \le i \le n$ .

Step 3. Sort the values  $x_1, x_2, x_3, \dots, x_n$  in an ascending order, at last resulting the quantities

$$x_{(1)} \le x_{(2)} \le x_{(3)} \le \dots \le x_{(n-1)} \le x_{(n)} .$$
  
4. If  $n = 2m$  then  $x^* = \frac{x_{(m)} + x_{(m+1)}}{2}$ 

else  $x^* = x_{(m+1)}$ .

Step 5. Output:  $x^*$  ( $x^*$  estimates the unknown value of  $\theta$ ). STOP.

Tables 1 and 2 show the estimates  $x_1^*$ ,  $x_2^*$ ,  $x_3^*$ , ...,  $x_p^*$ , p = 20 resulted after running consecutively p = 20 times the algorithm **A1(n,0)** for n = 9,  $\theta = 10$  and n = 8,  $\theta = 11$ , respectively.

Table 1

The estimations  $x^*$  of  $\theta$  obtained by applying the algorithm A1(9,10)

| 5.09  | 36.33 | 21.59 | 6.00 | 28.04 | 5.27  | 7.74 | 10.88 | 42.19 | 15.77 |
|-------|-------|-------|------|-------|-------|------|-------|-------|-------|
| 28.60 | 2.45  | 6.59  | 3.34 | 7.82  | 18.35 | 6.79 | 15.13 | 10.80 | 9.26  |

<sup>1</sup> Gentle, James E., op cit.

50 -

Step

Romanian Journal of Economic Forecasting – 2/2006 –



### Table 2

| The estimations | x* of θ resi | ulted bv rui | nnina the | algorithm A | 1(8.11)         |
|-----------------|--------------|--------------|-----------|-------------|-----------------|
|                 |              |              |           |             | • • • • • • • • |

| 11.26 | 6.39 | 19.98 | 13.51 | 17.88 | 9.52 | 34.33 | 40.30 | 8.55  | 7.80  |
|-------|------|-------|-------|-------|------|-------|-------|-------|-------|
| 9.83  | 9.21 | 21.48 | 11.24 | 23.10 | 7.17 | 20.86 | 16.43 | 10.17 | 25.62 |

# **3**. The Quality of the Estimates **x**\*

Figures 2 and 3 present the variation of the  $x_j^*$  evaluation values for  $\theta$ ,  $1 \le j \le p = 20$ , which were taken from Tables 1 and 2.

Interpreting the Figures 2 and 3 we deduce that the estimations x\* generally over evaluate the real value of  $\theta$ . Thus, the quantities  $x_j^*$  are usually greater than  $\theta = 10$  in Figure 2 or they pass over the threshold  $\theta = 11$  in Figure 3.

Figure 2



These aspects appear more clear and stable if instead of a single value  $x^*$  we take into consideration the mean w of p consecutive estimations  $x_j^*$ ,  $1 \le j \le p$ , resulted after running successively the algorithm  $A1(n,\theta)$ , that is

$$w = \frac{X_1^* + X_2^* + X_3^* + \dots + X_{p-1}^* + X_p^*}{p}$$
(7)

🚱 – Romanian Journal of Economic Forecasting – 2/20<del>06</del>

51

Institute of Economic Forecasting





Reiterating q = 30 times the evaluation process of  $\theta$  we got the quantities  $w_1$ ,  $w_2$ ,  $w_3$ , ... ,  $w_q$  presented in Tables 3 and 4.

Table 3

The means  $w_s$ ,  $1 \le s \le q$ , given by (7) for n = 9,  $\theta = 10$ , p = 20, q = 30

|       |       | -     |       |       |       |       |       |       |       |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 14.40 | 11.32 | 10.71 | 12.84 | 14.06 | 11.24 | 17.22 | 7.42  | 15.54 | 11.56 |
| 11.74 | 13.57 | 9.32  | 12.25 | 11.67 | 12.54 | 11.63 | 14.22 | 13.05 | 6.83  |
| 17.07 | 11.28 | 13.01 | 13.04 | 10.66 | 11.46 | 10.23 | 13.73 | 14.31 | 14.57 |

Table 4

| The means $w_s$ , $1 \le s \le q$ , given by (7) for $n = 8$ , $\theta = 11$ , $p = 20$ , $q = 30$ |       |       |       |       |       |       |       |       |       |  |
|----------------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|
| 16.23                                                                                              | 15.15 | 22.10 | 11.98 | 11.65 | 10.16 | 14.15 | 13.28 | 15.36 | 15.00 |  |
| 13.57                                                                                              | 12.10 | 18.31 | 15.80 | 14.08 | 16.31 | 11.82 | 10.28 | 17.01 | 15.79 |  |
| 13.52                                                                                              | 13.90 | 15.35 | 13.65 | 14.76 | 13.49 | 16.62 | 17.22 | 13.64 | 14.32 |  |

We observe that almost always the quantities w\_s, 1  $\leq$  s  $\leq$  q = 30, pass over the threshold  $\theta$  ( $\theta$ = 10 in Table 3 or  $\theta$  = 11 in Table 4).

In conclusion, the brute estimates x\* based on the median coefficient over evaluate the real value of the parameter  $\theta$ .

# 4. Adjusting the Estimates x\*

We saw that the x\* estimations are biased. For this reason we shall try to determine theoretically the bias of the  $x_i^*$  quantities.

52

Romanian Journal of Economic Forecasting – 2/2006 –

BR

If  $X \sim HG(\theta)$ , we denote by  $X_{(k)}$  the k-order statistics considering samples of size n from  $X^1$ .

Keeping all the previous interpretations, the p.d.f.  $f_k(x; \theta)$  of an arbitrary k-order statistic  $X_{(k)}$ ,  $1 \le k \le n$ , has the following expression<sup>2</sup>:

$$f_{k}(x;\theta) = \frac{n!}{(k-1)!(n-k)!} (F(x;\theta))^{k-1} (1 - F(x;\theta))^{n-k} f(x;\theta)$$
(8)

When  $X \sim HG(\theta)$  the formula (8) becomes

$$f_{k}(x;\theta) = \frac{n!}{(k-1)!(n-k)!} \frac{\theta^{n-k+1}x^{k-1}}{(x+\theta)^{n+1}}, x \ge 0$$
(9)

**Remark 2.** For any  $a, b \in N$ , the B(a,b) value for Euler's integral is given by the formula<sup>3</sup>:

$$B(a,b) = \int_{0}^{1} t^{a-1} (1-t)^{b-1} dt = \frac{(a-1)!(b-1)!}{(a+b-1)!}$$
(10)

**Proposition 3.** If  $X \sim HG(\theta)$ , then for any  $1 \le k \le n$  we have

$$Mean(X_{(k)}) = \frac{k\theta}{n-k}$$
(11)

*Proof:* If  $t = \frac{x}{x + \theta}$  then we deduce  $x = \frac{t\theta}{1 - t}$  and  $x + \theta = \frac{\theta}{1 - t}$ .

Making the substitution  $t = \frac{x}{x + \theta}$  and using Remark 2 we get successively

$$Mean(X_{(k)}) = \int_{0}^{\infty} xf_{k}(x;\theta)dx = \frac{n!\theta^{n-k+1}}{(k-1)!(n-k)!} \int_{0}^{\infty} \frac{x^{k}}{(x+\theta)^{n+1}}dx =$$
$$= \frac{n!\theta^{n-k+1}}{(k-1)!(n-k)!} \int_{0}^{1} t^{k} (1-t)^{n-k-1}\theta^{k-n}dt = \frac{n!\theta}{(k-1)!(n-k)!}B(k+1,n-k) =$$
$$= \frac{n!\theta}{(k-1)!(n-k)!} \frac{k!(n-k-1)!}{n!} = \frac{k\theta}{n-k}$$

**Proposition 4.** If  $X \sim HG(\theta)$  and the r.v. Y is given by

<sup>&</sup>lt;sup>1</sup> Mihoc, Gheorghe, Ciucu, George, Craiu, Virgil, Teoria probabilitaților și statistică matematică, Editura Didactică și Pedagogică, București, 1970.

<sup>&</sup>lt;sup>2</sup> Mihoc, Gheorghe, Ciucu, George, Craiu, Virgil, op cit, p. 472.

<sup>&</sup>lt;sup>3</sup> Fihtenholt, G.M., Calcul diferențial și integral, Editura Tehnică, București, 1964 (translation from Russian), p. 690.

Institute of Economic Forecasting

$$\mathbf{Y} = \frac{m}{m+1} X_{(m+1)} \tag{12}$$

with n = 2m + 1, then  $Mean(Y) = \theta$ .

*Proof:* Applying Proposition 3 for n = 2m + 1 we obtain

$$Mean(Y) = Mean\left(\frac{m}{m+1}X_{(m+1)}\right) = \frac{m}{m+1}Mean(X_{(m+1)}) = \frac{m}{m+1n-(m+1)\theta} = \frac{m}{m+1(2m+1)-(m+1)} = \theta$$

**Proposition 5.** If  $X \sim HG(\theta)$  and the r.v. Y has the form

$$Z = \frac{m-1X_{(m)} + X_{(m+1)}}{m2}$$
(13)

with n = 2m, then  $Mean(Z) = \theta$ .

*Proof:* Indeed, using Proposition 3 for n = 2m we deduce in order

$$\begin{aligned} &Mean(Z) = Mean\bigg(\frac{m-1}{m}\frac{X_{(m)} + X_{(m+1)}}{2}\bigg) = \frac{m-1}{2m}Mean\big(X_{(m)} + X_{(m+1)}\big) = \\ &= \frac{m-1}{2m}\big(Mean(X_{(m)}) + Mean(X_{(m+1)})\big) = \frac{m-1}{2m}\bigg(\frac{m\theta}{n-m} + \frac{(m+1)\theta}{n-(m+1)}\bigg) = \\ &= \frac{m-1}{2m}\bigg(\frac{m\theta}{2m-m} + \frac{(m+1)\theta}{2m-(m+1)}\bigg) = \frac{(m-1)\theta}{2m}\bigg(1 + \frac{m+1}{m-1}\bigg) = \theta \end{aligned}$$

**Remark 3.** Propositions 4 and 5 suggest that the r.v.-s Y and Z can be used as unbiased estimators for the unknown parameter  $\theta$  when the size of the experimental sample is odd, respectively even.

Thus, the statistical quality of the initial estimations  $x^*$  is clearly improved if the values of all these estimations are adjusted by a multiplicative coefficient  $\gamma$ , where

$$\gamma = \begin{cases} m/(m+1); & \text{if } n = 2m+1\\ (m-1)/m; & \text{if } n = 2m \end{cases}$$
(14)

Practically, for estimating  $\theta$  it is better to use the transformed values  $\gamma x^*$  instead of x<sup>\*</sup>.

Tables 5 and 6 contains the values  $v_s = \gamma w_s$  resulted after applying a correction operation to the initial means  $w_s$  of the median type estimations x\*. The values  $v_s$  in Table 5 or Table 6 are more suitable to estimate  $\theta = 10$ , respectively  $\theta = 11$  (for example, compare the  $v_s$  adjusted estimations with the corresponding value of  $\theta$ ; see also Figures 5-6 which present the variation of the  $v_s$  transformed quantities,  $1 \le s \le 30$ ).

54 Romanian Journal of Economic Forecasting – 2/2006 –

Table 5

The values  $v_s$  obtained after the correction of the  $w_s$  quantities from Table 3

 $(v_s = \gamma w_s, 1 \le s \le q = 30, \gamma = 0.8, n = 9)$ 

| 11.52 | 9.06  | 8.57  | 10.27 | 11.25 | 8.99  | 13.78 | 5.94  | 12.43 | 9.25  |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 9.39  | 10.86 | 7.46  | 9.80  | 9.34  | 10.03 | 9.30  | 11.38 | 10.44 | 5.46  |
| 13.66 | 9.02  | 10.41 | 10.43 | 8.53  | 9.17  | 8.18  | 10.98 | 11.45 | 11.66 |

### Table 6

The values vs obtained after the correction of the ws quantities from Table 4

 $(v_s = \gamma w_s, 1 \le s \le q = 30, \gamma = 0.75, n = 8)$ 

| 12.17 | 11.36 | 16.58 | 8.99  | 8.74  | 7.62  | 10.61 | 9.96  | 11.52 | 11.25 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 10.18 | 9.08  | 13.73 | 11.85 | 10.56 | 12.23 | 8.87  | 7.71  | 12.76 | 11.84 |
| 10.14 | 10.43 | 11.51 | 10.24 | 11.07 | 10.12 | 12.47 | 12.92 | 10.23 | 10.74 |







BR

Institute of Economic Forecasting



## **5**. Conclusions

The homographic HG( $\theta$ ) distribution has many applications, especially to simulate the failure of different financial markets<sup>1</sup>.

In another study<sup>2</sup> we proposed two effective procedures to estimate the unknown value of the parameter  $\theta$  which characterizes the homographic HG( $\theta$ ) distribution. One of these estimation procedures was based on the median coefficient.

The present work shows that the median type estimators suggested in the above-mentioned study<sup>3</sup>, as for example  $X_{(m+1)}$  for n = 2m + 1 or  $\frac{X_{(m)} + X_{(m+1)}}{2}$  when n = 2m, are always biased (see Tables 3-4 and Figures 2-3).

We also proved that the r.v.-s  $Y = \frac{m}{m+1}X_{(m+1)}$ ,  $Z = \frac{m-1}{m}\frac{X_{(m)} + X_{(m+1)}}{2}$  can be used as

unbiased estimators for the parameter  $\theta$  when n = 2m + 1, respectively n = 2m (Propositions 4-5).

Therefore, adjusting the initial median type estimator proposed in our previous study<sup>4</sup> with a multiplicative factor  $\gamma$  given by (14) we obtain invariable an unbiased estimator for  $\theta$ .

56



<sup>&</sup>lt;sup>1</sup> Isaic-Maniu, Alexandru, Vodă, Viorel Gh., "On a homographic distribution function", *Economic Computation and Economic Cybernetics Studies and Research*, Vol. 39, No.1-4(2005), 11-18.

<sup>&</sup>lt;sup>2</sup> Stefănescu, Poliana, Ștefănescu, Ștefan, "Estimating the parameter of a homographic distribution", Economic Computation and Economic Cybernetics Studies and Research, Vol. 40, No. 1(2006), 10 pgs. (forthcoming).

<sup>&</sup>lt;sup>3</sup> Ştefănescu, Poliana, Ştefănescu, Ştefan, op cit.

<sup>&</sup>lt;sup>4</sup> Op cit.

The theoretical results were confirmed experimentally by applying a Monte Carlo stochastic simulation technique (compare Tables 3-4 with Tables 5-6; see also the Figures 5-6 with the graphic representation of  $v_s$  adjusted quantities,  $1 \le s \le q = 30$ ).

# References

- Fihtenholt, G.M., *Calcul diferențial* ș*i integral,* Editura Tehnică, București, 1964 (translation from Russian).
- Gentle, James E., *Random number generation and Monte Carlo methods,* Springer Statistics and Computing, New York, 1998.
- Isaic-Maniu, Alexandru, Vodă, Viorel Gh., "On a homographic distribution function", *Economic Computation and Economic Cybernetics Studies and Research*, Vol. 39, No.1-4(2005), 11-18.
- Mihoc, Gheorghe, Ciucu, George, Craiu, Virgil, *Teoria probabilitaților* și statistică matematică, Editura Didactică și Pedagogică, București, 1970.

Papoulis, Athanasios, Probability and statistic. Prentice Hall, New Jersey, 1990.

Ştefănescu, Poliana, Ştefănescu, Ştefan, "Estimating the parameter of a homographic distribution", *Economic Computation and Economic Cybernetics Studies and Research*, Vol. 40, No. 1(2006), 10 pgs. (forthcoming).



– Romanian Journal of Economic Forecasting – 2/20<del>06–</del>