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OPTION BOUNDS FOR MULTINOMIAL 
STOCK RETURNS IN JUMP-DIFFUSION 
PROCESSES 
- A MONTE CARLO SIMULATION FOR A 
MULTI-JUMP PROCESS - 

Radu Lupu* 

Abstract 
This paper addresses the problem of option bounds computation under the assumption 
that the price of the underlying asset follows a jump-diffusion Merton process as 
formulated in Perrakis (1993) extending the number of the jumps from one jump up and 
one jump down  with fixed sizes to a finite number of jumps with sizes drawn from the 
lognormal distribution. The objective of this paper is to create a Monte Carlo simulation 
for the estimation of the bounds with various numbers of jumps and periods to maturity. 
 
Key words: Monte Carlo simulation, Jump-Diffusion processes, multi-jump process 
Jel Classification: C15, G12 
 
The two major option pricing models used in derivatives pricing – the Black-Scholes 
(1973) model and the binomial option model of Cox et al. (1979) and Rendleman and 
Barter (1979) – are derived under relatively restrictive assumptions. The latter assumes 
that in a short period of time the stock price can take only two possible values. Relaxing 
this assumption conducted to important results in the theory of incomplete markets such 
as the computation of the option bounds.  
The binomial model is valid in the complete markets which are markets where there are 
exactly as many securities (with linearly independent payoffs) as there are possible future 
states. If these security prices do not exhibit arbitrage opportunities, then in such 
complete markets we can always recover a unique set of risk-neutral probabilities. These 
probabilities form a distribution which allows us to compute a unique price for the option 
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payoff. However, from the fact that possible states of the world tend to be much more 
numerous than existing securities we can infer that complete markets rarely obtain. 
This result conducted to the development of option pricing in incomplete markets. An 
incomplete market may be defined as a market in which there are not enough securities 
to hedge all sources of uncertainty. Most of the recent research in this area is focused on 
the analysis of the observed market prices in search of implied distributions and 
stochastic processes that could have generated these prices. 
If the prices are influenced by additional stochastic factors such as stochastic volatility, 
stochastic interest rates or stochastic jumps, which are not traded, then there is no 
possibility for an investor to exactly replicate the payoff of an option state by state.  
This means that there are multiple risk-neutral distributions which can price the option 
correctly. Pricing a new security, currently not being traded, with these multiple risk-
neutral distributions will yield a range of possible option prices between a lower and an 
upper bound. 
The computation of these bounds is derived from letting the one-period stock price (or 
return) distribution to be a general multinomial distribution rather than a binomial one. 
When the market is comprised only of the stock and the riskless asset we are dealing 
with an incomplete market which can no longer provide an option price without additional 
assumptions about investor preferences. 
Perrakis (1986) and Ritchken (1985) suggested that, in addition to keeping the pricing 
kernel positive, one should also require the pricing kernel to be monotonically decreasing 
in wealth in order to be consistent with risk averse investors. This assumption recognizes 
the validity of one of the features of the binomial model, the monotone ordering of stock 
returns and state-contingent discount factors. Thus, under the financial market 
equilibrium characterized by no-arbitrage opportunities, the risk-neutral distributions of 
the option bounds were determined by linear programming and no-arbitrage strategies.  
Perrakis (1993) showed that the n-period upper and lower bounds of stock returns both 
converge to the Black-Scholes option price when the number of periods tends to infinity, 
with the length of each period tending to zero, when the stock returns form a lognormal 
diffusion. 
When the jump-diffusion process was taken into account for a distribution with five states 
the result was that bounds converged to two distinct values that bracketed both the 
Black-Scholes and Merton option prices. The limits are correlated with the parameters of 
the jump components as well as with the mean and variance of the diffusion. The 
conclusion was that the presence of rare events in stock returns does not provide a 
single price under only the monotone ordering assumption. 
This paper provides a possible numerical estimation method for the bounds when the 
stock returns follow a jump-diffusion process. We will consider a discrete jump-diffusion 
model with three states for the diffusion and up to 200 states for the jumps. Comparisons 
between processes with different jump amplitudes and periods to expiration may be 
derived from the numerical results. 
 
The jump-diffusion model 
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The notation used is the following: 
S:  the price of the stock 
X:  the strike price of the European call option 
2m: the number of jumps 
n: the assumed number of the states of the world within a period ∆T (=2m+3) 
R: one plus the riskless rate of interest per period ∆T 
Z: the random stock return per $ invested per period ∆T 
z: the realized value of Z 
 
We will consider discrete time periods and the standard assumptions in option pricing as 
in Merton (1973). The bounds were computed on the grounds that the option is a convex 
function of the stock price which needs the standard assumption (Theorem 10 in Merton 
1973) that the distribution of returns per dollar invested in the common stock is 
independent of the level of the stock price. 
It is also assumed that the distribution of the returns is the same for every period ∆T and 
there is no correlation between successive returns. Further we will assume that there are 
no transaction costs and taxes or dividends and that R remains constant until the 
expiration of the option. 
The computation of the bounds requires also the standard assumptions concerning the 
equilibrium in incomplete financial markets as specified by Rubinstein (1976): i) single-
price law of markets, ii) nonsatiation, iii) perfect, competitive and Pareto-efficient financial 
markets as well as iv) rational time-additive tastes. The last assumption allows for the 
monotone ordering of the discount factors with respect to the stock return Z which 
permits the construction of a monotone function Y(Z) (the state-contingent discount 

factor) satisfying the relations 1)(
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As in Perrakis and Ryan (1984) and Ritchken (1985) we will assume non-increasing 
discount factors. The non-decreasing case is similar in the sense that the bounds are 
inverted. This implies that Rz ≥ˆ  and ni zRz << . 

We are dealing now with an incomplete market where the prices and the state securities 
are not unique. In terms of risk-neutral probability distributions, this means that there are 
multiple risk-neutral distributions, all of which can price all existing assets correctly. We 
will obtain an equation system with m equations and two securities which is an 
undetermined system with infinite solutions for the risk-neutral probabilities. 
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Under the mentioned assumptions, the bounds ),( XSC and ),( XSC were found by 
solving the optimizations (linear programming) problems: 
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This is equivalent to finding the risk-neutral distributions which bound the whole set of 
possible distributions in terms of the values of the call option. 

Figure 1 
Bounds computation 
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Geometrically, taking into account the fact that the call option is a convex function of the 
returns of the stock we can observe that (under the assumption that the Z are 
monotonically non-decreasing) all the convex combinations of the possible returns are 
covered in the area ABCDEF but only the points on the segment GH satisfy the first 
condition. Clearly, the minimum value of the option is attained at point G and the 
maximum is attained at H. 
The formulae for the bounds in a single period are computed for the respective points G 
and H as convex combinations of the: 



Institute of Economic Forecasting 
 

Romanian Journal of Economic Forecasting – 2/2006 
 
−  

 
62

  

 
),ˆ()1(),ˆ(),(

),ˆ()1(),(),(

1**

1

XzSCPXzSCPXSC

XzSCQXSzCQXSC

jj

n

+⋅−+⋅=

⋅−+⋅=
 

where 

 
1ˆ

ˆ
zz
RzQ

−
−

= , 
*1*

1*

ˆˆ
ˆ

jj

j

zz
Rz

P
−

−
=

+

+  and 

∑

∑

=

== n

i
i

n

i
ii

j

p

zp
z

1

1ˆ  

Merton’s jump-diffusion model was introduced in order to construct a continuous-time 
process which may allow for the incorporation of the rare events into the evolution of 
stock price changes. This process was defined to comprise two different types of 
dynamics: i) the “normal” vibrations which determine marginal change in the price and 
have constant variance per unit time and continuous sample path and ii) the “abnormal” 
vibrations determined by arrival of important information about the stock with more than a 
marginal effect on the price. The “normal” vibrations are modeled by the standard 
geometric Brownian motion while the “abnormal” ones are modeled by a Poisson-driven 
process. 
Merton developed in this way a formula for a call option with an underlying asset which 
follows this process at the limit of continuous trading. We will construct a pattern for the 
evolution of Z assuming that the return may take a finite number of values corresponding 
to the same number of possible states of the world. This pattern will consist of three 
different states (up, down and the same) standing for the diffusion evolution of Z to which 
a finite number of jumps will be added. The main purpose is to construct a framework for 
the computation of a Monte Carlo simulation of Z under the two risk-neutral distributions 
revealed by the bounds. 
We will first compute the probabilities and the values for a three-state diffusion process 
corresponding to the “go up, go down and stay the same” pattern of Z. The size will be 
denoted by u and d (for up and respectively down states) and p will stand for the 
probability of an up movement. We will consider that the probability that the price will stay 
the same is 1-γ .Thus we will have the following results for the mean and the variance of 
lnS: 
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We can set ln u = U and ln d = D and also ln u = - ln d (d=1/u). Then 
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Squaring the first relation and adding to the second we have 2222 )( TTU ∆+∆= µσγ . 
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Plugging this in the relation for the mean we have the following results for the 
probabilities of up and down movements – pu and respectively pd: 
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We can now compute the values of Z for the pattern of the jump-diffusion states. We will 
denote by di the sizes of the jumps in the upper states (grater than d) and by ui the sizes 
of the jumps in the lower states (less than u). 

Figure 2 
Jump probabilities 
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The sizes of the jumps will be drawn from the log-normal distribution. We will assume that 
there is a probability of λ that a jump will occur and that there are m jumps up 
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(i=m+4,2,…2m+3) and m jumps down (j=1,2,…m). We will also compute a probability for 
the realization of a certain jump and we will denote this probability by δi and δj for the up 
and down jumps respectively. For the computation of δ’s the probability densities 
corresponding to the areas ABCD and EFGH will be determined. Thus the probability of 
an up-jump is computed as the weight of the probability density between two consecutive 
jumps in the total probability designated by ABCD and EFGH. In other words the area 
corresponding to the sum of ABCD and EFGH stands for the whole λ probability of a 
jump. ABCD/(ABCD+EFGH) represents the cumulated probability of the down-jumps and 
EFGH/(ABCD+EFGH) is the cumulated probability of the up-jumps.  
In the following numerical simulation the computation of the sizes and probabilities of the 
jumps will consider approximately equal probabilities for the realization of an up-jump or a 
down-jump (i.e. areas ABCD and EFGH are approximately equal). In order to implement 
this we will start from the normal distribution and we will take two bounding values as 
given – we will denote them by bn

d1 and bn
um. Each of the intervals (bn

d1, zd) and (zu,bn
um) 

is divided in m equal segments and the cumulated probabilities of each of this segments 
are retained (the area under the normal density function for the segment). For the down-
jumps we will have equal segments of the form (bn

dj,bn
dj+1) and larger probabilities as j 

becomes bigger, while for the up-jumps we will have equal segments (bn
ui-1,bn

ui) and 
smaller probabilities as i becomes bigger. These probabilities will then be used to 
compute the sizes of the jumps under the lognormal distribution.  
The retained up-jump probabilities will be added to the cumulated probability of zu in 
order to determine the quantiles as the corresponding values of bn

d’s and bn
u’s for the 

lognormal distribution. We can denote these segments by (bl
ui-1,bl

ui). Thus the size of a 
up-jump zi will be drawn from the lognormal distribution in the interval (bl

ui-1,bl
ui) and the 

probability ascribed to each jump will be computed as 
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i
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+
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− − )()( 1  (where CLognorm(b) is the 

cumulated lognormal probability function of b). 
The down-jump probabilities will be subtracted from the cumulated probability of zd and 
quantiles bl

d’s will be computed. The size of a down-jump zj will then be drawn from the 
lognormal distribution in the interval (bl

uj,bl
uj+1) and the probability of the zj is 

EFGHABCD
ABCD

ABCD
bCLognormbCLognorm l

uj
l
uj

+
⋅

−+ )()( 1

.  
Thus ABCD = CLognorm(zd)-CLognorm(bl

d1) and EFGH = CLognorm(bl
um)-CLognorm(zu) 

and of course ,1
32

1
∑
+

=

=
m

s
sδ  where 0321 === +++ mmm δδδ . 

As m becomes larger more values are covered by the jumps and their respective 
probabilities tend to the values designated by the lognormal probability density function. 
Thus, if a jump will occur (the probability λ) then the δ’s will decide which size is to be 
realized. We can say that when m tends to infinity the segments (bl

ui-1,bl
ui) and (bl

uj,bl
uj+1) 
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will tend to zero and the probability of a jump is the value of the lognormal density 
function for the size of that jump. 
The multinomial distribution of the jump-diffusion pattern will be the following: 

Figure 3 
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zj=dj → p(zj)=δjλ∆T 
 
 
z1=d1 → p(z1)=δ1λ∆T 

 

We can now present the risk-neutral distributions corresponding to the two bounds. For 
both of the bounds the distributions were computed as a result of the linear programming: 

Figure 4 
The upper bound 
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Figure 5 
The lower bound 
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 zj*+1  → (1-P) 1*+jp  
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Thus, the probabilities of the two distributions must be risk-neutral and must satisfy the 
provision that any European option’s payoff must yield a higher price when it is valued 
under the upper bound probabilities than under the lower bound probabilities. Masson 
and Perrakis (2000) proved that the expectation of any continuous, non-decreasing and 
convex function C(z) defined over the assumed stock returns after a certain period of 
time is larger under the upper bound cumulative probability function than under the lower 
cumulative probability function. They derived a theorem for the necessary and sufficient 
conditions that this provision be satisfied: 

i) the two probability distributions are risk-neutral (i.e. their means are R); 

ii) the probability of z1 in the lower bound distribution is larger than the 

probability of z1 in the upper bound distribution 
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iii) the cumulative probability of all the states up to n-1 is lower under the upper 

bound distribution than under the lower bound distribution; 
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Numerical results 
In this section we present some numerical comparisons of the option bounds computed 
for the three state diffusion, the diffusion with 2 jumps (up and down), diffusion with 10 
jumps (5 ups and 5 downs), diffusion with 20 jumps (10 ups and 10 downs), diffusion with 
200 jumps (100 ups and 100 downs) and diffusion with 2000 jumps (1000 ups and 1000 
downs). In each of these situations the bounds will be estimated for 5, 10, 20, 50 periods 
until maturity (a period has the length ∆T). 
For the computation of the bounds we use Monte Carlo simulations for different periods 
until expiration and for different number of jumps. The evolution of the stock returns are 
simulated for both the upper and lower bound distributions for 100 000 paths. The 
100 000 final values will be used to compute the expected payoff of the European option. 
These two values (for the upper and lower bounds) will be discounted to obtain the 
present value of the option payoff under the two risk-neutral distributions for the two 
bounds. The values of these discounted payoffs are more thoroughly computed as the 
number of paths is larger. 

Figure 6 
Monte Carlo Simulation 
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We expect that after K periods the option prices should lie between the values 
( )[ ]0,)( XSZMaxER K

l
K −−  and ( )[ ]0,)( XSZMaxER K

u
K −− , where El and Eu denotes 

the expectations over the lower and upper bound risk-neutral distributions respectively. 
The computations of both the probabilities and the sizes of returns for all the states are 
realized using the up-mentioned formulae. For all the situations considered the conditions 
for the probabilities are also verified. The drawings from the computed probabilities are 
realized by dividing the [0,1] interval into n intervals (n=2m+3 states of the world) with 
sizes equal to the probabilities of the states under the two distributions. A random 
drawing from the uniform distribution will indicate the realization of state i if its value is in 
the i’th interval. The value of the uniform random drawing is used for randomly choosing 
the states under both of the distributions. More than 100 000 sequences of such random 
numbers are generated and each sequence represents a possible evolution of the stock 
under the two risk-neutral distributions. 
The numerical analysis presented in this paper used the parameters from the numerical 
example in Perrakis (1993): µ = .0001, σ = .01, λ = .3, r = .0002 and S = X = 1. We also 
set γ  = .9.     ∆t = 0.1 and the period to maturity is consider t = {0.5, 1, 2.5, 5} 
representing 5, 10, 25 and 50 periods until maturity respectively. 
In order to compute the lower bound distribution the computation of j* (the state for which 
the return is the highest return smaller than the riskless rate of return) is necessary. For 
these parameters, the bounds bn

d1 and bn
um are chosen such that j* is as large as 

possible, to let the difference between the average of Z under the real distribution be very 
close to the riskless rate of return. For all the cases bn

d1 = 0 bn
um = 1.706. 

Thus, for all the 5 cases considered we found the following values for the sizes of the 
jumps and for the j*’s: 
 

Case J* z1 zn 
Diffusion (3 states) 2 0.967216100482 1.03389511351 
Diffusion and 2 jumps (5 states) 4 0.679267295975 2.30850596367 
Diffusion and 10 jumps (13 states) 12 0.384619570916 1.96909934177 
Diffusion and 20 jumps (23 states) 22 0.395097603007 2.01471841487 
Diffusion and 200 jumps (203 states) 202 0.370489432262 2.01753751002 
 
The conditions presented in Masson and Perrakis (2000) are satisfied for all the 5 cases. 
We present here the situations for two of these conditions for each of the 5 cases. We 
may add that these two conditions verify if the probabilities for the upper bound 
distribution are larger in their extreme values (the highest and the lowest states) when 
compared with the probabilities of the lower bound distribution.  
 

Case ∑
−1n

j
jup

 
∑
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j
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up1  lp1  
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Diffusion (3 states) 0.554056489024 0.554941760549 0.454958261356 0.454042983452 
Diffusion and 2 
jumps (5 states) 0.987286670323 0.991840453311 0.0261855629166 0.0172502040518 

Diffusion and 10 
jumps (13 states) 0.9977224535 0.998114025252 0.00330103334488 0.00268442717409

Diffusion and 20 
jumps (23 states) 0.998884751368 0.998896742741 0.00130329724586 0.00128317419784

Diffusion and 200 
jumps (203 states) 0.999890645748 0.99991824791 0.000167368156403 0.00012277443391
 

The Monte Carlo bounds for the one option are: 
3-state Diffusion – 100 000 Monte Carlo repetitions 

Periods to maturity 
t 

Upper bound Lower Bound 

0.5 0.000899359 0.000889635 
1 0.0009.92802 0.000965809 

2.5 0.0011.69781 0.001150502 
5 0.001241671 0.001240906 

 

1 Jump and Diffusion – 200 000 Monte Carlo repetitions 
Periods to maturity 

t (∆t=0.1) 
Upper bound Lower Bound 

0.5 0.000271086 0 
1 0.003733558 0.003491863 

2.5 0.004594 0.004255 
5 0.012221384 0.01207356 

 

5 Jumps and Diffusion - 200 000 Monte Carlo repetitions 
Periods to maturity 

t (∆t=0.1) 
Upper bound Lower Bound 

0.5 0.00107923 0.001067417 
1 0.002596009 0.002524686 

2.5 0.0035603 0.003341797 
5 0.010239831 0.010033483 

 

10 Jumps and Diffusion - 200 000 Monte Carlo repetitions 
Periods to maturity 

t (∆t=0.1) 
Upper bound Lower Bound 

0.5 0.000359807 0.000358662 
1 0.001158375 0.001157863 

2.5 0.003670091 0.00365782 
5 0.00142562 0.001419356 

100 Jumps and Diffusion – 200 000 Monte Carlo repetitions 
Periods to maturity Upper bound Lower Bound 
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t (∆t=0.1) 
0.5 0.000539929 0.000534873 
1 0.000693 0.000679 
2.5 0.0063398 0.0063214 
5 0.009961168 0.009955671 

 
By varying the parameters and the number of the jumps we can obtain interesting results 
about the values of the bounds. The simulations are developed in E-Views and the 
number of paths for the Monte Carlo should be as high as possible. The results of the 
Monte Carlo are asymptotically valid. The 200 000 repetitions here are not sufficient in 
order to obtain the best results.  
The use of 100 jumps (203 states) provides a finer representation of the domain for the 
sizes of the jumps, and as such, we may conclude that the higher the number of jumps, 
the jump-diffusion process of the stock returns is better represented. 

Remarks 
Econometric models which test for the existence of jump components in stock returns 
analyse the conditional density for each jump and use assumptions that the arrival 
intensity is a stochastic process too, which means that the probability of occurrence  is 
different in various time intervals. Maheu and McCurdy (2003) realize a period-by-period 
comparison between a jump-diffusion process which allows for heteroskedasticity and a 
stochastic volatility model. In our example this would mean that λ could take the form of 
an AR(1) which could also be tested by Monte Carlo simulation. 
Another approach to the construction for the risk-neutral distribution of the bounds could 
allow the n upper different jumps to be represented by a single state and the n lower 
jumps to be represented by another state. In this case we could consider that we have 
five different states     (zi, i = 1…5) where z1 is the average of the n lower jumps and z5 is 
the average of the n upper jumps. The construction of the risk-neutral distribution would 
assign different probabilities to the 2m + 3 states (as compared to the model presented in 
the numerical example) – for the upper bound all the up-states and down-states would 
receive much higher probabilities than the respective states for the lower bound. 
However the model used for the numerical computation here should provide tighter 
bounds. 
A test of the jump-diffusion model for the evolution of the stock returns should provide the 
necessary parameters for the implementation of the bounds computation method. These 
results could be backtested in order to obtain a measure of its representation on the real 
data. 
The Monte Carlo simulation is also useful when the bounds are computed for an 
American option as it allows for dividends to be taken into account after each period of 
time. The numerical analysis in this paper may be used for the computation of bounds of 
currency options and the model of Maheu and McCurdy (2003) can be used for the 
derivation of the necessary parameters. 
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