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Abstract 
The paper emphasizes the specific manner to perform the arithmetic operations in the 
computer as always it is possible to have "rounding errors". 
Neglecting the influence of the computer rounding errors could affect a right 
conclusion, for example, in the case of an account balance verification. 
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1. The Problem Formulation 
The numerical values are approximated by the computer by retaining only a finite 
number q  of significant digits. For this reason the results of the computer arithmetic 
operations are rounded to the first q  important figures. For example, the Excel 
spreadsheet operates in the arithmetic calculus with q = 15  significant figures.  

We can obtain wrong results if we don't take into consideration the possibility to have 
errors in the rounding process of computer outcome. We intend to give a quantitative 
image regarding the influence of the computer rounding errors. 
For the simplicity of the exposure we'll treat the ordinary case of solving a linear 
system which has only two equations, the variables x y,  being unknown, that is  

 
a x a y a
a x a y a

1 2 3

4 5 6

+ =
+ =

⎧
⎨
⎩

  (1) 

The model (1) is characterized by the input parameters ai  , 1 6≤ ≤i  . 
Obviously, the solution ( , )x y0 0  of the system (1) has the form:  
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 x
a a a a
a a a a0

5 3 2 6

1 5 2 4
=

−
−

     y
a a a a
a a a a0

1 6 4 3

1 5 2 4
=

−
−

 (2) 

The presence of computer rounding errors could induce an unexpected effect, that is 
the "solution" ( , )x y0 0  obtained with formulas (2) don't necessary verify both 
equations (1).  
We'll define the indicator W  to determine the frequency of this "surprising" non 
concordance aspect . More precisely, the variable W  takes the values 0 , 1 or 2 
when, respectively, the quantities x y0 0,  satisfy  the both equations (1), verify only 
one of the relations (1), or none of the equalities (1) are fulfilled. 
In the following we'll estimate the probability that the situations W k=  , k ∈( , , }0 1 2  
appear.  

2. The Distribution of Input Data 
We intend to determine the frequencies of the events W k=  , k ∈{ , , }0 1 2 , when n  
systems of the type (1) were taken into consideration, the values of the input 
parameters ai  , 1 6≤ ≤i  , being chosen randomly.  
So, we'll suppose that the quantities ai  are observations of the random variables 
(r.v.) Ai  , 1 6≤ ≤i , the random vector ( , , , , , )A A A A A A1 2 3 4 5 6  having a known 
cumulative distribution function ( c.d.f. ) F a a a a a aA ( , , , , , )1 2 3 4 5 6 . 
Below the random variables Ai  will have a power type distribution Pow(λ) or also a 
standard normal distribution Nor ( , )0 1 .  
Definition 1. The r.v. Z  has a power distribution Pow(λ) , Z  ~ Pow(λ) , λ > 0 , if its 
probability density function ( p.d.f. ) f z1( ; )λ  is given by the expression: 

 f z z1
1( ; )λ λ λ= − ,  0 1≤ ≤z  (3) 

The graphic G1 presents the variation in the p.d.f. f z1( ; )λ , 0 1≤ ≤z , for different 
values of the shape power distribution parameter λ ≥1 ( λ ≥1 ). 

Graphic G1 
The p.d.f. F1(z; λ) 
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Remark 1. Interpreting the graphic G1 we deduce that the r. v. Z  ~ Pow(λ)  with 
λ > 1  generates more frequently relative higher z  random values.  

In general we'll consider that the random variables Ai  , 1 6≤ ≤i , are identically 
distributed and independent too. But we'll also treat the situation when two arbitrary 
input random variables, Ai  and Aj , are correlated, that is Cor A Ai j( , ) = ρ  with 

− ≤ ≤1 1ρ .  

Definition 2. We designate by ( , )Z V  ~ Nor2(ρ)  if the random vector ( , )Z V  has a 
bivariate normal distribution with Z ~ Nor ( , )0 1  , V ~ Nor ( , )0 1  and Cor Z V( , ) = ρ , 
− ≤ ≤1 1ρ .   

In the subsequent we'll estimate the probabilities Pr W k( )= , k ∈{ , , }0 1 2  , 
considering the following variants : 
Example 1. The input random variables Ai  , 1 6≤ ≤i  , of model (1) are independent 
and identically distributed with Ai  ~ Pow(λ) , λ > 0 . 

Example 2. The random vectors ( , )A A1 4 , ( , )A A2 5 , ( , )A A3 6  are independent 
and in addition ( , )A A1 4  ~ Nor2(ρ), ( , )A A2 5  ~ Nor2(ρ), − ≤ ≤1 1ρ , ( , )A A3 6  ~ 
Nor2(0).   
If ρ = 0  than all the random variables Ai , 1 6≤ ≤i , are independent and have a 
standard normal distribution Nor ( , )0 1 .  

3. A Monte Carlo Simulation 
The difficulty of the theoretical evaluation of the probabilities Pr W k( )= , 
k ∈{ , , }0 1 2 , arises from the relative complexity of the formulas (2) and also from the 
sophisticated form of the multivariate distribution F a a aA ( , ,..., )1 2 6  which 
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characterizes the random vector ( , , ..., )A A A1 2 6 . Moreover, we'll impose a fixed 
number m  of decimal figures for the input parameters ai  of the model (1). 

For this reason we'll avoid a theoretical approach, preferring the computer Monte 
Carlo simulations. The stochastic simulation algorithm ASim determines the 
frequencies Sk  to create the situations W k=  , k ∈{ , , }0 1 2 , when n  linear 
systems of type (1) are solved. 
Algorithm  ASim (computes the frequencies Sk  for appearing of the events W k= ). 

Step 0.  Inputs : The number n  of the type (1) systems used in the evaluation 
process. 

C.d.f. F a a aA ( , ,..., )1 2 6  for the random vector ( , , ..., )A A A1 2 6 . 
The number m  of the decimal places imposed for the parameters ai  , 1 6≤ ≤i : 

Step 1.  t = 0    ( t  counts the number of systems (1) which are solved) 
S0 0=             S1 0=             S2 0=  

Step 2.  t t= + 1    
If  t n>   then   Print  S S S0 1 2, , .       STOP 

Step 3.  Generate a random vector ( , , ..., )a a a1 2 6  having the c.d.f. 
F a a aA ( , ,..., )1 2 6  

Step 4.  Determine the approximations ai
*  (with m  decimal places) for ai  values , 

1 6≤ ≤i   

Step 5.  x
a a a a

a a a a
0

5 3 2 6

1 5 2 4

=
−

−

* * * *

* * * *
                 y

a a a a

a a a a
0

1 6 4 3

1 5 2 4

=
−

−

* * * *

* * * *
      

Step 6.  W = 0    

If  a x a y a1 2 3
* * *+ =   then   W W= + 1 

If  a x a y a4 5 6
* * *+ =   then   W W= + 1 

Step 7.  If  W = 0   then   S S0 0 1= +     

               If  W = 1  then   S S1 1 1= +       

               If  W = 2   then   S S2 2 1= +  
Go to  Step 2. 
Remark 2. The simulation algorithm ASim was implemented in Excel spreadsheet. To 
obtain observations from a uniform [ , ]0 1  distributed r.v. U  , U  ~ Uni ([ , ])0 1 , we 
run the Excel procedure  Rand. The generation of the random values Z , Z  ~ 
Uni ([ , ])0 1  , is based on the inverse method ( Gentle [3], p. 42-43 ).  
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Applying the following proposition we reduce the generation of the random values Z , 
Z  ~ Pow(λ) , λ > 0  , by producing observations from U  ~ Uni([ , ]0 1 ) . 

Proposition 1. If the r.v. U  has a uniform [ , ]0 1  distribution and Z U= 1/λ , λ > 0 , 
then  Z ~ Pow(λ) . 

Proof.  We'll compute the c.d.f. F z1( ; )λ  of the r.v. Z U= 1/λ  for an arbitrary 
0 1≤ ≤z . So, 

F z Pr Z z Pr U z Pr U z z1
1( ) ( ) ( ) ( )/= ≤ = ≤ = ≤ =λ λ λ  

Therefore the p.d.f. f z1( ; )λ  of the r.v. Z  is given by the expression  

f z
F z

z
z1

1 1( ; )
( ; )

λ
∂ λ

∂
λ λ= = −  

that is  Z ~ Pow(λ) . 
The generation of the random vector ( , )Z V , ( , )Z V  ~ Nor2(ρ), − ≤ ≤1 1ρ , is based 
on the following result : 

Proposition 2. Let F z0 ( ) , x R∈ , be the c.d.f. of the r.v. Z , Z ~ Nor ( , )0 1  (Laplace 
function). If − ≤ ≤1 1ρ  , U U1 2,  are independent random variables having a uniform 
[ , ]0 1  distribution and  

Z F U= −
0

1
1( )  

 V Z F U= + − −ρ ρ1 2
0

1
2( )   (4) 

then  ( , )Z V  ~ Nor2(ρ) .   

Proof. Obviously, the r.v.-s Z F U= −
0

1
1( )  and F U0

1
2

− ( )  are independent and 
identically Nor ( , )0 1  distributed ( Gentle [3], p.42-43, the inverse method ). In this 
conditions the r.v. V  defined by formula (4) is Nor ( , )0 1  distributed (Papoulis [6]) 
and, in addition, the random vector ( , )Z V  has a bivariate normal distribution 
(Papoulis [6], p.162-164 ; Gentle [3], p.105-109). More, 

Cor Z V
Cov Z V

Var Z Var V
Cov Z Z F U

Var Z Var F U
( , )

( , )
( ) ( )

( , ( ))

( ) ( ) ( ( ))
= =

+ −

+ −
=

−

−

ρ ρ

ρ ρ

1

1

2
0

1
2

2 2
0

1
2

 

=
+ −

+ −
= =

−ρ ρ

ρ ρ
ρ ρ

Cov Z Z Cov Z F U
Var Z

( , ) ( , ( ))

( )
( )

1

1

2
0

1
2

2 2
 



Institute of Economic Forecasting 
 

Romanian Journal of Economic Forecasting – 2/2007 
 
−  

 
92

  

which prove that  ( , )Z V  ~ Nor2(ρ).   

To increase the accuracy of Monte Carlo estimations, the algorithm ASim will be run 
successively many times. 

Tables 1a, 1b, 1c present the resulted frequencies Sk  that the events W k= , 
k ∈{ , , }0 1 2 appear, where S S S n0 1 2 1000+ + = = . The input parameters ai  of  
ASim simulation procedure respects one of the restrictions mentioned in Examples 1 
or 2. Constantly, the simulation algorithm  ASim was applied 10 times, the index s  
designating the current simulation execution, 1 10≤ ≤s . 

The estimation of the probabilities Pr W k( )= , k ∈{ , , }0 1 2 , taking into 
consideration the average results of all 10 simulations, are given in Tables 2a, 2b, 2c. 
In fact Tables 2a, 2b, 2c convert in percent the mean of the same frequency Sk for all 
simulation values listed in the similar Tables 2a, 2b, respectively 2c.   

Table 1a 
The frequency of the event W k=  , k ∈{ , , }0 1 2 , at the simulation s   

(Example 1, n = 1000 , m = 20 )  
λ W s=1 s=2 s=3 s=4 s=5 s=6 s=7 s=8 s=9 s=10 
 0 576 563 563 591 589 598 629 549 549 582 

1/5 1 419 424 426 398 403 391 369 441 438 408 
 2 5 13 11 11 8 11 2 10 13 10 
 0 619 588 622 647 610 614 613 640 647 628 

1/4 1 368 403 362 337 384 374 377 349 344 359 
 2 13 9 16 16 6 12 10 11 9 13 
 0 678 692 651 652 672 689 669 679 682 677 

1/3 1 307 293 329 331 305 290 319 309 308 307 
 2 15 15 20 17 23 21 12 12 10 16 
 0 761 750 720 759 791 758 760 776 734 743 

1/2 1 213 217 254 212 181 213 218 202 249 233 
 2 26 33 26 29 28 29 22 22 17 24 
 0 863 838 821 848 843 853 840 856 826 843 
1 1 94 106 125 104 88 102 105 103 114 102 
 2 43 56 54 48 69 45 55 41 60 55 
 0 806 821 812 811 814 826 826 810 809 810 
2 1 64 73 81 75 80 66 73 63 74 75 
 2 130 106 107 114 106 108 101 127 117 115 
 0 746 735 742 751 741 761 742 739 753 764 
3 1 60 68 71 68 84 67 73 76 66 74 
 2 194 197 187 181 175 172 185 185 181 162 
 0 690 677 698 671 665 676 711 696 653 699 
4 1 74 65 84 76 78 78 60 71 87 68 
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 2 236 258 218 253 257 246 229 233 260 233 
 0 654 615 611 653 642 630 636 625 647 644 
5 1 70 78 79 82 77 71 70 60 76 87 
 2 276 307 310 265 281 299 294 315 277 269 

 
Analyzing the values from the mentioned tables we conclude : 

• The frequencies S S S0 1 2, ,  for the events W W W= = =0 1 2, ,  are very 
distinct and depend on the specific form of the c.d.f. F a a aA ( , ,..., )1 2 6  which 
characterizes the parameters ai  of the model (1) ( Tables 1a, 2a, 1b, 2b ). 

Moreover, we also remark important variations of the frequency S0  when we change 
the distribution of the random variables Ai  , 1 6≤ ≤i  , but preserving the 
independence of these variables (  Tables 1a, 1b ; Tables 2a, 2b - case ρ = 0  ). 

Table 1b 
The estimation of Pr W k( )=  , k ∈{ , , }0 1 2 , from 10 simulations 

 (Example 1, n = 1000  , m = 20 ) 
W λ=1/5 λ=1/4 λ=1/3 λ=1/2 λ=1 λ=2 λ=3 λ=4 λ=5 
0 0.5789 0.6228 0.6741 0.7552 0.8431 0.8145 0.7474 0.6836 0.6357 
1 0.4117 0.3657 0.3098 0.2192 0.1043 0.0724 0.0707 0.0741 0.0750 
2 0.0094 0.0115 0.0161 0.0256 0.0526 0.1131 0.1819 0.2423 0.2893 

 
Table 2a 

The frequency of the event W k=  , k ∈{ , , }0 1 2 , at the simulation s   
(Example 2, n = 1000 , m = 20 ) 

ρ W s=1 s=2 s=3 s=4 s=5 s=6 s=7 s=8 s=9 s=10 
 0 801 822 804 810 817 821 814 814 836 808 

0.0 1 180 163 177 174 163 163 167 176 151 177 
 2 19 15 19 16 20 16 19 10 13 15 
 0 790 809 785 787 810 820 814 813 817 788 

0.4 1 183 169 193 194 163 156 173 172 168 196 
 2 27 22 22 19 27 24 13 15 15 16 
 0 769 737 750 731 768 780 765 758 748 776 

0.8 1 206 229 211 219 205 189 193 212 216 185 
 2 25 34 39 50 27 31 42 30 36 39 
 0 718 695 738 703 737 730 721 713 713 705 

0.9 1 230 255 223 245 214 225 232 238 243 246 
 2 52 50 39 52 49 45 47 49 44 49 
 0 696 681 689 684 687 684 702 670 635 651 

0.95 1 238 261 249 246 250 258 236 265 292 282 
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 2 66 58 62 70 63 58 62 65 73 67 
 

• An imposed strong correlation coefficient ρ  between the parameters ai , 
1 6≤ ≤i , affects essentially the frequencies S S S0 1 2, ,  of the events 
W W W= = =0 1 2, ,  ( Tables 2a and 2b ).  

• Contrary, the use of the random inputs ai , 1 6≤ ≤i  , which have an imposed 
number m   of decimal places do not often affect much the frequencies Sk , 
k ∈{ , , }0 1 2  (Tables 3a, 3b). This aspect could be explained by the fact that 
the situations W k= , k ∈{ , , }0 1 2  , depend basically by the complexity of the 
formulas (2), being secondary affected by the accuracy of the approximations 

ai
*  of the values ai , 1 6≤ ≤i .    

Table 2b 
The estimation of Pr W k( )= , k ∈{ , , }0 1 2 , from 10 simulations 

 (Example 2, n = 1000  , m = 20 ) 
 ρ = 0.0 ρ = 0.4 ρ = 0.8 ρ = 0.9 ρ = 0.95 

W = 0 0.8147 0.8033 0.7582 0.7173 0.6779 
W = 1 0.1691 0.1767 0.2065 0.2351 0.2577 
W = 2 0.0162 0.0200 0.0353 0.0476 0.0644 

 
Table 3a 

The frequency of the event W k= , k ∈{ , , }0 1 2 , at the simulation s   
(Example 1, n = 1000 , λ = 1) 

m W s=1 s=2 s=3 s=4 s=5 s=6 s=7 s=8 s=9 s=10 
 0 838 812 824 819 858 822 810 834 834 833 

12 1 111 124 120 122 99 125 135 109 102 114 
 2 51 64 56 59 43 53 55 57 64 53 
 0 819 825 830 830 837 814 825 824 835 823 

13 1 135 125 118 114 112 121 130 114 124 131 
 2 46 50 52 56 51 65 45 62 41 46 
 0 828 831 829 844 825 832 839 834 836 834 

14 1 119 114 120 106 115 114 117 115 114 118 
 2 53 55 51 50 60 54 44 51 50 48 
 0 835 821 843 820 821 841 845 821 822 838 

15 1 118 128 106 122 131 115 106 125 123 114 
 2 47 51 51 58 48 44 49 54 55 48 
 0 843 863 831 864 845 853 860 844 839 839 

20 1 109 93 113 97 102 111 88 103 104 111 



 How Much the Rounding Errors Could Affect the Computer Results 

 
−  Romanian Journal of Economic Forecasting – 2/2007

  
95

  

 2 48 44 56 39 53 36 52 53 57 50 
 

Table 3b 
The estimation of Pr W k( )= , k ∈{ , , }0 1 2 , from 10 simulations 

(Example 1, n = 1000  , λ = 1) 
W m = 12 m = 13 m = 14 m = 15 m = 20 
0 0.8284 0.8262 0.8332 0.8307 0.8481 
1 0.1161 0.1224 0.1152 0.1188 0.1031 
2 0.0555 0.0514 0.0516 0.0505 0.0488 

 
• Graphic G2 presents suggestively the variation in the probabilities Pr W( )= 0  

depending on the shape parameter λ which defines the power distribution for 
the random values ai  , 1 6≤ ≤i  ( Table 1b ). Interpreting simultaneously the 
graphics G1 and G2 we remark a "monotony relation" between the probabilities 
Pr W( )= 0  and the λ  values ( 0 1< ≤λ  or λ ≥ 1 ; see also Remark 1).   

Graphic G2 
The estimation of  Pr(W=0) 
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4. Concluding Remarks 
The computer process which determines the solution ( , )x y0 0  of the system (1) is 
affected by the rounding errors. The influence of the computer approximation errors is 
emphasized by the non-zero frequencies that the events W = 1  or W = 2  appear.  
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Surprising, but perfectly explained, is the fact that the probability Pr W( )= 0 , to solve 
"correctly" with the computer the system (1) , is not closed to the maximal value 1. 
Tables 1a, 1b, 1c mention more situations where Pr W( ) .= ≈0 0 5 .   

Obviously, the probability Pr W( )= 0  depends on the distribution F a a aA ( , ,..., )1 2 6  
of the parameters a a a1 2 6, ,...,  which defines system (1). So, we studied the 
situation when the r.v. Ai  were independent, being analyzed the correlation aspect 
too. The tables 1a-1c, 2a-2c and the graphs G1-G2  give us a quantitative image 
regarding the influence of computer rounding errors. 
The present paper warns about the possibility to produce errors even if we use a 
computer. Neglecting in practice the influence of the computer rounding errors could 
imply a lot of wrong decisions (see, for example, the computational errors in 
accounting, [8]). 
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