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 Abstract 
In this paper we will classify patterns using a modified Perceptron algorithm 
(Dumitrache et al., 1999). The generalization uses the eigenvalues and the 
eigenvectors of the sample covariance matrix, as we did for classifying patterns using 
PCR (Ciuiu 2007b).We shall also define measurements for the cohesion of the 
obtained classes and of the separation between them. 
The first economic application considered in the paper is a consumer behavior model 
(Jula 2003), and the second is the same financial application for classifying banks 
(Ciuiu, 2007a, Ciuiu, 2007b), where we have used regression for classification. 
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 1. Introduction 
The Perceptron algorithm (Dumitrache et al., 1999) is used for classifying patterns 
represented by points in kR  in m classes. For two classes we consider the hyper-
plane: 

 ,0XAA ii

k

1i
0 =⋅∑+

=
       (1) 

and the point kx R∈  is in the first class if in the above relation we have “>” instead of 
“=”, and in the second class if we have “<” instead of “=”. 
In the classical Perceptron learning algorithm with two classes we consider a sample 

( ) ( )n1 X,...,X  and arbitrary starting values of ( )
k,0jjA

=
. 

4



Institute of Economic Forecasting 
 

Romanian Journal of Economic Forecasting – 2/2008  52

  

Consider the obtained result ( ) { }1,1y i −∈  with the signification that ( ) 1y i =  if ( )iX  is 

in the first class and ( ) 1y i −=  in the contrary case. Setting 0A0 =  and denoting by 
( )it  the desired result (we know the class of ( )iX ), the Perceptron learning algorithm 

modifies the values of jA  (Dumitrache et al., 1999) by the formula:  

( ) ( )( ) ( )i
j

ii
jj XytAA −⋅α+← ,      (2) 

where: ( )iX  is the current point, y(i) is the obtained result using the current jA , ( )it  is 

the desired result and ( )1,0∈α  is the learning factor. 

In the case of m classes, there is a hyper-plane that separates each class from the 
other ones. If these hyper-planes are given by ( )r

jA  with kj1 ≤≤  and mr1 ≤≤ , 

and the point ( )iX  from the class r is classified in the class rt ≠  we have, with the 
above significations (Kong and Kosko, 1992), 
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One may see that (2’) is the generalization of (2) because at each moment we 
have ( ) ( ) =−= 1

j
2

j AA jA− . In fact, in (2) and (2’) the coefficient of ( )i
jX  is rERR⋅α , 

where 

 ( ) ( )ii
1 ytERRERR −==      (3) 

in the case of formula (2), and  
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in the case of formula (2’). 
Such artificial neural networks using Perceptron can be used to forecast the exchange 
rate of euro versus RON (Nastac et al., 2007). In this case, we do not set ( ) 0A i

j = : the 
biases are modified in the same way as the other coefficients. Another difference in 
Nastac et al., (2007) is that the error is not discrete as in (3) and (3’): it is continuous, 
as one may see in the following formula:  
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where: T is the number of time steps (days), RpO  is the real output at time step p, 

FpO  is the forecast output at time step p and pT
T)p(f +=  is a weight function that 

decreases with the number of time steps p. 
In the next section, we shall modify this algorithm by reading first all the learning 
sequence ( ) ( )n1 X,...,X , the values of jA  being computed using the sample 
covariance matrix. Therefore, we will have the same separators for all classes: the 
eigenvectors of the covariance matrix. 

Let be n points in Rp: ( ) ( )n1 X,...,X . The orthogonal linear variety of the dimension k 
(0<k<p) is that linear variety with the minimum sum of the squares of Euclidean 
distances. We know (Saporta, 1990) that this linear variety contains the gravity center 
of n given points and it is generated by the eigenvectors of the sample covariance 
matrix corresponding to the first maximum k eigenvalues. These eigenvectors are 
called principal components, and for that the orthogonal regression is also called 
principal components regression (PCR). 
The principal components analysis is used to simplify the computations in the 
discriminant analysis by using the Kolmogoroff distance (Saporta and Mahjoub, 1990), 
and the PCR is used to find the eigenvalues end eigenvectors (Costinescu and Ciuiu, 
2007) of a symmetric matrix and in for pattern classification (Ciuiu, 2007b). For pattern 
classification we can also use linear and polynomial regression (Ciuiu, 2007a). 

 2. Classification using SCP 

We consider n points ( ) ( ) ( )n21 X,...,X,X  in Rk. In the classical Perceptron algorithm 
we have a hyper-plane, and we change the coordinates using the exchange theorem 
starting from the perpendicular to the hyper-plane. The two obtained classes depend 
on the sign of this component in the new coordinates. In order to have a good 
classification, we must have large distances to the hyper-plane. 
If we want small ones, we have to use the principal components regression (PCR), but 
the orthogonal regression hyper-plane contains the gravity center of the points and it 
is generated by the corresponding eigenvectors of the maximum 1k −  eigenvalues 
(Saporta, 1990). Therefore, we can build in an analogous manner the hyper-plane 
used in the Perceptron algorithm: the only difference is that it is generated by the 
corresponding eigenvectors of the minimum 1k −  eigenvalues. This idea comes from 
the fact that the average of the square of distances in PCR is given by the smallest 
eigenvalue. In our case, this average becomes the highest one. 
First, we compute the sample covariance matrix Σ, we move the origin in the gravity 
center of the points, G, and next we change the coordinates to the eigenvectors of Σ. 
Let us suppose the corresponding eigenvalues are ordered increasingly. If the matrix 
U has these eigenvectors in rows the new coordinates are:  

 ( ) ( )ii XUy ⋅= .      (4) 
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In the following, we separate the k eigenvectors in sec secondary components (the 
first ones) and seckprinc −=  principal components. Continuing the analogy to the 
PCR, where the orthogonal linear variety of the dimension dim is generated by the 
corresponding eigenvectors of the highest dim eigenvalues (Ciuiu, 2007b), in the 
algorithm presented in the paper we use the linear variety of the dimension dim that 
contains the gravity center G and it is generated by the corresponding eigenvectors of 
the smallest dim eigenvalues. G is the new origin of the coordinate system. The 
reason for the linear variety containing G as a new origin is the desired equidistance 
of the algorithm to all the classes. The secondary components are defined also by 
analogy with the principal components used in PCR. 
The classes are built by the signs of the principal components: two points are in the 
same class if and only if they have the same signs on the principal components. In the 
following, we present two measurements of our classification. 
Definition 1. Let C  be a class obtained as above. The cohesion of the class C  is the 
sum of the second sample moments of C  on the principal components minus the sum 
of the sample variances on the secondary ones. 

Definition 2. Let 1C  and 2C be two classes obtained as above. The separation 

between 1C  and 2C  is the sum of the second sample moments of 21 CC ∪  on the 

principal components for which the sign changes from 1C  to 2C  minus the sum of the 
sample variances on the secondary ones. 
Remark 1. The sample moments and variances in the above two definition are 
computed using the points from the class in the case of cohesion, and from the two 
classes in the case of separation. For both cases we consider the new coordinates, 
where the covariances are equal to 0. 

 3. Margins for cohesions and separations 
For lower and upper margins for cohesions and separations we will denote by ecS  
the set of the secondary components, by rincP the set of the principal components 
and by ( )21,ep CCS  the set of the components that separate 1C  and 2C . We also 
use the following notations:  
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where: 1C  and 2C  are two distinct classes and the eigenvalues of the sample 

covariance matrix are k21 ... λλλ ≤≤≤ . 

The cohesion of the class C  with m points is:  
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where: ( )CiG  is the component i of the gravity center of the class C . 

It results that  

( ) ( )( ) andS
m
nX

m
1coh 2

sec
2j

i
jeci

⋅−≥⋅−≥ ∑∑
∈∈ CS

C   

( ) ( )( ) ,S
m
nX

m
1coh 2

princ
2j

i
jrinci

⋅≤⋅≤ ∑∑
∈∈ CP

C  and from here 

 ( ) 2
princ

2
sec S

m
ncohS

m
n

⋅≤≤⋅− C .      (6’) 

If the first ""≤  in (6’) is, in fact, “=” we must have all the points of the class with the 
principal coordinates equal to 0 (see the first term in the definition of the cohesion). 
This cannot be fulfilled because in this case the class can be attached to another 
class. If the second ""≤  in (6’) is, in fact, “=” we must have all the points of the other 
classes with the principal coordinates equal to 0, because the sum of squares on the 
principal components for the class is equal to those for al the points. This cannot be 
fulfilled because in this case we can have only one class. 

For the separation between 1C  and 2C , ( )21,sep CC , we obtain the same margins 

as in (6’), if in this case m becomes the number of points in the classes 1C  and 2C . 
To obtain these margins, the sums from (6) on rinci P∈ are in the separation case on 

( )21,epi CCS∈ , and we take into account that 2
princ

2
sep SS ≤ , but 2

princ
2
sep SS =  only if 

all the principal components separate the classes. Otherwise, we obtain better 
borders:  

 ( ) ( )21
2
sep21

2
sec ,S

m
n,sepS

m
n

CCCC ⋅≤≤⋅− .     (7) 

If the first ""≤  in (7) is in fact ""=  we must have all the points of the two classes with 
the coordinates that separate the classes equal to 0, for analogues reasons as for the 
cohesions. This cannot be fulfilled because in this case the classes can be grouped in 
only one class. 
Suppose that the second ""≤  in (7) is, in fact, ""=  and we have at least 3 classes. It 
results that the points from 21 CC ∪  have the same values for each secondary 

component and for another class 3C  the components that separate 1C  and 2C  must 

be 0. In this case, we can delete first the components that separate 1C  and 2C  to 
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classify the points using the other components (there exists at least one other 
principal component to separate, for instance, 1C  and 3C ). An obtained class will be 

21 CC ∪  and the other classes are the class from the previous classification. Then, 

we can use the deleted components to separate 1C  and 2C . If we have only two 
classes and we set to 0 the secondary components (the same value, if we have at 
least 3 classes, becomes 0 because this is the gravity center) the second ""≤  in (7) is 

""= , as we can see from computation. 

In the following, we consider as fixed k21 ... λλλ ≤≤≤ , the number of secondary 
components being s with 0<s<k and the number of principal components 
being skp −= . 

Definition 3. Let C  be a given class with m points. The proximity to border of the 

cohesion for the class C  is the value ( )
2
secSn

cohm
⋅

⋅ C  if ( ) 0coh ≤C  and ( )
2
princSn

cohm
⋅
⋅ C  in the 

contrary case. 

Definition 4. Let 1C  and 2C  be two given classes with m points together. The 

proximity to border of the separation for the classes 1C  and 2C  is the value 
( )

2
sec

21

Sn
,sepm

⋅
⋅ CC  if ( ) 0,sep 11 ≤CC  and ( )

( )21
2
sep

21

,Sn
,sepm
CC
CC

⋅
⋅  in the contrary case. 

We denote by ( )C1prox  the proximity to border of the cohesion for the class C  and 

by ( )212 ,prox CC  the proximity to border of the separation for the classes 1C  and 

2C . 

First, we will give an example so that ( ) 1prox1 −→C  and 

( )( )
0

m
1proxSn 1

2
sec →

+⋅⋅ C
. For this, we must have 0S2

sec > . 

Instead of n, we take the number of points as 1p
1 2nn −⋅⋅ . The first class, 1C , has 

( )1nnm 1 −⋅=  points so that for this class we have 0XXXX jiji =⋅==  for any 

i,j with sji0 ≤<< , the sample variance of Xi is ( )( ) i1n
1

1n
2n2

i 2

1p
S λ⋅−=

−−
⋅ −

 for s,1i = , 

and iiX α=  for k,1si += . 

If 1p > , we choose one of the principal components, say tX , and we build other 

12 1p −−  classes with m points such the first condition is further fulfilled, the sample 

variances on the secondary components become ( )( )1n2n1n
2
i 1p

iS
+−⋅− −= λ , and the third 

condition is fulfilled only for ti = : the other principal components have the same 
absolute value, but all the possible signs. 
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For each class from the already 1p2 −  defined classes we define a new class with n1 
points so that the first two conditions of the last 12 1p −−  classes are fulfilled, and we 
have ( ) ii 1nX β−−=  if si >  and iiX β=  in the corresponding class. 

By computation, we can prove that for all the 1p
1 2nn −⋅⋅  points the first condition is 

fulfilled, and for any secondary component we have i
2
iS λ= . If we consider the last 

condition for the principal components we obtain 1n
2
i

i
−= λα . The cohesion of the first 

class is ( ) ( ) 1n
S

1n
S2

sec1n
2n

1

2
princ

2

2
sec

1p Scoh −−−
⋅ ++⋅−=

−
C . The desired condition for this cohesion 

can be checked by computation. 
If we want to give an analogue example for separation, we must have at least two 
principal components. The only conditions from the example of cohesions that we 
modify are those regarding the sample variances. We choose the first two from the 
first 1p2 −  classes and for both we set the sample variances for s,1i =  as 

( ) i1n2
1

1n
2n2

i 2

2p
S λ⋅⎟

⎠
⎞⎜

⎝
⎛ −=

−−
⋅ −

. For the other classes we set for the secondary 

components ( )( )2n22n1n
2
i 1p

iS
+⋅−⋅− −= λ .  

We can prove that in this case, for all the 1n
1 2nn −⋅⋅  points, we have 

0XXXX jiji =⋅==  for kji0 ≤<<  and i
2
iS λ=  for k,1i = . The separation 

between these classes is ( ) 2
sec1n

2n
21 S,sep 2p

⋅−= −
⋅ −

CC  

( )
( )

1n
,S

1n2
S 21

2
sep

2

2
sec

−−
++ CC

. The desired conditions can be also checked by computation. 

If we take in the above example with ( ) 1prox1 −→C  only one principal component 
we have only two classes, and we obtain by 

computation ( ) ( ) 1n
S2

princ2
2
secS1ncoh −−⋅−=C . It results that ( ) 1prox 21 →C  and 

( )( ) 2
princ21

2
princ Sprox1Sn →−⋅⋅ C . We notice that the second limit in the case of 1C  

is for the difference between the proximity and 1−  multiplied by the minimum 
cohesion. In the case of 2C , the second limit is for the difference between the 
proximity and 1 multiplied by the maximum cohesion. 

For the example with ( ) 1,prox 212 −→CC  we take 2p = , and we obtain 

analogously 4 classes and ( ) ( ) ( ) ( )1n2
S

43
2
sep43

2
sec,S1n,sep −−⋅−= CCCC . It results that 

( ) 1,prox 432 →CC  and ( )⋅⋅ 43 ,sepn CC  
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( )( ) ( )43432 ,sep,prox1 CCCC →− . 

From (6’), it results that for each class the minimum cohesion is increasing by the 
number of points, and the maximum one is decreasing. Both borders have the same 
values for the same number of points. 
The results from the examples in the next section are obtained by our C++ program 
called "percepDlg.cpp". 

 4. Economic applications 
Example 1. Consider the following consumer behavior model with 25 customers, 
where X1 represents the advertisement, X2 represents the prices and X3 represents 
the sales (Jula 2003): 
 

1X  3  2  8.0  5.2  2  4.1  5.2  5.2  3  4.1 1 2.1  1.6 

2X  3.1  8.2  5.1  2.0  8.1  4  8.1  2  5.0  8.2 2.3
 

5.2  3.1  

3X  2  5.0  5.1  3  1 0  1.2  8.1  3  7.0 5.0
 

1 4.1  

 

 

If we consider two secondary components and one principal component we obtain the 
following two classes:  

{ }25,23,20,19,18,17,16,9,8,7,4,11 =C  with 12  customers, and 

{ }24,22,21,15,14,13,12,11,10,6,5,3,22 =C  with 13  customers. 

The cohesions of the two classes are 97208.2  and 14801.2 , respectively, the 
minimum cohesions are 63964.0−  and 59044.0− , respectively, the maximum 
cohesions are 90636.5  and 4511.5 , respectively, and the proximities to border are 

50329.0  and 39405.0 , respectively. 

1X  8.1  1 8.2  5.3 6.2 4.2 4.3  6.1  9.1 5.3  6.1  3  

2X  2.2  5.3  1.1  0  2.0 2  2.1  3  3  6.0 2.3  3.0  

3X  2.1  8.0  3.2  5.3 8.3  8.1  6.2 8.0 2.1 2.4 8.0  5.2  
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The separation between the classes is 52754.2 , the minimum separation between 
the classes is 30703.0− , the maximum separation between the classes is 83457.2 , 

and the proximity to border is 0.89168  . 
If we consider one secondary component and two principal components we obtain the 
following 4  classes: 

{ }23,20,19,17,16,8,7,11 =C  with 8  customers, 

{ }24,22,21,6,22 =C  with 5  customers, 

{ }15,14,13,12,11,10,5,33 =C  with 8  customers and 

{ }25,18,9,44 =C  with 4  customers. 

The cohesions of the four classes are 66277.2 , 54305.3 , 09161.2  and 45726.4 , 
respectively, the minimum cohesions of the classes are 31024.0− , 49638.0− , 

31024.0−  and 62047.0− , respectively, the maximum cohesions of the classes are 
50726.9 , 21162.15 , 50726.9  and 01453.19 , respectively, and the proximities to 

border are 28088.0 , 23292.0 , 22.0  and 23441.0 , respectively. 
The separations between classes alphabetically ordered (between the classes 

1 and 2 , between the classes 1 and 3 ,..., between the classes 2  and 3 , and so on) 
are: 85538.2 , 37717.2 , 03508.0 , 17624.0 , 94918.3  and 60534.2 , respectively, 
the minimum separations between classes alphabetically ordered are 19091.0− , 

15512.0− , 20682.0− , 19091.0− , 27577.0−  and 20682.0− , respectively, the 
maximum separations between classes alphabetically ordered are 4511.5 , 75363.4 , 

43282.0 , 39952.0 , 4509.8  and 90536.5 , respectively, and the proximities to 
borders alphabetically ordered are 52382.0 , 50007.0 , 08105.0 , 44112.0 , 

446731.0  and 44118.0 , respectively. 
 
Example 2. We have the following 29  banks, where X1 is the annual interest for an 
account without term, X2 is the annual interest for an account with one-month term, X3 
is the annual interest for an account with three-month term, X4 is the annual interest 
for an account with six-month term, X5 is the annual interest for an account with nine-
month term and X6 is the annual interest for an account with one-year term (Ciuiu, 
2007a, Ciuiu, 2007b). 
 

 

Bank 
1X  2X  3X  X4  5X  6X  

ABN-Amro Romania %25.0  %5.3  %75.3  %75.3  %0  %75.3  
Alpha Bank %1.0  %25.6  %5.6  %7  %7  %25.7  
Banc Post %0  %25.7  %25.7  %15.7  %0  %15.7  
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Banca Comercialã 
Carpatica 

%1  %5.7  %55.7  %6.7  %75.7  %8.7  

BCR %25.0  %6  %25.6  %5.6  %75.6  %5.7  
Banca Italo-Romena %0  %5.5  %75.5  %6  %15.6  %25.6  
Banca Româneascã %75.0  %3.7  %75.7  %05.8  %1.8  8.1%  
Banca Transilvania %25.0  %5.7  7.5%  %5.7  %75.7  %75.7  
Bank Leumi Romania %25.0  %5.7  %5.7  %75.7  %75.7  %8  
Blom Bank Egypt 0.1%  %6  %5.6  %5.6  6.75%  %7  
BRD-Groupe Société 
Générale 

%25.0  %5.5  %6.5  %65.5  %65.5  %75.5  

C.R. Firenze Romania %1.0  %5.6  %75.6  %7  %25.7  %5.7  
CEC %25.0  %7  %7  %25.7  %0  %25.7  
Citibank Romania %1  4.28%  %28.4  %28.4  %87.3  %46.3  
Emporiki Bank %5.0  %75.6  %7  %25.7  %7  %7  
Finansbank %1.0  %5.7  %8  %8  %8  %5.8  
HVB-Þiriac Bank 0.1%  %4.6  %3.6  %2.6  %1.6  %1.6  
ING Bank %85.6  %5.5  %75.5  %6  %25.6  %5.6  
Libra Bank %0  %8  %1.8  %6.7  %6.7  %5.8  
Mind Bank %25.0  %7  %7  %25.7  %5.7  %75.7  
OTP Bank %25.0  %25.6  %5.6  %7  %7  %25.7  
Piraeus Bank %5.0  %7  %1.7  %25.7  %1.7  %35.7  
Pro Credit Bank %7  %5.7  %65.7  %7.7  %0  %85.7  
Raiffeisen Bank %25.0  %4  %25.4  %5.4  %6.4  %75.4  
Romanian International 
Bank 

%25.0  %5.6  %75.6  %7  %5.7  %75.7  

Romexterra %25.0  %5.7  %75.7  %75.7  %1.8  %1.8  
San Paolo IMI Bank %1.0  %5.6  %7.6   %8.6   %7  %2.7  
Uni Credit Romania %1.0  %5  %5  %25.5   %5.5  %5.5  
Volksbank %1.0  %5.4  %75.4   %5.4   %5.3  %25.3  

 

In the above table the null values have the signification that we cannot open such 
accounts with those banks. 
If we consider five secondary components and one principal component we obtain the 
following 2  classes: 

=1C {ABN-Amro Romania, Banc Post, Banca Italo-Romena, BRD-Groupe Société 
Générale, CEC, Citibank Romania, HVB-Ţiriac Bank, ING Bank, Pro Credit Bank, 
Raiffeisen Bank, Uni Credit Romania, Volksbank} with 12  banks, and =2C {Alpha 
Bank, Banca Comercială Carpatica, BCR, Banca Românească, Banca Transilvania, 
Bank Leumi Romania, Blom Bank Egypt, C.R. Firenze Romania, Emporiki Bank, 
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Finansbank, Libra Bank, Mind Bank, OTP Bank, Piraeus Bank, Romanian 
International Bank, Romexterra, San Paolo IMI Bank} with 17  banks. 

The cohesions of the 2  classes are 11317.1−  and 06516.5 , respectively, the 
minimum cohesions are 91748.15−  and 23587.11− , respectively, the maximum 
cohesions are 87761.21  and 44302.15 , respectively, and the proximities to border 
are 06993.0−  and 32799.0 , respectively. 

The separation between the classes is 46626.2 , the minimum separation between 
the classes is 58654.6− , the maximum separation between the classes is 05281.9 , 
and the proximity to border is 27243.0 . 
If we consider four secondary components and two principal components we obtain 
the following 4  classes: 

=1C {ABN-Amro Romania, Banca Italo-Romena, BRD-Groupe Société Générale, 
Citibank Romania, HVB-Ţiriac Bank, Raiffeisen Bank, Uni Credit Romania, Volksbank} 
with 8  banks, =2C {Alpha Bank, BCR, Blom Bank Egypt, C.R. Firenze Romania, 
Emporiki Bank, Mind Bank, OTP Bank, Romanian International Bank, San Paolo IMI 
Bank} with 9  banks, =3C {Banc Post, CEC, ING Bank, Pro Credit Bank} with 4  

banks and =4C {Banca Comercială Carpatica, Banca Românească, Banca 
Transilvania, Bank Leumi Romania, Finansbank, Libra Bank, Piraeus Bank, 
Romexterra} with 8  banks. 

The cohesions of the 4  classes are 06344.19 , 47738.2 , 92442.16  and 32004.9 , 
respectively, the minimum cohesions of the classes are 65729.8− , 69537.7− , 

31458.17−  and 65729.8− , respectively, the maximum cohesions of the classes are 
03535.48 , 69809.42 , 0707.96  and 03535.48 , respectively, and the proximities to 

border are 39686.0 , 05802.0 , 17617.0  and 19402.0 , respectively. 

The separations between alphabetically ordered classes are: 22855.8 , 34508.4 , 
13648.14 , 90053.6 , 07626.0  and 48739.4 , respectively, the minimum 

separations between alphabetically ordered classes are: 07402.4− , 77153.5− , 
32805.4− , 32756.5− , 07402.4−  and 77153.5− , respectively, the maximum 

separations between alphabetically ordered classes are: 44302.15 , 14595.10 , 
01767.24 , 56021.29 , 16185.7  and 87761.21 , respectively, and the proximities to 

alphabetically ordered borders are: 53283.0 , 42826.0 , 58859.0 , 23344.0 , 
01065.0  and 20511.0 , respectively. 

If we consider three secondary components and three principal components, we 
obtain the following eight classes: 

=1C {ABN-Amro Romania, HVB-Ţiriac Bank} with 2  banks, =2C {Alpha Bank, Blom 
Bank Egypt, C.R. Firenze Romania, Mind Bank, San Paolo IMI Bank} with 5  banks, 

=3C {Banc Post, CEC} with 2  banks, =4C {Banca Comercială Carpatica, Banca 
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Românească} with 2  banks, =5C {BCR, Emporiki Bank, OTP Bank, Romanian 

International Bank} with 4  banks, =6C {Banca Italo-Romena, BRD-Groupe Société 
Générale, Citibank Romania, Raiffeisen Bank, Uni Credit Romania, Volksbank} with 
6  banks, =7C {Banca Transilvania, Bank Leumi Romania, Finansbank, Libra Bank, 

Piraeus Bank, Romexterra} with 6  banks and =8C {ING Bank, Pro Credit Bank} with 

2  banks. 
The cohesions of the eight classes are 53253.33 , 74579.2 , 22195.35 , 7789.9 , 

18437.2 , 09169.15 , 61425.9  and 47459.58 , respectively, the minimum cohesions 
of the classes are: 48642.2− , 99497.0− , 48742.2− , 48742.2− , 24371.1− , 

82914.0− , 82914.0−  and 48642.2− , respectively, the maximum cohesions of 
the classes are: 28314.224 , 71326.89 , 28314.224 , 28314.224 , 14157.112 , 

76105.74 , 76105.74  and 28314.224 , respectively, and the proximities to borders 
are: 14951.0 , 03061.0 , 15704.0 , 0436.0 , 01948.0 , 20187.0 , 1286.0  and 

26072.0 , respectively. 

The separations between alphabetically ordered classes are: 71519.10 , 
89402.5 , 62663.21 , 91814.11 , 03937.0 , 32456.15 , 0841.26 , 68152.8 , 
32871.0 , 09373.0− , 72446.6 , 18815.0 , 66331.18 , 99085.16 , 185.13 , 
07563.9 , 12034.10 , 95782.14 , 10486.0 , 48898.13 , 12341.0 , 57439.8 , 
76371.6 , 1971.0 , 82534.14 , 35024.12 , 33962.11 , and 60276.13 , respectively, 

the minimum separations between alphabetically ordered classes are: 71069.0− , 
24371.1− , 24371.1− , 82914.0− , 62186.0− , 62186.0− , 24371.1− , 
71069.0− , 71069.0− , 55276.0− , 45226.0− , 45226.0− , 71069.0− , 
24371.1− , 82914.0− , 62186.0− , 62186.0− , 24371.1− , 82914.0− , 
62186.0− , 62186.0− , 24371.1− , 49748.0− , 49748.0− , 82914.0− , 
41457.0− , 62186.0− , and 62186.0− , respectively, the maximum separations 

between alphabetically ordered classes are: 50448.37 , 43786.30 , 14157.112 , 
46914.54 , 03544.8 , 03535.48 , 50873.46 , 89754.54 , 57642.26 , 14261.7 , 
71044.29 , 06831.11 , 0809.64 , 70371.81 , 76105.74 , 25437.23 , 81642.32 , 
07087.16 , 29191.20 , 03535.48 , 03544.8 , 63284.65 , 25314.26 , 60349.18 , 
04713.64 , 38052.37 , 21893.15 , and 85186.40 , respectively, and the proximities 

to alphabetically ordered borders are: 2857.0 , 19364.0 , 19285.0 , 21881.0 , 
0049.0 , 31903.0 , 56084.0 , 15814.0 , 01237.0 , 16956.0− , 22633.0 , 017.0 , 
29125.0 , 20796.0 , 17636.0 , 39028.0 , 30839.0 , 93074.0 , 00517.0 , 28081.0 , 
01536.0 , 13064.0 , 25763.0 , 01059.0 , 23148.0 , 33039.0 , 7451.0  and 
33298.0 , respectively. 

If we consider two secondary components and four principal components we obtain 
the following 14  classes, and the 2  “ignored” classes to 16  are, with the signs from 
the last component (corresponding to the maximum eigenvalue) to the first principal 



 Pattern Classification Using Secondary Components Perceptron  

 Romanian Journal of Economic Forecasting – 2/2008  63

  
component (corresponding to the fourth eigenvalue in decreasing order), +−−+  and 

−+++ . 
If we consider one secondary component and five principal components we obtain the 
following 20  classes, and the 12  “ignored” classes to 32  are, with the signs from the 
last component to the first principal component, +−−−− , ++−−− , −−−+− , 

++−+− , +−++− , −+++− , −+−−+ , −++−+ , −−−++ , −−+++  and 
+−+++ . In this case, we have “ignored” classes for objective reasons (the number 

of points is less than the maximum number of classes: 3229 < ), but as one may see 
for two secondary components, we have 291614 << , and we have 2  “ignored” 
classes. One may see that both signs codes for the two “ignored” classes ( +−−+  
and −+++ ) in the case of two secondary components are each a prefix for two 
“ignored” classes in the case of one secondary component: between the “ignored” 
classes in the last case we have −+−−+ , ++−−+ , −−+++  and +−+++ . 

 5. Conclusions 
The method presented in this paper can be connected to the methods starting from 
PCR and k-means (Ciuiu, 2007b). It works in each model where we can use 
regression, or the classical Perceptron algorithm, including economic applications 
(Nastac et al., 2007). 
If we put together the results from this paper and those where we use PCR we can 
conclude that the principal components group the points in the same class, and the 
secondary ones separate the points in different classes. The analogy is that in both 
papers (this and Ciuiu, 2007b), we start from known algorithms for neural networks 
(Perceptron, respectively k-means). The differences are that in contrast to the results 
obtained using regression (Ciuiu, 2007a, Ciuiu, 2007b) we can have classes with only 
one point, and we have not different axes for different classes: the classes depend on 
the signs of principal components. In fact, there exists also a common starting point 
for Perceptron, k-means and Bayes (Kong and Kosko, 1992): this is the discriminant 
surface, which is a hyper-plane in the case of Perceptron, the Euclidean distance to 
the gravity center of the classes multiplied by 1−  in the case of k-means, and the 
posterior probability to have a point in a given class in the case of Bayes. 
For the algorithm, we must have at least one secondary component. Of course, if we 
want to have only principal components, we can increase the dimension of the space 
by 1, and this new component is set to a constant value. The new component is for 
the new higher dimension space the only secondary component, and it is called "bias" 
in neural networks (Dumitrache et al., 1999, Kong and Kosko, 1992). If we set the new 
component, bias, as the only secondary component in the examples from the previous 
section, we see that we have no “ignored” class in the first example, and in the second 
example there are only 5 new classes. The prefix property found in the second 
example can be also checked in the case of setting bias as the only secondary 
component. 
The cohesion of the class measures the power of grouping the points in the same 
class. If it is negative, the points in that class are closer to the gravity center (the origin 
in the new coordinates system) on the principal components than the variance on the 
secondary ones. The proximity to border is useful for comparing classifications of two 
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sets of points with different measure orders or with different numbers of secondary 
components. 
The separation between two classes measures the power of separating the classes. If 
it is negative, the classes are closer to each other than the variance on the secondary 
components. The proximity of separations to borders was introduced for the same 
reason as for cohesions. 
In the case of separation, we need at least two principal components in the examples 
of the section 3 because if we have only one principal component we have only two 
classes, and the separation between them is 

( ) ( ) 2
sec21

2
sep

2
sec

2
princ21 S,SSS,sep −=−= CCCC . In this case, it results that 

( )21,sep CC  does not tend to 1 if 0S2
princ ≠  and 0S2

sec ≠ . If 0S2
sec = , it is obvious 

that ( ) 1,prox 212 =CC . In the first example in section 4 we still have the proximity to 

border ( ) 89168.0,prox 212 =CC , which is very close to 1 even if we have 1p = . 
This can be explained by the eigenvalues of the sample covariance matrix, which are 

09928.01 =λ , 20775.02 =λ  and 83457.23 =λ . By computation, we can check 

that 89168.0
3

213 =−−
λ

λλλ . 

It is an open problem to find theoretical examples for the maximum proximities more 
general than those from the third section (with more than one principal component in 
the case of cohesions, and more than two in the case of separations). 
If we increase the number of principal components, the number of classes also 
increases. In this case, one may see that the number of negative cohesions 
decreases, and the number of proximities to borders of the cohesions between 0  and 

1.0  increases. In none of the examples in section 4 we have proximities to borders of 
cohesions between 9.0  and 1. However, from the theoretical consideration of section 
3, we can only have one such proximity to borders and the involving class has the 
main part of the sum of squares on principal components. In this case, the proximity 
between 9.0  and 1 disappears when a new principal component separates the 
above class. 
The minimum of proximities to borders of cohesions between 1.0  and 9.0  generally 
decreases, but it can increase when it begins to “ignore” classes. Their maximum 
generally decreases, but it can increase when a negative cohesion disappears. The 
difference between the above maximum and minimum generally decreases, but it can 
also increase when a negative cohesion disappears. Another increase in this 
difference is when the number of classes increases from 14  to 20 , but the increase 
in this case is only 0123.0  , and it can be explained by the same number of 
proximities to borders of cohesions between 1.0  and 9.0 : 3 . 
The negative separations appear only in the second example, and one may say the 
same thing about the proximities to borders of the separations between 9.0  and 1. 
The first appearances can be seen when the number of principal components is 
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maximum, so that we have no “ignored” classes. The first number swings, and the 
second number turns 0  from 1 immediately. The number of the proximities to borders 
of the separations between 0  and 1.0  increases, the minimum of the proximities to 
borders of the separations between 1.0  and 9.0  generally decreases, the only 
increase is from 14  to 20  classes, which is very small: 00001.0 . The maximum 
generally decreases, but it can increase when negative separations and proximity to 
borders between 9.0  and 1 appear. The same thing can be said about the difference 
between maximum and minimum. 
When we set the bias as the only secondary component, all the cohesions and 
separations are positive. In both cases, we have no proximity to borders between 9.0  
and 1, and in the first example we have no proximity to borders of separation between 
0  and 1.0 . In the second example, there are 222  such proximities, but in this case 
we have almost one point in each class: the 29  banks are in 25  classes. In the first 
example, one may remark the decreases in the above minimums and maximums, and 
the increase in the difference. The significant increase is in the case of separations. In 
the second example, the above maximums, minimums and differences are close to 
the case of two secondary components (only one without bias). 
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