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Abstract  
In our paper we show how to construct a model for one variable in the French Health 
Survey data set: the number of times an individual visited a generalist in the last 
twelve months, for which we are interested in estimating the regional means. Then, 
we test the fit of the model to the data and compare it to other two alternative models. 
We derive theoretical formulas for the estimates of the twenty-two regional means 
along with their standard deviations. We compare this to the design-based estimations 
obtained by INSEE in the case of the five regions with extra sample. We discuss some 
alternative for future research. 
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1. Introduction 
The French Health Survey (FHS) is a large survey (almost 30000 observations) taking 
place every ten years and collecting information on many health variables (more than 
200). The French National Statistical Institute (INSEE) exploits the data by using its 
own methodology based on the sample design and calculates national estimations for 
a series of parameters linked to variables from FHS. 
Lately, there has been a growing demand for estimations at sub-national levels. For 
instance, the French regional authorities are interested in estimations at the regional 
and county level (the French territory is divided into 22 regions, every region being 
divided into several counties, with a total of 95 counties). 
The INSEE methodology is design-based. This means that the randomization comes 
from the sampling design. As a result, it can be seen that, if used for obtaining 
regional/county estimates, the resulting estimator called direct estimator uses only the 
observations coming from that region/county. Because surveys are generally 
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designed to ensure precise estimations at the national level, the sizes of the 
regional/county samples are not sufficient to ensure an adequate level of precision for 
the direct estimator at sub-national levels. For this reason, the region/county is 
considered a small area and alternative methods should be used. These methods 
form the small area estimation theory. 
Authorities from five French regions (see below) decided to spend more money to 
increase their regional sample sizes, so that the regional estimations based on the 
INSEE methodology have an adequate level of precision. This resulted in 
approximately 10000 more individuals interviewed in the five regions. Based on this 
additional sample, INSEE computed and published national estimates plus five 
regional estimates together with their standard errors for a series of variables in FHS. 
However, these estimates now more precise due to the increased number of 
observations are still based on the INSEE methodology. In this paper, we show how to 
improve regional estimations by using small area estimation methods. 
The small area estimation is the new theory trying to improve the classical design-based 
survey sample theory. The key of the modern small area estimation is the modelling of 
the variable of interest population values and then basing the estimation on the model. 
Multivariate estimation when several study variables are modelled simultaneously is also 
possible, although less frequently used. The model acts like a link between observations 
coming from different areas of the population. This is why the model-based estimation 
for a region/county parameter uses the entire national sample and not only the 
regional/county sample (this is called indirect estimation). Thus, the indirect estimator is 
more precise by “borrowing strength” from related areas. 
INSEE does not have a methodology for small area estimation so La Direction de la 
recherche, des études, de l’évaluation et des statistiques (DREES), which statistically 
exploits the data in FHS, financed a research aimed at finding a small area 
methodology for obtaining estimations at the regional or/and county level for a series 
of health variables. The results presented in this paper are part of this research. 
In Section 2, we will show how to construct a model to estimate the regional means for 
the study variable R02AM, the number of visits to the generalist during the last year. Two 
alternatives models are presented and compared to the model used to obtain the 
estimations. In Section 3, we obtain the theoretical formulas of the estimators and of 
their standard errors by using full hierarchical Bayesian estimation methods. In Section 
4, we test the fit of the three models by a number of discrepancies measures and p-
values. In Section 5, using the formulas derived in Section 3, we compute the 
estimations and their precisions. We show the results only at the regional level and for 
the variable R02AM. We also estimated the county means of this variable and dealt with 
other variables such as the number of visits to the specialist in the last year or the body 
max index. Finally, in the last section we draw some conclusions and specify directions 
for future work. 

2. Construction of the model 
We saw earlier that the small area estimation is model-based, so that in this section 
we will show the steps we followed to construct a model for R02AM. 
First, we undertook an extensive exploratory analysis in order to select the variables that 
explain R02AM (for details see Stefan M. (2006)). Better small area estimation can be 
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obtained when auxiliary variables closely linked to the study variable are available. As a 
result of the preliminary analysis we retained four auxiliary variables: the Region, 
indexed by i=1,…,22, the Stratum, indexed by j=1,..,5 (this is a categorical variable, 
which is part of the sampling design and has five values depending on the population 
size of the commune an individual lives in), the Sex, indexed by s=1,2 and the Age, 
indexed by k=1,…,8 (we transformed the variable Age into a categorical variable with 
eight values corresponding to the intervals [0,1], [2,12], [13,23],…[56,67] and [68,104)).  
Thus, we concluded that the individuals living in the same region and stratum and 
having the same sex and age on average should have the same value for the study 
variable. This is equivalent to cross-classifying the individuals in the population into 
22 5 2 8× × ×  cells, with ijskly  being the value of R02AM for an individual l in the cell 

( , , , )i j s k . ijskly  should then verify: 

( )ijskl ijskE y µ≈  

with ijskµ  denoting the population mean of the cell ( , , , )i j s k . 

R02AM is a count variable. As a consequence, we will use the Poisson distribution to 
model it. The Poisson distribution has its mean equal to its variance. We have to test if 
R02AM verifies this condition. We computed the sample means and variances of the 
cells ( , , , )i j s k  for R02AM. Figure 1 represents the cell means versus the cell 
variances: 

Figure 1 

Mean versus Variance of R02AM 
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The solid line is of equation y x= . Most of the points are above it, suggesting that the 
variance is larger than the mean. Such a situation is called over dispersion and is 
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frequently met in practice. The second curve is of equation 1.51.3y x x= + , which is a 
much closer approximation of the relationship between the variance and the mean. 
Clearly, the Poisson distribution is not appropriate for R02AM and something has to 
be done to handle the over dispersion. 
There is a large literature about how the overdispersion present in the data can be 
taken into account. We adopt here one of the ways presented in Congdon P. (2005), 
pages 155-160, which consists of taking the parameter of the Poisson distribution 
random. In order to illustrate the effect of ignoring the over dispersion we also 
considered a model where the Poisson distributions parameters are fixed – this will be 
model 1 below. Thus, the first line of the hierarchical model will be: 

| ~ Poisson( )ijskl ijsk ijskind
y ν ν  

with random ijskν  having to be modelled. 

It is easy to see that a much better choice would be a model where the parameters of 
the Poisson distribution depend on the individual l not only on the cell ( , , , )i j s k . This 

means replacing ijskν  above by ijsklν , with random ijsklν  still having to be modelled. To 

illustrate the advantage of taking ijsklν  instead of ijskν  we will consider model 2 

with ijskν and model 3 with ijsklν  as parameters of the Poisson distribution: 

| ~ Poisson( )ijskl ijsk ijskind
y ν ν

 
under model 2 and: 

| ~ Poisson( )ijskl ijskl ijsklind
y ν ν

 
under model 3. 

For models 2 and 3 we have to model ijskν  and ijsklν , respectively. We will use a 

Gamma distribution with parameters 1 /kappa
ijsk alphaµ −  and /kappa

ijsk alphaµ− , where 

0alpha >  and 1kappa > − . The choice of the Gamma parameters was dictated by 
the data because it can be seen by a well-known formula for conditional means and 
variances that this choice leads to a relationship between ( )ijsklE y  and ( )ijsklV y , as 
shown in Figure 1. Clearly, if we put: 

1

| , , ~ Gamma( , )
kappa kappa

ijsk ijsk
ijsk ijsk ind

alpha kappa
alpha alpha
µ µ

ν µ
− −

 
under model 2 and 

1

| , , ~ Gamma( , )
kappa kappa

ijsk ijsk
ijskl ijsk ind

alpha kappa
alpha alpha
µ µ

ν µ
− −

 
under model 3, then one will get: 



 Hierarchical Bayesian Estimation of the Number of Visits to the Generalist  

 Romanian Journal of Economic Forecasting – 2/2008  71

  
( ) ( | ) ( )

ijsklijskl ijskl ijskl ijskl ijskE y E E y Eν ν ν µ= = =
 

and 

( ) ( | ) ( | ) ( ) ( )
ijskl ijsklijskl ijskl ijskl ijskl ijskl ijskl ijsklV y E V y V E y E Vν νν ν ν ν= + = + =

 
1 kappa

ijsk ijskalphaµ µ += + ×  

which is the type of relationship between ( )ijsklE y  and ( )ijsklV y  indicated in Figure 1. 
The same proof holds under model 2 when l misses. 

We are now at a point when we have to model the cell population means ijskµ  under 
the three models. We will use the log which is the typical link function for the 
parameter of a Poisson distribution. Given the results of the exploratory analysis we 
will use the Region, Stratum, Sex and Age as explanatory variables for log( )ijskµ : 

1 2 3 4log( )ijsk i j s kµ β β β β= + + +
 

In order to make sure that some relevant explanatory variables are not overlooked 
and that the additive relation above is appropriate, we also considered and tested the 
fit of a model with 1 2 3 4log( )ijsk i j s k ijskµ β β β β ε= + + + + , where ijskε  follow a 

normal distribution. We found that this model including the errors ijskε  did not fit the 
data much better that the model 3 without the errors and having much less 
parameters. Thus, we decided to drop the errors and keep the specification 

1 2 3 4log( )ijsk i j s kµ β β β β= + + + . Moreover, in order to avoid redundancy we 
imposed the usual corner constraints on the effects of the four auxiliary 
variables 21 31 41 0β β β= = = . 

alpha, kappa, and the β  are the hyper parameters of the models for which a priori 
laws has to be specified. We considered uniform laws with the intervals large enough 
to ensure their non-informative character. Alternative choices would be normal 
distributions of mean zero and large variances for real parameters, or gamma 
distribution with both parameters equal and small (0.001 is the usual value) for 
positive parameters. A sensitivity analysis to the choice of the a priori distributions not 
shown here was undertaken confirming a well-known fact that when the sample size 
is large the a priori laws have no or negligible impact on the posterior distributions 
and, as a consequence, on the inference. Thus, we conclude the hierarchical three 
models by the specifications: 

~ Unif(0,100)alpha , ~ Unif( 1,100)kappa − , 1 ~ Unif( 10,10)iβ − ,

2 ~ Unif( 10,10)jβ − , 3 ~ Unif( 10,10)sβ − , 4 ~ Unif( 10,10)kβ − . Thus, we will 
have: 

Model 1 

| ~ Poisson( )ijskl ijsk ijskind
y ν ν , 
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1 2 3 4log( )ijsk i j s kν β β β β= + + + , 

~ Unif(0,100)alpha , ~ Unif( 1,100)kappa − , 

1 ~ Unif( 10,10)iβ − , 2 ~ Unif( 10,10)jβ − , 3 ~ Unif( 10,10)sβ − ,

4 ~ Unif( 10,10)kβ −  
 

Model 2 

| ~ Poisson( )ijskl ijsk ijskind
y ν ν , 

1

| , , ~ Gamma( , )
kappa kappa

ijsk ijsk
ijsk ijsk ind

alpha kappa
alpha alpha
µ µ

ν µ
− −

, 

1 2 3 4log( )ijsk i j s kµ β β β β= + + + , 

~ Unif(0,100)alpha , ~ Unif( 1,100)kappa − , 

1 ~ Unif( 10,10)iβ − , 2 ~ Unif( 10,10)jβ − , 3 ~ Unif( 10,10)sβ − ,

4 ~ Unif( 10,10)kβ −  
and 

Model 3 

| ~ Poisson( )ijskl ijskl ijsklind
y ν ν , 

1

| , , ~ Gamma( , )
kappa kappa

ijsk ijsk
ijskl ijsk ind

alpha kappa
alpha alpha
µ µ

ν µ
− −

, 

1 2 3 4log( )ijsk i j s kµ β β β β= + + + , 

~ Unif(0,100)alpha , ~ Unif( 1,100)kappa − , 

1 ~ Unif( 10,10)iβ − , 2 ~ Unif( 10,10)jβ − , 3 ~ Unif( 10,10)sβ − ,

4 ~ Unif( 10,10)kβ −  
 

Model 3 will be found to have a sufficiently good fit to the data and it will be used to 
compute the estimations. Models 1 and 2 will only illustrate the effect of not taking into 
account the over dispersion and of having parameters ijskν  depending only on the cell 
and not on the individual. 

3. Parameters estimation 
In this section, we will derive theoretical formulas for the regional estimators and their 
standard errors under model 3. The way we do it is similar to Malec et al. (1997). The 
difference is that in their paper they deal with binary variables and they do not use 
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individual parameters like we do under model 3 by choosing ijsklν  instead of ijskν . As 
we will see, despite the increased number of parameters that model 3 has as 
compared to models 1 or 2, it is worthwhile since model 3 presents a much better fit to 
the data. 

Let iµ  be the population mean of R02AM for the region i. We want to estimate iµ , 
which can be written as: 

1
i ijskl

j s k li

y
N

µ = ∑∑∑∑  

where iN  is the population size of the region. In the Bayesian context, a parameter is 
estimated by its posterior mean and the precision of this estimation will be measured 
by its posterior variance: 

ˆ ( | )i i obsEµ µ= y  and ˆ( ) ( | )i i obsV Vµ µ= y  

where obsy  is the vector of all the observations. The population of a region can be 
divided in two parts: the observed and the unobserved individuals. Then, the regional 
mean will be given by: 

1 [ ]
i i

i ijskl ijskl
j s k l obs j s k l nobsi

y y
N

µ
∈ ∈

= +∑∑∑ ∑ ∑∑∑ ∑  

where iobs  and inobs  are the observed and the unobserved part of the region i. By 

taking the conditional mean and variance of iµ  one will have: 

1ˆ ( | ) [ ( | )]
i i

i i obs ijskl ijskl obs
j s k l obs j s k l nobsi

E y E y
N

µ µ
∈ ∈

= = +∑∑∑ ∑ ∑∑∑ ∑y y  

and 

2

1ˆ( ) ( | ) ( | )
i

i i obs ijskl obs
j s k l nobsi

V V V y
N

µ µ
∈

= = ∑∑∑ ∑y y  

It can be shown under model 3 (see Stefan M. (2006) for technical details) that for an 
individual 0 il nobs∈  not in the sample: 

( | ) ( | )ijskl obs ijsk obsE Eν µ= ⇒y y  

1ˆ [ ( ( ) | )]
i

i ijskl ijsk ijsk ijsk obs
j s k l obs j s ki

y E N n
N

µ µ
∈

= + −∑∑∑ ∑ ∑∑∑ y   (1) 

where ijskN  is the population size of cell ( , , , )i j s k  and ijskn  is the number of 

individuals in the sample falling in cell ( , , , )i j s k . The relation 

( | ) ( | )ijskl obs ijsk obsE Eν µ=y y  indicates that an unobserved individual will be 
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replaced by the maximum we know about him or her, which is the mean of the cell he 
or she belongs to. 
We also used model 3 to estimate the national mean µ  and the precision of the 
estimation. To do so it is easy to see that in formula (1) one has to add a sum after the 
index i and replace iN  by the national population size N: 

1ˆ [ ( ( ) | )]
i

ijskl ijsk ijsk ijsk obs
i j s k l obs i j s k

y E N n
N

µ µ
∈

= + −∑∑∑∑ ∑ ∑∑∑∑ y  (2) 

As far as the posterior variance of iµ  is concerned, it can be proved (see Stefan M. 
(2006) for details) that:  

2

1( | ) [ ( ( ) | )i obs ijsk ijsk ijsk obs
j s ki

V E N n
N

µ µ= − +∑∑∑y y  

1( ( ) | ) ( ( ) | )]kappa
ijsk ijsk ijsk obs ijsk ijsk ijsk obs

j s k j s k

V N n E N n alphaµ µ ++ − + −∑∑∑ ∑∑∑y y

(3) 
With the same modifications as above, the precision of µ̂  can be shown to be: 

2

1( | ) [ ( ( ) | )obs ijsk ijsk ijsk obs
i j s k

V E N n
N

µ µ= − +∑∑∑∑y y  

1( ( ) | ) ( ( ) | )]kappa
ijsk ijsk ijsk obs ijsk ijsk ijsk obs

i j s k i j s k

V N n E N n alphaµ µ +− + −∑∑∑∑ ∑∑∑∑y y

(4) 

iµ  and µ  are not parameters of model 3, so that they cannot be estimated directly by 

fitting this model. Formulas (1)-(4) are useful because they show how iµ  and µ  

depend on ijskµ , alpha  and kappa , which are parameters of model 3. By fitting 

model 3 we will get estimators of ijskµ , alpha  and kappa  that will be plugged in 

formulas (1)-(4) to obtain ˆ ( | )i i obsEµ µ= y  and ˆ( ) ( | )i i obsV Vµ µ= y . 

Because of the multidimensionality of the posterior law of the parameters in model 3 it 
is impossible to get a closed form of this distribution. To tackle the problem, we will 
use the Gibbs sampling to obtain estimations of these parameters. The Gibbs 
sampling generates a Markov chain for each parameter of the model by using its full 
conditional distribution, which is the distribution of the parameter conditional on all the 
other parameters of the model and obsy . 

A Markov chain for a parameter must be initialised at some value and it can be shown 
that whatever this value, after a “burn-in” period, the chain converges to its stationary 
distribution, which is the parameter posterior distribution. This means that after 
convergence the Markov chain values can be used to estimate different posterior 
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characteristics: mean, variance, quintiles, etc… Thus, it is crucial to be able to detect 
the point where the Markov chain converged. The second issue addressed below is 
how many values (or iterations) can be used in order to get with a good approximation 
the posterior mean or variance. 
The Gibbs sampling uses the full conditional distributions to generate the Markov 
chains. Some conditional distributions can be completely determined. For instance, 
under model 3 the full conditional distributions of ijsklν  are Gamma distributions, which 
can be sampled easily, but for the rest of the model 3 parameters their full conditional 
distributions can be determined up to a constant. In order to sample from such a non-
standard distribution, we used Metropolis-Hastings and Neal (1997) algorithms (see 
Stefan M. (2006) for details). 
The formulas (1) through (4) show how to use the Markov chains of model 3 
parameters to compute ˆiµ  and µ̂  together with their precisions: 

1 1ˆ [ ( ) ]
i

g
i ijskl ijsk ijsk ijsk

j s k l obs g j s ki

y N n
N G

µ µ
∈

= + −∑∑∑ ∑ ∑∑∑∑   (5) 

ˆ( )iV µ =  

1
2

1 1 1{ ( ) ( )
gg g g kappa

ijsk ijsk ijsk ijsk ijsk ijsk
g j s k g j s ki

N n N n alpha
N G G

µ µ += − + −∑∑∑∑ ∑∑∑∑  

2 21 1[ ( ) ] [ ( ) ] }g g
ijsk ijsk ijsk ijsk ijsk ijsk

g j s k g j s k

N n N n
G G

µ µ+ − − −∑ ∑∑∑ ∑∑∑∑  (6) 

1 1ˆ [ ( ) ]
i

g
ijskl ijsk ijsk ijsk

i j s k l obs g i j s k

y N n
N G

µ µ
∈

= + −∑∑∑∑ ∑ ∑∑∑∑∑   (7) 

and 

2

1 1ˆ( ) { ( ) g
ijsk ijsk ijsk

i g j s k

V N n
N G

µ µ= − +∑∑∑∑∑  

(1 )1 ( )
gg g kappa

ijsk ijsk ijsk
g i j s k

N n alpha
G

µ ++ − +∑∑∑∑∑  

2 21 1[ ( ) ] [ ( ) ] }g g
ijsk ijsk ijsk ijsk ijsk ijsk

g i j s k g i j s k
N n N n

G G
µ µ+ − − −∑ ∑∑∑∑ ∑∑∑∑∑   (8) 

where g
ijskµ , galpha  and gkappa  1,...,g G= , are the values indexed by g of the 

Markov chains of parameters ijskµ , alpha and kappa. 

Based on formulas (5) and (7) we can construct Markov chains { }g
iµ  and { }gµ  for iµ  

and µ , which are a combination of the Markov chains of ijskµ , alpha and kappa. First, 
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these chains are an alternative to formulas (6) and (8) for computing the standard errors 
by simply taking the chain variance (we did both and obtained the same results). 
Second, they will be useful in computing the Monte Carlo Standard Errors (see below). 

Let us notice in (5)-(8) that apart from the Markov chains g
ijskµ , galpha  and gkappa  

that can be obtained by fitting model 3 and the known values of the cell sample sizes 

ijskn , we also need to know ijskN , the cell population sizes. Their values are known 
from the 1999 French Census and were provided by the INSEE. 

 4. Choice and fit of the model 
In this section, we compare the fit of the three models and conclude that model 3 is 
better than models 1 and 2. Then, we will check if model 3 fits well enough the data in 
FHS. We remind that model 1 ignores the over dispersion by taking ijskν  as fixed, 

while model 2 has random ijskν  depending on an individual through his or her region, 
stratum, sex and age only. 
We selected several criteria well known in the literature (see Rao J.N.K. (2003) pages 
232-237 for an excellent presentation). Given the large number of observations, the 
computations in this section use the sample without extension having 28259 
observations. In this section, for notation facility i designates an individual. 
One way in which a model fit can be tested is to generate for every individual i in the 
sample new observations ,new iy  from the posterior predictive density ( | )i obsf y y  and 

to compare newy  to obsy  by some discrepancy measures. The model having the least 
posterior mean of one or several discrepancy measures will be chosen. We used three 
measures of discrepancy appropriate when the study variable is a count variable: 

2
, ,

,

( )
( , )

( 0.5)
new i obs i

new obs
i new i

y y
T

y
−

=
+∑y y , 

,
, , ,

,

( 0.5)
( , ) 2 [( 0.5) log ( )]

( 0.5)
obs i

new obs obs i obs i new i
i new i

y
d y y y

y
+

= + − −
+∑y y , 

2
, , ,( , ) ( ( | ) ) ( | )new obs new i obs obs i new i obs

i i

D E y y V y= − +∑ ∑y y y y  

( | )i obsf y y  is the distribution of the number of visits to the generalist of individual i 

after the sample was taken and comparing the values generated by ( | )i obsf y y  to 
what actually was observed will indicate how well a model fits to the data. It can be 
shown that a new value ,new iy  can be sampled from ( | )i obsf y y  as follows: for each 

individual i we have the Markov chain { }g
iν  obtained by fitting the model. After the 
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burn-in period the values { }g
iν  come from ( | )i obsf ν y ; we considered a burn-in 

period of 2000 iterations and used the next G=1000 iterations; for each of the 1000 
iterations we generated ,

g
new iy  by sampling Poisson( )g

iν . 

The posterior means for the three discrepancy measures above will be computed as 
follows: 

,

,

2
,( )1( | )

( 0.5)
new i

new i

g
obs i

obs g
g i

y y
E T

G y
−

=
+∑∑y , 

,

,

,
, ,

( 0.5)1( | ) 2 [( 0.5) log ( )]
( 0.5) new i

new i

obs i g
obs obs i obs ig

g i

y
E d y y y

G y
+

= + − −
+∑∑y , 

, ,
1( | ) g

new i obs new i
g

E y y
G

= ∑y , 2
, , ,

1( | ) ( ( | ))g
new i obs new i new i obs

g

V y y E y
G

= −∑y y  

from which one will get immediately ( | )obsE D y . 

Besides the three measures above, we also considered the Deviance defined as two 
times the logarithm of the likelihood of obsy : 

,Deviance( , ) 2* log( ( | ))g
obs obs i i

i

f y ν= − ∑y ν  

The Deviance can be seen as a measure of discrepancy between obsy  and ν . Its 
posterior mean will be given by: 

,
1(Deviance | ) 2* log( ( | ))g

obs obs i i
g i

E f y
G

ν= − ∑∑y  

where ,( | )g
obs i if y ν  is the value of the density function of a Poisson distribution of 

parameter g
iν  computed at ,obs iy . The values for the discrepancy measures under 

the three models are shown in Table 1: 
Table 1  

Posterior means of the discrepancy measures 
Discrepancy Measures Model 1 Model 2 Model 3 

( ( , ) | )new obs obsE T y y y  204591.7 180845.9 66212.74 

( ( , ) | )new obs obsE d y y y  114884.9 109110.9 48095.09 

( , )new obsD y y  647926.3 619880.3 232111.5 
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(Deviance | )obsE y  174500 168300 103500 

 
Table 1 shows clearly that model 1 ignoring the over dispersion has the poorest fit. 
Model 2, with random parameters for the Poisson distribution but common for all 
individuals in the same cell has a somewhat better fit. The model 3 has much more 
parameters than models 1 and 2. As a consequence, the time needed to estimate 
model 3 is much longer but as Table 1 demonstrates, model 3 improves heavily on the 
fit being a good alternative to the first two models. 

Another way to compare obsy  and newy  is to examine their empirical distributions 
under the three models. They are represented in Figure 2: 

Figure 2 

Distribution of obsy  and Distributions of newy  under Models 1-3 
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We can again remark the bad fit of models 1 and 2. Under these models, the 
frequency of some important values of the study variable like 0 and 1 accounting for a 
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large number of individuals in the sample are underestimated. On the contrary, model 
3 produces values whose frequencies are close to what actually was observed. 
Nevertheless, model 3 underestimates the number of persons which visited the 
generalist 12 times during the last year. In the empirical distribution of obsy  shown in 
Figure 2, 12 is the value whose frequency of nearly 7% presents a peak. This is 
contrary to the general tendency of decreasing frequencies as the number of visits 
increases. This could be explained by two facts: 1) an individual tends to respond “a 
dozen times” even if he or she visited the generalist ten times or less or thirteen times 
or more resulting in a larger than normal frequency of value 12; 2) there exists a 
subpopulation of individuals which visit the generalist once a month. 
Whatever the reason, model 3 fails locally by underestimating the frequency of value 
12. However, as we will see in the following, measures of overall fit shows that model 
3 can be used to make inference about the regional means. 
There is no doubt that model 3 fits the data much better than the other two. Now we 
have to answer the question: Is model 3 good enough? To see how good is model 3 
we used the p-values which are linked to a measure of discrepancy between y and ν . 
Earlier we used such a measure - which is the Deviance - with the corresponding p-
value being the probability that Deviance( , )g g

newy ν  exceeds Deviance( , )g
obsy ν . An 

estimator of this p-value can be computed as: 

1ˆ [Deviance( , ) Deviance( , )]g g g
new obs

g

p I
G

= ≥∑ y ν y ν  

A value of p̂  close to 0.5 indicates a good fit, while extreme values close to 0 or 1 
indicate a poor fit and make us reject a model. For the model 3 we obtained ˆ 0.40p =  
indicating a good fit, while for models 1 and 2 we obtained 0. 
Besides the Deviance we can use another discrepancy measure between y and ν  
appropriate when dealing with a count variable. Its formula and the corresponding p-
value are given by: 

2( )Dis( , ) i i

i i

y ν
ν
−

=∑y ν  and 
1ˆ [Dis( , ) Dis( , )]g g g

new obs
g

p I
G

= ≥∑ y ν y ν  

For model 3 we obtained ˆ 0.58p =  and, as for the Deviance, we obtained again 0 
under models 1 and 2.  

Figure 3 

( , )g
obsDeviance y ν  vs ( , )g g

newDeviance y ν  and ( , )g
obsDis y ν  vs ( , )g g

newDis y ν  
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In Figure 3 we plotted Deviance( , )obsy ν  against Deviance( , )newy ν  and 

Dis( , )obsy ν  against Dis( , )newy ν . Under a good model, half of the points fall below 
the 45° line and the remaining half above the line. The two plots of Figure 3 confirm 
that model 3 is a fairly well fitted model: 

Until now we used ( | )i obsf y y  to generate new data. An alternative is represented by 

the cross validation prediction densities denoted by ( )( | )i if y y , where ( )iy  is the 

vector of all individuals except i. For individual i, ( )( | )i if y y  suggests what values of 

iy  are likely when the model is fitted to ( )iy . For every individual i one can compute 

the conditional predictive ordinate denoted CPOi  and defined as: 

( )CPO ( | )i i if y= y  

It can be shown that CPOi  can be estimated by: 

( )
1ˆCPO ( | ) 1 1
( | )

i i i

g
g i i

f y

G f y ν

= =
∑

y  
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The model to select will be the model having the largest CPOi , but due to the large 

number of points the different plots of CPOi  under the three models are useless and 

we do not show them. We shall use the CPOi  to compute the standardized residuals: 

, ( )

( )

( | )
( | )

obs i i i
i

i i

y E y
r

V y
−

=
y

y
 

In order to have the ir  one needs ( )( | )i iE y y  and ( )( | )i iV y y . For an arbitrary 

function ( )ia y  we can prove that: 

( ) ( )
( )1ˆˆ ( ( ) | ) ( | )

( | )

g
i i

i i i i g
g i i

bE a y f y
G f y

ν
ν

= ∑y y  

where ( ) ( ( ) | )g g
i i i ib E a yν ν= . Under model 3 we have: 

( ) ( )
1ˆˆ ( | ) ( | )

( | )

g
i

i i i i g
g i i

E y f y
G f y

ν
ν

= ∑y y  

2
2

( ) ( ) ( )
1 1ˆ ˆˆ( | ) ( | ) [ ( | ) ]

( | ) ( | )

g g g
i i i

i i i i i ig g
g gi i i i

V y f y f y
G f y G f y

ν ν ν
ν ν

+
= −∑ ∑y y y  

Let us notice that under model 3, ( )g
i ib ν  has a closed form, so that the formula above 

for ( )
ˆ ( ( ) | )i iE a y y  can be used. Otherwise, one has to sample ( )( | )i if y y ) and 

compute ( )( ( ) | )i iE a y y  and ( )( ( ) | )i iV a y y  as the sample mean and the variance of 

the ( )ia y  values. 

Fortunately, Gelfand (1996) shows how one can sample ( )( | )i if y y  without having to 

rerun the Gibbs sampling for every ( )iy  and then sample the corresponding posterior 

predictive density to generate new values as we did above for ( | )i obsf y y . Under 

model 3, the algorithm in Gelfand (1996) is equivalent to: from each vector ( )g
i iν=ν  

draw a sample with replacement and with probabilities proportional to ,1/ ( | )g
obs i if y ν  

and let * *( )g
i iν=ν , g=1,…G be the new vector; for each element *g

iν  sample a value 
*

,
g
new iy  from *Poisson( )g

iν . The vector *
,new iy  will be composed of G values sampled 

from ( )( | )i if y y . 

As we did with the empirical distributions of newy , we can plot the empirical 

distributions of *
newy  under the three models. The histograms are represented in 
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Figure 4. They are similar to those in Figure 2 and the same observation can be made 
about value 12 of the study variable. 

Figure 4 

Distribution of obsy  and Distributions of *
newy  under Models 1-3 
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We can now use the values *
,new iy  to compute alternatively the residuals ir  or some 

other measures for which ( ( ) | )g
i iE a y ν  is not available in a closed form. In the first 

two plots of Figure 5 we represented residuals ir  under Model 3 against those under 
models 1 and 2, respectively. The solid lines are the 45° lines. One may clearly see 
that for a large number of individuals ir  are larger under models 1 and 2 than under 
model 3. 

The third plot represents residuals ir  versus i under model 3. We can see that most of 

them are in absolute value less than 2. In fact, the percentage of ir  whose absolute 
values are higher than 2 is 2.94%. Under model 1 and 2, these percentages are 
16.11% and 16.20%, respectively. The mean and standard deviation of ir  under 
model 3 are -0.10 and 0.90, respectively. 

 

Figure 5 
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ir under Model 3 against ir  under Models 1 and 2 
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5. Numerical computations of the regional 
estimations 

The estimations will use the formulas (5)-(8) where we can see what are the Markov 
chains that will be used: the Markov chains of parameters alpha, kappa and ijskµ . As 
we already said, we have to make sure that the chains converged. 
One way to do it is to run several chains starting from different initial values and to 
follow the traces of the chains to detect the iteration from which the traces become 
undistinguishable. Another way is to apply one of the existing convergence 
diagnostics (see Cowles and Carlin (1996)). In Stefan M. (2006) we did both, but in 
this paper we will adopt the first. 
First, let us notice that monitoring the convergence of the Markov chains of 
parameters ijskµ  is equivalent to monitoring the chains of all the β  parameters. For 
each parameter we run three chains initialized at different values. In figures 6 and 7 
we have the Markov chains traces for parameters alpha and kappa (to save space we 
omitted those of β  parameters). 
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Figure 6 

Markov chains of parameter kappa 
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Figure 7 

Markov chains of parameter alpha 
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alpha chains 1:3
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From figures 6 and 7 one may see that for parameter alpha and kappa their Markov 
chains converge from iteration 2000 (the same holds true for the β  parameters).  

We could have looked directly to Markov chains { }g
iµ  and { }gµ  obtained as a mix. 

In Stefan M. (2006) we did and noticed a well-known fact that when constructed as a 
mix the autocorrelation of a Markov chain decreases and, as a consequence, the 
convergence is much more rapid. For { }g

iµ  and { }gµ  the convergence was attained 
after 100 iterations. 
After discarding the first 2000 iterations we run the three chains for 2000 more 
iterations and used a total of 6000 iterations to compute the estimations and their 
standard errors. Table 2 presents our estimations and their precisions together with 
the six estimations and their precisions published by INSEE for the five regions with 
extra sample and France. 
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Table 2 

Estimations based on the sample with extension  

(39900 observations) 
Region 

* = region with extension 
Estimation Standard 

Error 
 

Estimation 
INSEE 

Standard 
Error 

INSEE 
Ile de France* 3.00 0.0330 3 0.0485 

Champagne-Ardenne* 4.41 0.0832 4.4 0.1169 
Picardie* 4.36 0.0773 4.5 0.1376 

Haute-Normandie 4.20 0.1498   
Centre 4.02 0.1145   

Basse-Normandie 4.31 0.1488   
Bourgogne 3.68 0.1248   

Nord Pas de Calais* 5.13 0.0729 5.4 0.1162 
Loraine 4.53 0.1176   
Alsace 4.18 0.1331   

Franche Compté 3.85 0.1395   
Pays de la Loire 4.01 0.0916   

Bretagne 3.97 0.1006   
Poitou Charente 4.44 0.1386   

Aquitaine 4.30 0.1003   
Midi-Pyrénées 4.37 0.1247   

Limousin 4.80 0.1957   
Rhône Alpes 3.27 0.0660   

Auvergne 4.15 0.1657   
Languedoc-Roussillon 4.24 0.1212   

PACA* 3.88 0.0607 4 0.0872 
Corse 2.71 0.3019   

France Métropolitaine 3.93 0.0207 4 0.0303 
 

 
In Figure 8, the black solid line represents the coefficients of variations of our 
estimations versus the regional sample sizes. The blue dotted line represents the 
coefficients of variations of the estimations for the five regions with extra sample 
provided by INSEE. The small area estimation methodology that we developed clearly 
represents an alternative to the classical methodology based on the sample design 
given the fact that we obtained coefficients of variation half those provided by INSEE. 
 



 Hierarchical Bayesian Estimation of the Number of Visits to the Generalist  

 Romanian Journal of Economic Forecasting – 2/2008  87

  
Figure 8 

Coefficient of Variation versus Size of the Regional Sample 
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We have mentioned that when dealing with Markov chains apart the convergence one 
has to examine the length or the number of iterations to be used in computing the 
posterior quantities of interest. Clearly, the length of the chain will determine the 
precision with which the chain will approximate a posterior quantity but this is not the 
only factor. There is also the autocorrelation which characterizes a Markov chain by 
definition: larger the autocorrelation more iterations are needed. 
The precision of the approximation is called Monte Carlo Standard Error (MCSE) and 
the formulas when approximating a posterior mean and a posterior standard error are 
given below (G is the number of iterations used and 1ρ̂  is the Markov chain coefficient 
of autocorrelation of order 1): 

1

1

ˆˆ 1ˆMCSE( )
ˆ1G
ρσµ
ρ

+
=

−
, 

2
1
2
1

ˆˆ 1ˆMCSE( )
ˆ12G
ρσσ
ρ

+
=

−
(9) 

The above formulas are valid only when the Markov chain resembles an 
autoregressive process of order 1. They will be applied on the Markov chains { }g

iµ  

and{ }gµ . Thus, we verified that these Markov chains are AR(1) by plotting the partial 
autocorrelation functions and remarking that all the partial autocorrelation coefficients 
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starting from order 2 are negligible. We omit the plots (details can be found in Stefan 
M. (2006)). 

Table 3 

Estimations based on the sample with extension  
(39900 observations) 

Region 
*=region with 

extension 

ˆMCSE( )µ  

 

ˆMCSE( )σ  Quantile 
0.025 

Quantile 
0.5 

Quantile 
0.975 

Ile de France* 0.0006 0.0003 2.93 3.00 3.06 
Champagne-Ardenne* 0.0014 0.0008 4.25 4.42 4.58 

Picardie* 0.0013 0.0007 4.21 4.36 4.51 
Haute-Normandie 0.0025 0.0014 3.91 4.20 4.49 

Centre 0.0019 0.0011 3.80 4.01 4.24 
Basse-Normandie 0.0026 0.0014 4.03 4.32 4.61 

Bourgogne 0.0022 0.0012 3.45 3.68 3.93 
NordPasdeCalais* 0.0012 0.0007 4.99 5.13 5.27 

Loraine 0.0020 0.0011 4.31 4.53 4.76 
Alsace 0.0023 0.0013 3.92 4.17 4.44 

FrancheCompté 0.0024 0.0013 3.59 3.84 4.12 
PaysdelaLoire 0.0016 0.0009 3.83 4.01 4.19 

Bretagne 0.0018 0.0010 3.77 3.96 4.17 
PoitouCharente 0.0023 0.0013 4.17 4.44 4.72 

Aquitaine 0.0017 0.0009 4.10 4.29 4.50 
Midi-Pyrénées 0.0022 0.0012 4.14 4.37 4.62 

Limousin 0.0034 0.0019 4.42 4.80 5.18 
RhôneAlpes 0.0012 0.0006 3.14 3.27 3.39 

Auvergne 0.0028 0.0016 3.83 4.15 4.48 
Languedoc-Roussillon 0.0021 0.0012 4.01 4.23 4.48 

PACA* 0.0010 0.0006 3.76 3.88 4.00 
Corse 0.0057 0.0031 2.16 2.69 3.34 

FranceMétropolitaine 0.0003 0.0002 3.89 3.93 3.97 
 

Table 3 presents the Monte Carlo Standard Errors for the regional means estimations 
ˆiµ  and for theirs standard errors ˆiσ  computed using 6000 iterations together with 

estimations for 0.025, 0.5 and 0.975 quintiles with which one can construct confidence 
intervals. We can see that 6000 iterations are sufficient to approximate closely ˆiµ  

and ˆiσ . 
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Figure 9 

Coefficient of Variation versus Size of the Regional Sample 
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We repeated the analysis above for the sample without extension. In Figure 9, the 
solid line represent the coefficient of variation of the 22 estimations based on the 
sample without extension. The dotted line represents the coefficients of variation of 
the five estimations published by INSEE but computed from the sample with 
extension. We ignore if INSEE applied the design-based methodology to estimate the 
means of the regions which did not benefit from extra sample so, like in Figure 8, the 
blue line represents only five estimations. For the five regions with extra sample it is 
clear that with much less observations we obtained almost the same coefficients of 
variations. Moreover, Figure 9 seems to indicate that smaller the sample size better 
the small area methodology based estimations even if the latter are computed using 
fewer observations. 

6. Conclusions 
The objective of this paper was to construct a model on which to base the inference 
aimed at obtaining regional estimations for the number of visits to the generalist in the 
last year. We compared our estimations with the INSEE design-based estimations and 
found that our estimations are better even computed with one third fewer 
observations. 
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We considered one variable R02AM, which is a count variable. In the future, we shall 
construct models for other variables in FHS (count, binary or continuous). For other 
count variables the methodology will be essentially the same, but for binary variables 
the Poisson distribution will be replaced by Bernoulli or Binomial distributions. Over or 
under dispersion will have to be checked and accounted for properly. 
We reported here only regional estimations, but DREES was also interested in county 
level estimations. In model 3, we replaced the region effect 1iβ  by a county effect 1dβ  
which resulted in a model allowing the estimation at the county level and also at the 
region and national level. In a future paper we shall present these results. 

In deriving the formulas (1)-(4) we supposed that the cell sample sizes ijskn  are non-
random. In practice, this is generally not true. In the classical survey sampling theory 
computations using random ijskn  are not feasible, that is why under such 
circumstances analyses are conditional on the realized sample sizes. In a full 
hierarchical Bayesian context Oleson et al. (2007) proposed a model accounting for 
random sample sizes and also population sample sizes. Based on their paper, we 
shall extend our present work. 
Survey sampling is generally characterized by non-response and FHS is no exception. 
If not properly accounted for the non-response, it can lead to biased estimation. In our 
paper, we supposed that there is complete response. In fact, we removed the 1000 or 
so individuals that did not provide any value for R02AM and done our analysis on the 
remaining ones. Nandram et al. (2005) and the references therein constitute a large 
literature to see how the non-response in FHS can be properly dealt with in a full 
hierarchical Bayesian context. 
In testing the fit of model 3, we noticed a failure of the model which was the 
underestimation of the observed value 12 (overall the model performed well and we 
concluded that it can be used in estimating the regional means). We explained this 
either by wrong report by the interviewed individuals or the existence of a 
subpopulation visiting a generalist every month. 
A possible way to remedy this failure could be the use of Bayesian Nonparametric 
Statistics (BNS). Instead of putting a Gamma distribution on the parameters ν  one 
could consider the set of all the possible distributions of ν  and put a distribution on 
this space (for instance, the Dirichlet process). BNS offer a greater flexibility and adapt 
better to the data than the classical parametric Bayesian theory. 
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