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Abstract 

In the present study, we estimate the parameters of the Generalized Hyperbolic 
Distribution for a series of stock index returns including the Romanian BETC and 
indexes from other two Eastern European countries, Hungary and the Czech 
Republic. Using different econometric techniques, we investigate whether the 
estimated Generalized Hyperbolic Distribution is an appropriate approximation for the 
empirical distribution computed by non-parametric kernel econometric methods. The 
main finding of the analysis is that the probability density function of the estimated 
Generalized Hyperbolic Distribution represents a very close approximation (at least up 
to the 4th order term) of the empirical probability distribution function. 
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1. Introduction 

It is widely known that the assumption according to which the financial assets returns 
are normally distributed is not supported by empirical evidence. Cont (2001) 
concludes that the precise form of the tail of financial returns` distribution is difficult to 
determine, and that in order for a parametric distributional model to reproduce the 
properties of the empirical distribution it must have at least four parameters: a location 
parameter, a scale parameter, a parameter describing the decay of the tails and an 
asymmetry parameter. Therefore, it is important to develop theoretical models based 
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on other distribution classes, explaining asymmetry and heavy tail phenomena. In this 
sense, stable distributions and normal mixtures distributions have been used with 
considerable success. In recent years, more realistic stochastic models for price 
movements in financial markets have been developed by replacing the classical 
Brownian motion with Levy processes.  

The Generalized Hyperbolic Levy processes turned out to provide an excellent fit to 
observed market data. Many authors have successfully fitted Generalized Hyperbolic 
Distributions and, in particular, Normal Inverse Gaussian laws to returns in financial 
time series [Eberlein and Keller, 1995; Prause, 1997; Barndorff-Nielsen, 1997; 
Prause, 2000; Barndorff-Nielsen and Shephard, 2001, 2005; Schoutens, 2003].  

This has encouraged modeling the time dynamics of financial markets by stochastic 
processes using Generalized Hyperbolic or Normal Inverse Gaussian laws and 
associated Levy processes as building blocks [Rydberg, 1997; Bibby and Sorensen, 
1997; Rydberg, 1999; Prause, 1999; Raible, 2000; Barndorff-Nielsen and Shephard, 
2001, 2005; Barndorff-Nielsen, 2001; Eberlein, 2001; Schoutens, 2003; Cont and 
Tankov, 2004]. 
The class of Generalized Hyperbolic Distributions includes the standard hyperbolic 
distribution, the normal inverse Gaussian distribution, the scaled t-distribution and the 
variance-gamma distribution. The scaled t-distribution was used in finance by Praetz 
(1972) and Blattberg and Gonedes (1974), while Madan and Seneta (1990) 
introduced the variance-gamma distribution in the financial literature. The tail behavior 
of the Generalized Hyperbolic Distributions ranges from Gaussian tails via exponential 
tails to the t-distribution power tails. 
In the present study we estimate the parameters of the Generalized Hyperbolic 
Distribution for a series of stock index returns including the Romanian BETC and 
indices from other two Eastern European countries, Hungary and the Czech Republic. 
Using different econometric techniques, we investigate whether the estimated 
Generalized Hyperbolic Distribution is an appropriate approximation for the empirical 
distribution computed by non-parametric kernel methods. 
The paper is organized as follows: in the second section we present the main 
properties of the Generalized Hyperbolic Distribution, in the third section we present 
the data and the methodology employed for the analysis, in the fourth section we 
estimate econometrically the parameters of the Generalized Hyperbolic Distribution 
and compare the estimated distribution to the empirical one, and the final section 
includes conclusions. 

2. The Generalized Hyperbolic Distribution 

The Generalized Hyperbolic Distribution was introduced by Barndorff-Nielsen (1977). 
The generalized hyperbolic distribution has five parameters. If the random 

variable X follows a Generalized Hyperbolic Distribution one can write 

 � ������ ,,,,~ GHX  

where: �  is a location parameter, �  serves for scaling, �  determines the shape, �  

determines the skewness, and �  influences the kurtosis and characterizes the 

classification of the Generalized Hyperbolic Distributions. 
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The probability density function of the Generalized Hyperbolic Distribution is 
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and � ��,�B  denotes the modified Bessel function of the third kind with index� .  

There are two subclasses of the Generalized Hyperbolic Distribution that are 

extensively used in the finance theory. The first is obtained in case that 1��  and is 

called the (simple) Hyperbolic Distribution � ����� ,,,H : 

 � � � � � �� �2 2
22

2 2
; , , , exp

2 1
H x x x

B

� �
� � � � � � � � � �

�� � � �
� �
 �
 �
� �



� 
 � 
 � 


� 

 

The name of Hyperbolic Distribution derives from the fact that the log-pdf represents 
the equation of a hyperbola. In the case of the Gaussian distribution the log-pdf 
represents the equation of a parabola. 

In case that 2/1
��  one obtains the second important subclass, namely the 

Normal Inverse Gaussian Distribution � ����� ,,,NIG : 
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The NIG Distribution is the only subclass of the GH Distribution that is closed to 
convolutions, which is an appealing property for modeling financial returns. More 

specifically, if � �111 ,,,~ ����NIGX  and � �222 ,,,~ ����NIGX  then the 

distribution of the sum of the two random variables has also a NIG distribution 

� �211121 ,,,~ ������ ��� NIGXX . 

An important property is that the Generalized Hyperbolic Distribution is a normal 
variance-mean mixture where the mixing distribution is a generalized inverse 

Gaussian distribution � ���� ,,GIG , a class of distributions that generalizes the 

Gamma distribution. More precisely, if the conditional distribution of a random variable 

is given by � �222 ,~| ����� �NX  and the variance is distributed 

� ����� ,,~2 GIG , then � ������� ,,,,~ 22 �GHX . Therefore, the models 
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based on the Generalized Hyperbolic Distribution are a generalization of the normal 
mixture models with a discrete mixing distribution (Alexander and Lazar, 2006). 

In recent years, more realistic stochastic models for price movements in financial 
markets have been developed by replacing the classical Brownian motion with Levy 
processes (i.e., processes with stationary and independent increments). At present, 
the research regarding the modeling of financial assets is focused on the market 
model based on the Generalized Hyperbolic Distribution. The Generalized Hyperbolic 

process tL  is a Levy process such that � ������ ,,,,~1 GHL . It is known that a 

Levy process can be decomposed into a deterministic trend, a diffusion based on the 
Brownian motion, and a jump process. A characteristic of the Generalized Hyperbolic 
process refers to the fact that it has no diffusion component. Therefore, it is a “pure 
jump” process. 

Since the market model based on the exponential Levy motion is not complete, the 
risk neutral measure, which is used for pricing contingent claims, is not unique. An 
important issue in this context is the usage of the Esscher transform to determine a 
market neutral measure characterized by the fact that the price of the financial asset is 
an exponential Levy process under this measurement. An appealing property for 
financial modeling is that the Generalized Hyperbolic process is closed to the Esscher 

transform. More specifically, if tL  is a � ������ ,,,,GH  process  with respect to the 

market measure, after applying the Esscher transform on parameter � , it becomes a 

� ������� ,,,, �GH  process with respect to the risk neutral measure.  

Another important characteristic is that the Generalized Hyperbolic process can be 
considered a Brownian motion with drift that evolves according to an “operational 
time” instead of the physical time. More specifically, the Generalized Hyperbolic 

process can be written � � � �tt WtaL �� �� , where tW  is a Brownian motion, and the 

“operational time” � �t�  is an increasing Levy process (i.e. a subordinator). The 

concept of “operational time” was introduced into the financial literature by Praetz 
(1972). Clark (1973) and Epps (1973) linked the “operational time” to the trading 
volume. 

The properties presented above imply that the Generalized Hyperbolic process is an 
appealing process to model the financial returns. In the next sections of the study we 
analyze whether the econometrically estimated Generalized Hyperbolic Distribution is 
an appropriate approximation for the empirical distribution in case of stock index 
returns. 

3. Data and methodology 

The data used in the study consists of daily returns between January 1998 and 
September 2008 for ten stock indexes both from developed countries and emerging 
economies: USA (SP500), Japan (Nikkei 225), Hong Kong (Hang Seng), Germany 
(DAX), UK (FTSE100), France (CAC40), Spain (IBEX35), the Czech Republic (PX50), 
Hungary (BUX) and Romania (BETC). 
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The skewness and the kurtosis of the returns, together with the Kolmogorov-Smirnov 
and the Anderson-Darling normality test statistics are presented in Table 1.  

Table 1  
The distributional characteristics of the returns 

 

Index Skewness Kurtosis KS statistic AD statistic 

SP500 -0.2036 6.6866 0.0541 4.4626 

Nikkei 225 -0.1085 4.5880 0.0417 2.7928 

Hang Seng 0.1590 8.4344 0.0691 �  

DAX -0.1399 5.5697 0.0617 4.5234 

FTSE100 -0.0450 5.9987 0.0563 �  

CAC40 -0.0636 5.9566 0.0551 4.3339 

IBEX35 -0.1350 6.0346 0.0571 4.5400 

PX50 -0.0546 7.0230 0.0502 �  

BUX -0.4920 11.8510 0.0544 �  

BETC -0.3671 7.6766 0.0752 4.9500 

 

The returns are characterized by heavy tails, both the Kolmogorov-Smirnov test and 
the Anderson-Darling test rejecting the null hypothesis that the returns are normally 
distributed. 

The methodology for analyzing whether the Generalized Hyperbolic Distribution is an 
appropriate candidate for modeling stock index returns distribution consists of the 
following steps: 

1. econometrically estimating the parameters of the Generalized Hyperbolic 
Distribution by the Maximum Likelihood Estimation (MLE) method; 

2. computing the empirical distribution by non-parametric econometric 
techniques (the kernel density estimation methodology is presented in the 
Appendix); 

3. comparing the first four estimated centered moments (i.e. mean, variance, 
skewness, kurtosis) to the empirical ones;  

4. comparing the log-pdf of the estimated Generalized Hyperbolic Distribution 
and of the empirical distribution; 

5. analyzing the q-q plots; 
6. computing the distance between the empirical distribution and the estimated 

ones (the Generalized Hyperbolic Distribution and the benchmark Gaussian 
distribution) using the Kolmogorov-Smirnov and the Anderson-Darling 
statistics. 

The econometric methods and techniques employed in the study are implemented in 
Octave, a Matlab-type free software. 

4. Estimation results 

The estimated parameters of the Generalized Hyperbolic Distribution for the ten return 
series analyzed in this study are presented in Table 2. 
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Table 2 

The estimated parameters of the Generalized Hyperbolic Distribution 

 

Index   �   �  �   �   �   

SP500 0.2718 95.08 -4.646 0.00585 0.00071 

Nikkei 225 -1.0750 85.66 -4.790 0.02271 0.00089 

Hang Seng -0.0009 53.44 1.772 0.00755 -0.00029 

DAX -1.6180 49.13 -3.543 0.02376 0.00098 

FTSE100 -1.4432 60.37 -1.249 0.01675 0.00016 

CAC40 -1.2657 54.76 -1.499 0.01912 0.00041 

IBEX35 -0.6741 66.91 -3.161 0.01528 0.00078 

PX50 -1.1282 51.12 -1.021 0.01543 0.00052 

BUX -0.5087 35.27 -3.446 0.01007 0.00128 

BETC -1.0588 48.25 -6.022 0.01506 0.00191 

 

The empirical centered moments and those computed by means of the estimated 
Generalized Hyperbolic Distribution are presented in Table 3. 

Table 3 

The empirical and the estimated centered moments of the returns 

 

 mean variance skewness kurtosis 

empirical 0.000066 0.000140 -0.2036 6.6866 SP500 

estimated 0.000064 0.000140 -0.1996 6.6836 

empirical -0.000108 0.000209 -0.1085 4.5880 Nikkei 225 

estimated -0.000108 0.000209 -0.1085 4.5866 

empirical 0.000196 0.000276 0.1590 8.4344 Hang Seng 

estimated 0.000196 0.000276 0.1590 8.4348 

empirical 0.000118 0.000244 -0.1399 5.5697 DAX 

estimated 0.000118 0.000244 -0.1399 5.5702 

empirical -0.000021 0.000145 -0.0450 5.9987 FTSE100 

estimated -0.000021 0.000145 -0.0450 5.9993 

empirical 0.000103 0.000207 -0.0636 5.9566 CAC40 

estimated 0.000103 0.000207 -0.0636 5.9560 

empirical 0.000144 0.000202 -0.1350 6.0346 IBEX35 

estimated 0.000144 0.000202 -0.1350 6.0335 

empirical 0.000335 0.000178 -0.0546 7.0230 PX50 

estimated 0.000335 0.000178 -0.0546 7.0237 

empirical 0.000303 0.000286 -0.4920 11.8510 BUX 

estimated 0.000304 0.000286 -0.4921 11.8507 

empirical 0.000771 0.000192 -0.3671 7.6766 BETC 

estimated 0.000771 0.000192 -0.3671 7.6779 
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One may notice that the estimated values of the main statistical indicators used in the 
financial theory to assess the return distribution (i.e., mean, variance, skewness, 
kurtosis) are indistinguishable from the empirical values (i.e., the values of the 
indicators calculated from the data). 

Figure 1a shows the empirical probability distribution function (computed using non-
parametric kernel methods), the one of the fitted Gaussian distribution and the one of 
the estimated Generalized Hyperbolic Distribution in case of BETC returns. 

Figure 1. The distribution of BETC returns 

  

a. Probability distribution function b. Log-probability distribution function 

 

To better assess the tail behavior of BETC returns, figure 1b shows the logarithm of 
probability distribution functions. The tails of the Gaussian distribution decrease 
exponentially, but the tails of the estimated Generalized Hyperbolic Distribution evolve 
according to the power law of the empirical tails. 

Figure 2 depicts the quintile-quintile plot for the Gaussian distribution and for the 
estimated Generalized Hyperbolic Distribution in the case of BETC returns. 

Figure 2. Quintile–quintile plot for BETC returns 
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The Generalized Hyperbolic Distribution represents a good approximation for the left 
tail of the empirical distribution, especially of the quintiles usually employed for VaR 
estimations (0.5%, 1%, 2.5%, and 5%). 

Figure 3 presents the three probability distribution functions for the other nine stock 
index returns employed in this study. 

 

Figure 3. The probability distribution function of the returns 

  

a. SP500 b. Nikkei 225 c. Hang Seng 

  

d. DAX e. FTSE100 f. CAC40 

  
g. IBEX35 h. PX50 i. BUX 

 
 

One may notice in Figure 4 that the tails of the estimated Generalized Hyperbolic 
Distribution are a very good approximation for the evolution law of the empirical tails, 
both for index returns in developed countries and emerging economies. 
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Figure 4. The log-probability distribution function of the returns 

   
a. SP500 b. Nikkei 225 c. Hang Seng 

   
d. DAX e. FTSE100 f. CAC40 

   

g. IBEX35 h. PX50 i. BUX 

 
 

Table 4 presents the goodness-of-fit measures for the estimated Gaussian law and 
the estimated Generalized Hyperbolic Distribution. We employed two distance 
measures, the Kolmogorov-Smirnov distance and the Anderson-Darling distance. 
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Table 4 

Goodness-of-fit measures 

 

KS distance AD distance  Index 

normal GH normal GH 

SP500 0.0541 0.0183 4.4626 1.0154 

Nikkei 225 0.0417 0.0191 2.7928 0.9059 

Hang Seng 0.0691 0.0254 �  1.6787 

DAX 0.0617 0.0335 4.5234 1.7151 

FTSE100 0.0563 0.0206 �  1.2606 

CAC40 0.0551 0.0186 4.3339 1.0689 

IBEX35 0.0571 0.0226 4.5400 1.1457 

PX50 0.0502 0.0259 �  1.3274 

BUX 0.0544 0.0361 �  2.0417 

BETC 0.0752 0.0179 4.9500 0.9546 

 

As one may notice, irrespective of the measurement employed, the distance between 
the estimated Generalized Hyperbolic Distribution and the empirical distribution is 
lower than the distance between the normal distribution and the empirical one.  

5. Concluding remarks 

In the present study we estimated the parameters of the Generalized Hyperbolic 
Distribution for a series of stock index returns, including the Romanian BETC, and we 
investigated the goodness-of-fit of the estimated Generalized Hyperbolic Distribution 
to the empirical distribution. The empirical probability distribution function was 
estimated using non-parametric econometric methods. 

The main finding is that, in comparison with the normal distribution, the Generalized 
Hyperbolic Distribution is a far better approximation of the empirical distribution. We 
obtained that the values of the main statistical indicators used in the financial theory to 
assess the return distribution (i.e., mean, variance, skewness, kurtosis) computed by 
means of the estimated Generalized Hyperbolic Distribution are indistinguishable from 
the empirical values (i.e. the values of the indicators calculated from the data). 
Consequently, the probability density function of the estimated Generalized Hyperbolic 
Distribution represents an almost exact approximation (at least up to the 4

th
 order 

term) of the empirical probability distribution function.  

Also, according to the Kolmogorov-Smirnov and Anderson-Darling goodness-of-fit 
tests, the Generalized Hyperbolic Distribution is more appropriate to model the 
distribution of financial assets returns than the normal distribution.  

The tail behavior of the Generalized Hyperbolic Distribution implies that the hyperbolic 
market model may be successfully employed to improve financial derivatives pricing 
models and the estimation of market risk using VaR methodology.  

In order to quantify the market risk one has to take into consideration both the 
distribution of individual returns in the portfolio and the dependency between the 



Institute of Economic Forecasting

Romanian Journal of Economic Forecasting – 2/2009128 

assets. Consequently, further research will focus on modeling the dependency 
structure using copula functions.  
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Appendix 

The Kernel Density Estimation Methodology 

In comparison with parametric estimators where the estimator has a fixed functional 
structure and the parameters of this function are the only information one needs to 
know, non-parametric estimators have no fixed structure and depend upon all the data 
points to reach an estimate. The histogram is the simplest and the most frequently 
encountered non-parametric density estimator. However, the histogram is not smooth 
and depends on the end points and the width of the bins. One can alleviate these 
problems by using kernel density estimators.  

Kernel estimators smooth out the contribution of each observed data point over a local 

neighborhood of that point. The contribution of data point ix  to the density estimate at 

some point x  depends on how far apart ix  and x  are. The extent of this contribution 

is depending upon the shape of the kernel function adopted and the bandwidth. For a 

kernel function K  and a bandwidth h , the estimated kernel density at any point x  is 

given by (Rosenblatt, 1956; Parzen, 1962): 

 � � �
�

�
�
�


�
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�
n

i

i
h h

xxK
n

xf
1

1
 , 

where: the kernel function is symmetric and � � 1��
�

�


dxxK . 

Although nowadays non-parametric kernel density estimation is a standard technique 
in econometrics, there is still a big dispute on how to asses the quality of the estimate 
and which is the optimal choice of the bandwidth. The quality of a kernel estimate 

depends less on the shape of K  than on the value of its bandwidth h  (Silverman, 

1986). Small h  values lead to very spiky estimates, while larger values lead to over-

smoothing. In the present paper, we employed the Gaussian kernel with a bandwidth 
chosen according to the following “rule of thumb” (Silverman, 1986)  

 5
1

34.1
,min06.1 
��

�
�


�
��� nRh �  , 

where: n  is the sample size, 
2�  is the sample variance and R is the interquartile 

range (i.e. the difference between the third and first quartiles).


