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Abstract

A behavioral algorithm for optimization - Repetitive Stochastic Guesstimation (RSG) - 
is adapted, with complete proofs for its global convergence, for estimating parameters 
in a GARCH(1,1) model, based on a very small number of  observations. Estimators 
delivered by this algorithm for the example of a GARCH(1,1) model are dependent on 
some computational capabilities - namely number of iterations and replications 
performed. In this context, the Large Numbers Law might be applied in a completely 
different dimension. An alternative toward waiting until the historical data series are 
recorded (while the underling process may change several times) is to use computers 
for correctly extracting information from the most recent data. Given the existent 
computational support, it is also possible to determine estimates for the rates of 
convergence. As a result, potential benefits of this econometric technique can be 
gained in case of very young financial markets from Eastern European countries. 
Also, prediction and political decisions based on these estimations are properly 
grounded.
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1. Theoretical Results regarding Global 

Convergence for Evolutionary Algorithms  

Evolutionary Algorithms (EAs) - mentioned before in the context of the analysis of the 
emergent markets - are probabilistic search algorithms, which start with an initial 
population of likely problem solutions and then evolve towards better solutions. They 
are based on the mechanics of natural genetics and natural selection. A simple EA 
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requires the definition of the following components: 

 a solution representation; 

 a function verifying the fitness of solutions - called fitness function;

 some operators to carry on the evolution of a population of potential solutions from 
a generation to another. 

Some examples of distinctive EA’s are: Genetic Algorithms (GA), Simulated Annealing 
(SA) and Repetitive Stochastic Guesstimation (RSG). Since GA and SA have been 
studied for quite long time and they are also present in the economic literature [see 
(Goffe, Ferrier and Rogers, 1994),( Przechlewski and Strzala,1996)] we will briefly 
review the literature regarding results for global convergence. The intention here is to 
explain why it is not satisfactory to rely on these stochastic algorithms for optimization 
with the purpose of estimating parameters in some econometric models, when only a 
small sample size is available. This will clear the way in presenting the advantages of 
some ‘adapted to the problem in work’ versions of the RSG algorithm for the task of 
optimization, under non-linearity and small sample size assumptions. Theoretical 
proofs for the global convergence, indications about a correct choice of the initial 
values and some measure for the convergence rate will be indicated.

Simulated annealing and the genetic algorithm are stochastic relaxation search 
techniques suitable for application to a wide variety of combinatorial complexity non-
convex optimization problems [T.E. Davis, 1991]. Each produces a sequence of 
candidate solutions (or populations of candidate solutions) to the underlying 
optimization problem, and the purpose of both algorithms is to generate sequences 
biased toward solutions, which optimize the objective function. 

The appeal of SA is that it provides asymptotic convergence to a globally optimal 
solution. A substantially body of knowledge exists concerning the algorithm 
convergence behavior, based upon a Markov chain model. The essence of SA theory 
is the demonstration of (1) existence of a unique asymptotic probability distribution 
(stationary distribution) for the stationary Markov chain corresponding to every strictly 
positive constant value of an algorithm control parameter (absolute temperature), (2) 
existence of a stationary distribution limit as the control parameter approaches zero, 
(3) the desired behavior of the stationary distribution limit, i.e., optimal solution with 
probability one, and finally (4) sufficient conditions on the algorithm control parameter 
to ensure that the non-stationary algorithm achieves the limiting distribution. In the 
most general form SA theory is presented in [Haario, Saksman 1991]. 

Attempting to copy this theory onto GA was only partially successful, resulting in 
complicated - and rather intractable - definitions for the genetic operators, and 
questionable convergence proofs. That occurs because GA does not rely on the 
Gibbs distribution, the magic key to global convergence engaged by SA. Instead, GA 
took advantage of the possibility of using more than one individual per iteration, 
achieving simple homogeneous Markov chain convergence for the elitist algorithm 
[Rudolph, 1996]. Summing up, most of the SA and GA convergence results are for 
general fitness function and infinite time convergence, which is of academic use only. 
Practical relevance could be achieved by analyzing particular convergence rates of 
particular problems and algorithms, but this has not been done yet, except a few 
(simple) cases.  
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Repetitive Stochastic Guesstimation (RSG) is a probabilistic algorithm introduced in 
[Charemza, 2002] which mimics the usual guessing of the parameters involved in a 
complex, generally large, empirically oriented macroeconomic model. The main 
intention of this paper is to show how an empirical algorithm like RSG can be adjusted 
for estimating parameters in a non-linear model based on a minimal set of 
observations. This adjustment is possible to be performed in such a way that proofs 
for global convergence should not rely on the data set, but on the number of iterations 
in the algorithm. Building on the idea in [Agapie, 20091] a formal representation of the 
RSG for estimating parameters in a GARCH (1,1) model will be presented. Sufficient 
conditions for determining the ‘true parameters’ values in the model will be indicated. 
Before all these, a very brief review of this algorithm is required. 

First, three points should be mentioned where RSG differs from other evolutionary 
algorithms:

 At the initial stage, by making use of the prior beliefs concerning the parameters 
to be guessed (according to the economist’s expertise and intuition); 

 By successively restricting the search space from one iteration to another, 
providing an asymptotic convergence of the algorithm to some extreme point; 

 By using two objective functions, instead of one. 

In terms of their learning and convergence ability, the difference between RSG and 
GA and SA is that the last ones, even if able to estimate some parameters based on a 
very few number of observations, rely on infinite time convergence results only.

The RSG procedure is recalled, as presented in [Agapie,2009]. 

Procedure Repetitive Stochastic Guesstimation  

1. Set the iteration index to zero: i=0 

2. Choose some initial values and intervals for the parameters to be optimized 

3. Choose/compute the initial value for the learning rate l0

4. Randomly generate (guess) a new candidate solution, inside the current intervals 

5. Compare the candidate solution vs. the current one-w.r.t. both criterions-and 
decide: accept or reject 

6. If accepted, it becomes the current solution; otherwise, keep the old one. 

7. Repeat 4-6 several times, until a better solution is obtained 

8. i=i+1, decrease the learning rate, decrease the intervals’ lengths and go to 4 

9. Repeat 8, until STOP 

2.  Adjusting the RSG algorithm for achieving 

global convergence on the problem of estimating 

a GARCH (1,1) model 

The next definitions and theorems are needed as a base for the coming formalization. 

Definition 1.  Let ( , , P) be a probability space and 0 1 …  be an increasing 

family of  sub-algebras of  and let = ( t t) . A stochastic process (Xt) that is 
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t-measurable is termed supermartingale if E( Xt  )  and E( Xt+1/ t )  Xt for each 
positive integer t.

Condition (Xt) is t-measurable is fulfilled for example-and this is the case in this 

paper-if we consider for each t, t= {Xi / 0 i t }, the smallest -algebra that makes 
all random variables up to Xt measurable. 

Definition 2. Let f: R
n
R and a R. We denote the lower level set of f( )at level a by 

L(a)={x R
n
/ f(x) a }. 

Definition 3 Let X be a random variable and (Xn) a sequence of random variables 

defined on a probability space ( , , P). Then (Xn) is said to converge completely to X

if for any >0

n

i

i
n

XXP
1

lim . (Xn) is said to converge in mean to X if 

0lim XXE n
n

.

According to [Neveu, 1975] , non-negative supermartingales (i.e., satisfying in addition 

Xt 0 for all t) have the following remarkable property. 

Theorem 1. Let (Xt)t 0 be a non-negative supermartingale. Then Xt X  almost 

sure.

Another important property of non-negative supermartingale follows from [Rudolph, 
1997].

Theorem 2. Let (Xt)t 0 be a non-negative supermartingale satisfying E(Xt+1/ t) ct Xt

almost sure for all t 0 with ct 0 and t=1.. ( k=0..t-1ck) . Then Xt 0 in mean and 

completely.

The next concept was introduced in [Rudloph,1997] for characterizing real valued 
objective functions. 

Derived from the previous two theorems, in [Agapie,2009] was proved the following 
result. 

Proposition 1. Let (Ci)i=1..niter be the sequence of coefficients generated by RSG at 
successive iterations and assume that OF1

i
 = OF1

i
 (Ci ) has bounded lower level sets 

and let OF1* define the overall minimal value. Then the sequence Xt=OF1
i
 –OF1*

defines a non-negative uniformly integrable supermartingale.
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Remark:  If in Theorem 2 one takes ci=(1-li)
2
 (with li = sqrt(1-(i-1)/niter)) and defines 

replications in the RSG algorithm such that E(OF1
i+1

/ i )  ci OF1
i
 then by Theorem2 

and Proposition1 it comes that OF1
i

OF1* when i  . 

 Consider )1,0(,,,),0( 1111 IIDNnnnhynhyhNy tttttttttt  (1) 

with 11

2

110 ttt hyh            and

110 ,,  >0 (2) 

For every iteration i (Step 8 in previous Procedure), niteri ,1 , assume that 

replications are performed indexed by r, nreplr ,1 . Step 4 in previous Procedure

can be formalized as follows: for every iteration i and replication r, the current values 
for the coefficients are computed according to: 

ri

ii

r ull o

00

1

;0      (3) 

ri

ii

r ull 1

01

1

;1         (4) 

ri

ii

r ull 1

01

1

;1         (5) 

with ru being a realization at the replication r of a uniformly distributed random 

variable u in the (-0.5; 0.5) interval, li a real non-negative number decreasing to zero 

when i niter and niter  (usually li =
niter

i 1
1 ). Also, 

i

0 ,
i

1 and
i

1  in (3)-(5) 

are the current values of the parameters at iteration i while 0

0l , 1

0l , 1

0l are the initial 

interval lengths around the correspondent parameters. 

Adapting RSG for estimating a GARCH (1,1) model will consist in dropping the 

assumption about the uniform distribution of the random variable u in the (-0.5, 0.5) 
interval and determine instead sufficient conditions regarding the distribution of the 

random variable u, the starting points 
0

0 ,
0

1 ,
0

1  as well as for corresponding 

intervals length around these values for achieving global convergence when number 

of iterations niter .

Multiplying equation (2) by 
2

tn  we get: 

2

1

2

11

22

11

2

0

2

t

t

ttttt
n

n
ynyny  (6) 

At iteration i+1 the objective function 
1iOF is computed according to: 
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 (7) 

1

0

i
,

1

1

i
,

1

1

i
 in (7) are coefficients at a certain replication r for which the minimum 

was achieved and the correspondent ur’ in (3)-(5) will be simply denoted with u.

Even if the original version of RSG is considering two objective functions-since it can 
be checked that the weighted objective function asymptotically converges (when 
number of iterations goes to infinity) to the un-weighted one (see [Agapie, 20091])-the 
following considerations will rely only on the objective function indicated in (7). 

Assuming that it would be possible to write down such an objective function, by 
knowing the numerical values corresponding to the standard normal variables 

entering ty and
1ty ,-this is tn  and 1tn -its overall minimal value (denoted by 

*OF )

is equal to zero and it is achieved in the case of a perfect guess for the parameters 

110 ,, .

The sequence niteri

iOF ,1   can be regarded as a stochastic process indexed by 

iterations, assumed to be performed an infinite time (niter ). Global convergence of 

the sequence niteri

iOF ,1   is achieved by deriving sufficient conditions for i

iOF

to be a supermartingale (see the Definition 1 ) satisfying 

i

ii

i OFcOFE /1
 (8) 

 with 
1i

1

0

i

k kc  (9) 

(take t=i, Xt=OFi, X=OF* in Theorems 1,2 and Proposition1 above ) and i the smallest 

-algebra that makes all random variables up to 
iOF measurable.

Perhaps it is worth noticing that by “global convergence” is meant the convergence in 
mean and completely (see for convenience the definitions in the Appendix) of the 

sequence niteri

iOF ,1  to its overall minimal value OF*.

Assuming that 
il 00

0 ,
il 10

1 ,
il 10

1  in (3)-(5), then (7) can be written in the 

equivalent form: 

2
21 1 tii

ii yululOFOF      (10) 

Then
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242221 121/ uEyluluEylOFulEOFOFE tiiti

i

i

i

i

i
 (11)          

Next step is to determine the random variable u in (11) such that inequality (8) and (9) 
are satisfied. 

According to [Agapie, 2009], this will lead to the conclusion that 
iOF  converges in 

mean and completely to zero, when number of iterations i is increasing to infinity. 

The two sufficient conditions for (8) and (11) to hold together are: 

01
2

ii culE  (12) 

and

iii culEuluE
22 11  (13) 

Conditions (12) and (13) uniquely determine ic  as being equal to 
2

1 ulE i  if and 

only if the random variable u is chosen in such a way that uluE i1 =0. 

If the following notations are to be used, namely uEa  and bVarb  the a 

sufficient condition for u to satisfy (12) and (13) is

022 abla i  (14) 

and, therefore alalbalulEc iiiii 1211 2222
                     (15) 

Values of ic are also an indicator of the rate of convergence from iteration i to iteration 

i+1.As a consequence, a choice of uEa  closer to 

il

1
 and negative will assure 

that (14) is fulfilled and the rate of convergence ic (besides the fact it satisfies 

condition (9) ) is increasing when i .

There is no unique determination for a random variable u such as (8), (9), (14) and 
(15) are satisfied. One, for example, could sample u from a normal N(a,b) distribution 

with

il
a

2

1
,

ii

i

ll

ala
b

2

1
2

and get an algorithm decreasing exponentially 

to its overall minimal value at a rate of 
2

1
. It is also worth noting that parameters a

and b can also be chosen such that the nonnegative condition for the parameters 

110 ,, is assured. 

For completing this discussion, previous calculations show that if one would know 

precisely the realization of a standard normal entering in ty  (this is tn ), then one 

could write the previous ‘perfect’ objective function 
1iOF in (7), converging to the 

overall minimal value OF*-zero. This leads to an asymptotically convergence to the 
‘true’ coefficients of the model. 
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 To get closer to this desirable case, the practitioner can sample T (T ) times from 

the ‘ideal’ distribution of OF*, simply computing for every mc {1,…T} and for a 

realization mctn ;  of a standard normal 
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t

i

rmctt

i

rmct

i

rt
nreplr

i

mc

n

n
ynyny

n

n
ynynyOF

 (16) 

finds its correspondent minimal value, say 
*

mcOF  and then consider, as the best 

estimates for the coefficients in the GARCH model, those corresponding to the 

minimal value in the row 
TmcmcOF
,1

* )( .  Of course, all the ‘partial’ overall minimal 

should be computed using the same initial conditions in the RSG algorithm. 

3. Conclusions and Further Research Directions 

Economists attempting to build econometric or forecasting models are frequently 
restricted due to data scarcity in terms of short time series of data and also of 
parameter non-constancy and under specification. In this case, a realistic alternative is 
often to guess rather than to estimate parameters of such models.

An algorithm of repetitive guessing (drawing) parameters from iteratively changing 
distributions, for minimizing the squares of ex post predictions errors, weighted by 
penalty weights and subject to a learning process, has recently been introduced (see 
Charemza, 2002). Despite obvious advantages, especially when applied to 
undersized empirical models with a large number of parameters, applications of 
Repetitive Stochastic Guesstimation (RSG) have been, so far, limited. This has 
presumably been caused by the lack of rigorous proof of its convergence. Such proof 
for a class of linear models, both identifiable (in the economic sense) and not, is 
provided in Agapie, Ad (2009). Another proof of convergence for the parameters in a 
GARCH (1,1) model is provided in this paper. Both proofs for convergence show that 
an adjustment for estimating parameters in a model (linear or nonlinear) based on a 
minimal set of observations is possible to be performed in such a way that proofs for 
global convergence should not rely on the data set but on the number of iterations of 
the algorithm. By being dependent on some computational capabilities - namely, 
number of iterations and replications performed - the Large Numbers Law might be 
applied in a different dimension. An alternative towards waiting until historical data 
series are recorded (while the underlying process may change several times) - for 
estimating a regression line or a GARCH(1,1) model, is to use computers, RSG, and 
experts for correctly extracting information from the most recent data. 
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It is worth noticing that the way this algorithm works resembles the Bayesian 
framework. The difference is that, instead of expressing priors on coefficients in terms 
of distribution functions, only initial point values are requested for start. Every iteration, 
the distributions over coefficients are determined according to the same sufficient 
conditions for the global convergence. 

There is a need to develop careful Monte Carlo experiments to test the rates of 
convergence for the RSG parameters’ estimators, design experiments to test the 
dependence of the final estimations on the starting points and also on the initial 
interval considered. These experiments will be first done on a minimal set of 
observations (two observations) and then, the dependence of the RSG’s estimators 
on the sample size will be considered empirically. This dependence was not 
considered from a theoretical point of view, yet that is necessary in order to compare 
this technique with the traditional methods of estimating parameters in GARCH 
models (maximum likelihood methods).
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