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Abstract 

This paper investigates the relative performance of the asymmetric normal mixture 
generalized autoregressive conditional heteroskedasticity (NM-GARCH) and the 
benchmarked GARCH models with the daily stock market returns of the 
Johannesburg Stock Exchange, South Africa. The predictive performance of the NM-
GARCH model is compared against a set of the GARCH models with the normal, the 
Student-t, and the skewed Student-t distributions. The empirical results show that the 
NM-GARCH outperforms all other competing models according to Christoffersen’s 
(1998) tail-loss and White’s (2000) reality check tests. This evidence shows that 
mixture of errors improves the predictive performance of volatility models. 
 
Keywords: volatility forecasting, value-at-risk, asymmetric normal mixture GARCH, 

reality check.    
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1. Introduction 

Value-at-risk (VaR) became the standard benchmark for measuring risks in volatility 
forecasting. The VaR become popular in the 1990s, following well-known disasters 
such as Orange Country, Barings, Metallgesellschaft, Dawia, and many others. The 
global financial crises that began in 2007s have renewed concerns about risk 
forecasting. The VaR is usually estimated with Bollerslev’s (1986) generalized 
autoregressive conditional heteroskedasticity (GARCH) model. During the last 25 
years, different GARCH-based models that consider asymmetry, long memory, 
structural breaks, and regime switching behaviors in the data have been developed. 
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Among others, the exponential GARCH (Nelson, 1991), the GJR-GARCH (Glosten et 
al., 1993), and the fractionally integrated GARCH (Baillie et al., 1996; Chung, 1999) 
are the most well-known extensions of the GARCH models that used for volatility 
forecasting. Haas et al. (2004) and Alexander and Lazar (2003) have proposed the 
normal mixture GARCH which is a combined model and the errors have a normal 
mixture conditional distribution. Alexander and Lazar (2004, 2006) investigate 
asymmetric NM-GARCH model where the error term follows a normal mixture 
distribution. This model captures the persistent asymmetry according to the different 
means in conditional normal mixture distributions and the dynamic asymmetry 
according to the skewed GARCH process. The normal mixture GARCH models are 
flexible in single variance process and have time-varying conditional higher moments 
compare to normal GARCH model. Alexander and Lazar (2006)  apply the asymmetric 
normal mixture GARCH model to the volatility of the major exchange rates. They find 
that the asymmetric normal mixture GARCH model should be used instead of the 
Student-t GARCH model in order to capture the leptokurtosis in the financial data. 
Alexander and Lazar (2009) introduce the two-state asymmetric normal mixture 
GARCH model and apply this model to European equity indices. They find that the 
two-state asymmetric normal mixture GARCH model is the best one compare to 
fifteen conventional GARCH models. Cifter and Ozun (2007) and Drakos et al. (2010) 
test the predictive performance of the asymmetric normal mixture GARCH model. 
They find that none of the models including the normal mixture GARCH is appropriate 
for both long and short trading positions. Moreover, they state that the asymmetric 
normal mixture GARCH model increases the predictive performance for Turkish and 
Greek equity markets.   
Forecasting the prices and the volatility of emerging markets is a critical task for the 
local and international investors. The Johannesburg Stock Exchange (JSE) is the 
largest and the most developed emerging market in Africa (Hearn and Piesse, 2009). 
At the end of December, 2010, the market capitalization of the JSE is $925 billion and 
this largest African stock market holds a treasured position as one of the top 20 
exchanges in the World2. Besides, the JSE constitute a reform process in late 1995 to 
allow greater foreign investment in South Africa (McMillan and Thupayagale, 2008). 
The volatility of the South African stock market has been forecasted with different 
GARCH models with asymmetric, long memory, and structural break effects. The 
GARCH-based models actually contradict weak-form efficiency theory. According to 
weak-form efficiency, future prices cannot be predicted by analyzing the previous 
prices. Therefore, if a market is weak-form efficient, the GARCH models will be 
inappropriate for volatility forecasting. An early study of Roux and Gilbertson (1978) 
show that the JSE is not weak-form efficient over the periods 1971-1976. Appiah-Kusi 
and Menyah (2003) use the EGARCH-M model to test the weak-form efficiency of 
African stock markets. They find that the South African stock market is not weak-form 
efficient similar to Roux and Gilbertson’s (1978) findings. Jefferis and Smith (2005) 
test the efficiency of African stock markets using a GARCH approach with time-
varying parameters. In contrast to previous studies, they find that the JSE market is 
weak-form efficient, which shows that the JSE market has neither a long nor a short 
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memory. McMillan and Thupayagale (2008) examine long memory in the JSE all-
share returns using the ARFIMA-FIGARCH model to determine the efficiency of the 
market. They find that the behavior of volatility in South Africa could be efficiently 
forecasted if long memory is considered, which might result in an improvement in 
volatility forecasts. Jefferis and Thupayagale (2008) also examine long memory effect 
in the South African stock market using the ARFIMA-FIGARCH model and find that 
using past information improves the predictability of future volatility. Some studies 
estimate the volatility in the JSE market with structural breaks and combined GARCH 
models. Babikir et al. (2010) investigate the structural breaks in forecasting stock 
return for the JSE. They find that structural breaks are empirically relevant to stock 
return volatility in the South African stock market. Seymour and Polakow (2003) 
estimate the value-at-risk models with a combined GARCH model approach and 
extreme value theory model for the portfolio of the South African stocks. They find that 
the combined GARCH-based model provide significantly better results than the 
normal GARCH models.  
Backtesting of volatility models is as important as the choice of volatility models. The 
best volatility forecasting model can be selected with different type of backtesting 
procedures. The predictive performances of GARCH-based models are compared 
with various backtesting procedures. In an earlier study, Chong et al. (1999) use 
goodness-of-fit statistics such as mean squared error. Wong et al. (2003) compare the 
predictive performance of ARCH- and GARCH-based models with Basel Committee 
criteria as the number of vialotions. They find that using ARCH- and GARCH-based 
models in VaR estimation is not a reliable way to manage a bank’s market risk. 
Christoffersen (1998) developed tail loss test and Cifter and Ozun (2007), Chen et al. 
(2009), Siu and Okunev (2009), Dunis et al. (2010), Drakos et al. (2010), and Cifter 
(2011) use this test to compare the performance of GARCH-based models. Since tail 
loss test does not consider cumulative failure probability, Gonzales-Rivera et al. 
(2004), Hansen and Lunde (2005), Souza et al. (2005), Marcucci (2005), Bao et al. 
(2006), and Laurent and Violante (2011) use White’s reality checks. Among others, 
Cifter and Ozun (2007), Alexander and Lazar (2003, 2004, 2006, 2009), and Drakos 
et al. (2010) use the NM-GARCH-based models and compares the predictive 
performance of volatility models with the RMSE, number of vialotions, Kupiec’s (1995) 
and Christoffersen’s (1998) tail loss tests. This paper differs from previous studies in 
that it uses White’s (2000) reality check to compare the predictive performance of the 
NM-GARCH model against benchmarked GARCH-based models. The NM-GARCH 
model has an advantage compare to other GARCH-based models that it can capture 
time variation in both conditional skewness and kurtosis by a mixture of normal 
distribution. The empirical results show that the NM-GARCH outperforms all other 
competing models according to the tail-loss and the reality check tests. Besides, the 
asymmetric normal mixture GARCH with skewed student-t distribution is found to be 
the most accurate model and this also shows that selecting the distribution is one of 
the major factors in the performance of volatility models. This evidence shows that 
mixture of distributions improves the predictive performance of volatility models.  
The remainder of the paper is organized as follows. Section 2 provides the 
asymmetric normal mixture GARCH and the backtesting methodologies. Section 3 
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describes the data on daily index returns. Section 4 presents empirical results for the 
forecasting performance of the models and the final section concludes the study. 

2. Methodology  

The VaR measures the worst expected loss over a given horizon at a given 
confidence level (Jorion, 2001, p.22). The VaR is estimated with conditional variance 
of stock returns. Let tp   denotes stock prices and tr  denotes its corresponding rate 
of return: 
 )]log()[log( 1−−= ttt ppr                    (1) 
in which: t denotes daily closing observations. The return series can be converted with 
the following conditional mean equation: 
  ttr εµ += ,        ttt z σε =                                (2) 

in which:µ  is the conditional mean, tz  is independent and identically distributed with 

)1,0(N , and 2
tσ  is the conditional variance. 2

tσ  can be estimated with GARCH-
based models. In this paper, the VaR is estimated with the normal mixture GARCH 
and the predictive performance of this model is bencmarked against the Riskmetrics- 
EWMA, GARCH (1,1), asymmetric GARCH, and the fractionally integrated GARCH 
models. The Riskmetrics-EWMA is the simplest volatility forecasting model developed 
by J.P.Morgan. This model can be defined as a special case of the GARCH model, 
where the ARCH parameter λα −=1 , the GARCH parameter λβ = , and the 

constant term 00 =α . The Riskmetrics-EWMA variance model can be written as (J. 
P. Morgan, 1994): 

tttr εµ += , 

ttt zσε = , 

 2
1

2
1

2 )1( −− −+= ttt ελλσσ  (3) 

in which, the conditional variance 2)( tttrVar σψ =  is non-constant, and λ  is the 

decay factor that determines relative weights. λ  is usually set to 0.94 for daily data 
(J.P.Morgan, 1996). The higher the decay factor, the longer the previous returns. In 
this paper, λ  is set to 0.94 since daily stock returns is used.  
The GARCH model is proposed by Bollerslev (1986) by extending Engle’s (1982) 
ARCH model for time varying volatility in a time series. The GARCH model can be 
shown as: 
 2

11
2

110
2

−− ++= ttt σβεαασ  (4)                  

Where: 0α  is the constant term, ),(N~ ttt σψε − 01  as (.)N  is a probability density 

function with mean (0) and conditional variance ( 2
tσ ), and tσ  is conditional volatility of 

tε  with the conditions of  1>βα,  and 10 >α .  
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The asymmetric GARCH model is developed by Engle (1990) to capture asymmetric 
volatility response in the GARCH process. Glosten et al. (1993) proposed the GRJ-
GARCH(1,1) model, in which asymmetric response weight is differentiated for 
negative and positive shocks. The GJR-GARCH (1,1) model can be estimated as 
(Glosten et al., 1993): 

 2
111

2
1

2
110

2 1 −−−− +++= ttttt I σβεγεαασ      (5) 

Where: 11 =−tI , if 11 <−tε  and 01 =−tI , otherwise. Therefore, the impact of 2
1−tε  on 

2
tσ  depends on the sign of tε . The positive news affects 1α , while the negative 

news affects 1α  and 1γ . The normal GARCH models consider only short-term 
volatility therefore these models are inadequate for long-range volatility dependence. 
Baillie et al. (1996) propose the fractionally integrated GARCH model that considers 
the long-memory properties for volatility estimation. The FIGARCH model is defined 
as: 

 [ ] 22
0

2 )(1)1)(( ttt
d LLL σεβαεφ −−+=−       (6) 

d  determines the fractional order parameter. If 0=d , this model become a normal 
GARCH process, and if 1=d , this model become an integrated GARCH process. For 

10 << d , the conditional variance exhibits long memory properties. The conditional 
variance of the FIGARCH model can be estimated as (Baillie et al., 1996): 

[ ] [ ]{ } 211
0

2 )1)(()(11)(1 t
d

t LLLL εφββασ −−−+−+= −−                     
(7) 
Chung (1999) proposed a new FIGARCH model since Baillie et al.’s (1996) model 
may have specification problem on 0α .  Chung (1999) defined the conditional 
variance of the FIGARCH model as: 

[ ]{ } )()1)((1)(1 2
1

22
1

2
−− −−−−+= tttt dLLL σεφβσσ                                            (8) 

In this paper, the FIGARCH model is estimated with Chung’s (1999) suggestion. 
Following Engel (1990), Nelson (1991), and Glosten et al. (1993), many alternative 
GARCH models with leverage effects are developed. Nevertheless, none of the 
conventional GARCH models can capture time variation in conditional skewness or 
kurtosis. Hass et al. (2004) and Alexander and Lazar (2003) have introduced the 
normal mixture GARCH model, in which errors have a normal mixture conditional 
distribution. Alexander and Lazar (2004, 2006, 2009) extended the normal mixture 
GARCH to the asymmetric normal mixture GARCH to capture the lasting asymmetry 
according to the different means in conditional normal mixture distributions and the 
dynamic asymmetry according to the skewed GARCH process. The asymmetric 
normal mixture GARCH model has mean (µ ) and K conditional variance 

components. For simplicity, the conditional mean equation is shown as tty ε=  

assuming that there are no explanatory variables. The error term tε  that captures the 
market shock is assumed to have a conditional normal mixture. The K normal density 
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functions with different means and variances is given as: 

 ∑
=

=
K

i
ip

1
,1     ∑

=

=
K

i
iip

1
1µ   

 ),,......,,,.....,,,.....,(~ 22
1111 KttKKtt ppNM σσµµψε −       (9) 

and the conditional density of the error term is derived as: 

 ∑
=

=
K

i
iit p

1

)( ϕεη  (10) 

in which: ϕ  represents normal density functions with different means iµ  and different 

time-varying variances 2
itσ  for i = 1,…, K.. The NM-GARCH (1,1) is estimated as 

(Alexander and Lazar, 2009): 
 2

1
2

10
2

−− ++= ititiit σβεαασ       for i=1,....,K;                 (11) 
The asymmetric normal mixture GARCH (NM-GJR GARCH) based on Glosten et al, 
(1993) is given as (Alexander and Lazar, 2009): 

 2
1

2
11

2
10

2
−−

−
−− +−++= itittitiit d σβελεαασ   for i=1,....,K; (12) 

Where: 1=−
td  if 0<ε t , and 0 otherwise. Besides, the parameters are estimated as 

0>α i  and 01 ≥β> i . Alexander and Lazar (2004) showed that the condition of 
0<β+α ii  is not required in every case. For both models, the overall conditional 

variance is defined as: 

 ∑∑
==

+=
K

i
ii

K

i
itit pp

1

2

1

22 µσσ  (13) 

This paper applies the NM-GJR GARCH model for normal mixture volatility estimation to 
capture asymmetric effects. Following Alexander and Lazar (2006), the NM-GARCH 
model where the errors have normal mixture conditional distributions with GARCH 
variance components is estimated. The NM-GARCH model can be estimated with 
Gaussian (Bollerslev, 1986), student-t (Bollerslev, 1987), and skewed Student-t 
(Fernandez and Steel, 1998) distributions. In this paper, the asymmetric normal mixture 
GARCH and other GARCH models are estimated with these three distributions. 
In this study, out-of-sample forecasting performance of the conditional volatility 
models are evaluated with the root mean squared error (RMSE), Christoffersen’s 
(1998) conditional coverage test, and White’s (2000) reality check. The main 
drawback of number of violations and RMSE approachs is that they consider neither 
failure rate nor cumulative failure probability. On the other hand, Christoffersen’s 
(1998) test is used as failure probability and White’s (200) test is used for multiple 
forecast comparision.  Christoffersen’s (1998) conditional coverage and White’s 
(2000) reality check have superior forecasting performance for the one-day-ahead 
VaR estimation.  
Christoffersen (1998) proposed the likelihood ratio (LR) test of conditional coverage 
that shows whether the VaR models have a correct coverage at each point in time. 
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The conditional coverage test consists of two tests, for unconditional coverage and 
independence. The LR test of conditional coverage can be estimated as:  

 { }[ ]1010 )/()/1(/)1(2 11
TTTT

cc TTTTppInLR −−−=  (14) 

{ }[ ] 2
2010111 ~ˆ)ˆ1/)/()/1(2 010010 χππ TTTT TTTTIn −−−  

Where: T0 and T1  are the number of 0s and 1s in the sample, p is the VaR’s 
theoretical coverage rate α , T is the total number of observations, and 

)/(ˆ 01000101 TTT +=π . The first part of the test is the unconditional coverage test 
(LRuc), and the second part is the independence (LRind) test. The drawback of 
Christoffersen’s (1998) conditional coverage test is that the predictive performance of 
other models is not compared with the tested model. On the other hand, White’s 
(2000) reality check (RC) compares the predictive performance of each of the model 
against the alternative models. The RC test is the first and the most important superior 
predictive ability (SPA) test3. White’s reality check compares 1+l forecasting models 
and the null hypothesis is that none of the models lk ,....,1= outperforms the 
benchmank model (model 0, k0). In this paper, 12=l  plus a benchmark model is 
considered. Assuming that the loss from the conditional volatility model is defined as 

)ˆ( 22
ttt LL σσ −= , where 2ˆ tσ  is the realized volatility and 2

tσ  is the predicted 
volatility, the performance of k models relative to the bechmarked model can be 
defined as 
 ,,0,, ktttk LLf −=  (15) 

Where: 0,tL  is the loss from the benchmarked model, and and ktL ,  is the loss from 
the alternative models. In this paper, the loss function is estimated with the mean 

squared error, ∑
+

+=

−=
nT

Tt
ttn

MSE
1

22 )ˆ(1 σσ , with 20 days rolling window ( 20=n )4. 

The null hypothesis is that none of the models is better than the benchmarked model, 
and formally can be shown as 
 .0)(max *

0
,....,1

≤=
=

kfEH
lk

 (16) 

Where: )f(E *
k  is the expected relative performance of model k relative to the 

benchmark model. The alternative hypothesis ( 1H ) is that the best model is superior 

to the benckmarked model. We can estimate )f(E *
k  with the sample average 

t,k
n
tn,k fnf ∑ =

−= 1
1  and obtain the bootsrap RC test statistics as 

 nkn fnT
lk

,
2/1

,....,1

max
=

=  (17) 

                                                           
3  Marcucci (2005) reported that testing for the SPA is certainly more relevant than testing for 

equal predictive ability (EPA), such as the MSE tests.   
4 20 days represent one month rolling window.  
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If we reject the null hypothesis, this shows that at least one model is significantly 
better than the benchmark model. Following White (2000), the bootsrap RC is 
implemented5 with the stationary bootsrap of Politis and Romano (1994). This paper 
estimates the VaR value at 1% confidence level in line with Basel II requirements. The 
VaR forecasting performances are compared to the number of violations, the root 
mean squared error (RMSE), the LR and the RC tests for the left tail.    

3. Data  

The data consists of closing prices of the Johannesburg Stock Exchange (JSE) all-
share index. The series is from Bloomberg, sampled at a daily frequency. The dataset 
covers 2283 daily observations from February 7, 2002 to March 11, 20116. The Daily 
JSE index level observations, log returns, histogram and autocorrelation graphs are 
shown in Fig. 2. From these figures, it can be inferred that there are extreme 
observations in the JSE index and that according to the autocorrelation graph, the 
returns are not correlated.   

Figure 1 
Daily JSE index level observations, log returns, histogram and 

autocorrelation graphs 

 
                                                           
5 White (2000) suggests two procedures, namely the “monte carlo reality check”, and the 

“bootsrap reality check”. This paper uses the bootsrap reality check.    
6 The first 275 observations are used to estimate the starting parameters in the GARCH models.   
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 In order to test volatility effects, a time series should not contain a unit root. The 
augmented Dickey–Fuller (Dickey and Fuller, 1981) and Philips-Perron (Philips and 
Perron, 1988) tests are general unit root tests. Both of these tests have size and 
power weaknesses, we also checked the stationary properties of the stock returns 
with the Dickey-Fuller Test with GLS detrending-ADF-GLS (Elliott et. al. 1996) and the 
Ng-Perron (Ng and Perron, 2001) tests. Table 1 reports the unit root test results, and 
all the tests indicate that stock returns is stationary; therefore, univariate volatility 
models are set based on log-differenced series.  

Table 1 
Unit root test statistics of the time series 

Ng-Perron tests 
 ADF 

test 
P-P 
test 

ADF-
GLS 
test MZα MZt MSB MPT 

Jse -0.719 -0.562 0.391 0.537 0.391 0.727 36.919 
InJse  -45.623* -45.681* -4.941* -17.484* -2.906* 0.166* 1.591* 

Notes: Tests contain a constant but not a time trend. The number of lags has been selected 
using the Schwarz information criterion with a maximum of twelve lags. * Indicate the rejection 
of the unit root null at least 5% significance level.  
 

The descriptive statistics for JSE returns are provided in Table 2. It is observed that 
the JSE returns is far from normal distribution according to the Jarque-Bera (Jargue 
and Bera, 1980) test, and skewness and excess kurtosis values. Besides, lagrange 
multiplier (LM) statistics of Engle (1982) indicates that ARCH effects exist for JSE 
index and this shows that the JSE market should be forecasted with the conditional 
volatility models.  

Table 2 
Descriptive Statistics  

 JSE Diagnostics Estimates 
Mean 0.000281 ARCH tests*  

Std.Deviation 0.014892 LM[2] 92.662 
(0.000) 

Skewness -0.18685 LM[5] 75.825 
(0.000) 

Excess Kurtosis 3.3476 LM[10] 45.48 
(0.000) 

Minimum -0.079683  3.3476 
Maximum 0.072491   
Jarque-Bera test 963.94 

(0.000) 
  

Notes: Numbers in brackets are p-values. * Lag-lengths are shown in squared brackets.  
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4. Empirical Evidence  
In this section, the relative performance of the NM-GARCH and the benchmarked 
GARCH models are illustrated. The Riskmetrics-EWMA, GARCH (1,1), GRJ-
GARCH(1,1), and FIGARCH (1,1) models are selected as benchmarked models. 
Table 3 shows the parameters estimated from GARCH (1,1) models. According to 
Akaike (AIC) selection criteria, the NM-GARCH model outperforms the other GARCH 
models but this evidence should be tested with appropriate backtesting procedure. 
Both the alpha (α ) and beta (β ) parameters are statistically significant in the GARCH 
(1,1) models, and this evidence indicates that the JSE returns have ARCH and 
GARCH effects. The asymmetry parameters ( 1γ ,γ ) and the long memory parameter 
(d) are statistically significant at the 5% critical level and this result provides evidence 
of the asymmetry and long memory effects in the JSE returns. The Student-t 
parameter (v ) is statistically significant for all the GARCH models; therefore it can be 
inferred that the return series are fat-tailed. Besides, the skewed Student-t parameter 
(ξ ) is negative and statistically significant; therefore this result indicates that the 
return series are skewed to the left and it is expected that the GARCH models with the 
skewed Student-t distribution would have better forecasting performance than the 
Gaussian and the Student-t distributions.  

Table 3 
Estimation results from GARCH (1,1) models 

Model **
0α

 α  β  v  ξ  v -
Skew

d 
Figarch

1γ -
GRJ 

γ -NM AIC 

Riskmetrics-
EWMA 

0.76* 
(2.45) 

0.06 
 

0.94 - - - - - - -5.80 

GARCH (1,1)-
n 

0.79* 
(2.69) 

0.10* 
(6.80) 

0.90* 
(76.09)

- - - - - - -5.81 

GARCH (1,1)-
t 

0.88* 
(2.99) 

0.09* 
(6.37) 

0.91* 
(73.86)

13.0*
(3.29)

- - - - - -5.82 

GARCH (1,1)-
skew 

0.79* 
(2.72) 

0.09* 
(6.61) 

0.91* 
(77.15)

- -0.1* 
(3.30)

13.7*
(3.75)

- - - -5.82 

GRJ GARCH 
(1,1)-n 

0.62* 
(2.07) 

0.04* 
(2.48) 

0.91* 
(66.99)

- - - - 0.082* 
(4.01) 

- -5.82 

GRJ GARCH 
(1,1)-t 

0.79* 
(2.61) 

0.03* 
(2.09) 

0.92* 
(69.19)

14.2*
(3.57)

- - - 0.085* 
(4.28) 

- -5.83 

GRJ GARCH 
(1,1)-skew 

0.73* 
(2.44) 

0.03* 
(2.16) 

0.92* 
(74.18)

- -0.1* 
(3.58)

15.6*
(3.29)

- 0.08* 
(4.51) 

- -5.83 

FIGARCH 
(1,1)-n 

0.79* 
(2.56) 

0.13* 
(2.99) 

0.78* 
(16.90)

- - - 0.724* 
(10.28)

- - -5.81 

FIGARCH 
(1,1)-t 

0.86* 
(2.87) 

0.14* 
(3.12) 

0.77* 
(15.56)

14.9 *
(4.23)

- - 0.703* 
(9.58) 

- - -5.82 

FIGARCH 
(1,1)-skew 

0.84* 
(2.87) 

0.12* 
(2.78) 

0.78* 
(15.56)

- -0.1* 
(3.47)

15.6*
(3.95)

0.71* 
(9.58) 

- - -5.82 
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Model **
0α

 α  β  v  ξ  v -
Skew

d 
Figarch

1γ -
GRJ 

γ -NM AIC 

NM-GRJ 
GARCH1,1)-n 

0.58* 
(1.82) 

0.05* 
(2.49) 

0.91* 
(58.65)

- - - - - 0.08* 
(3.70) 

-5.82 

NM-GRJ 
GARCH ( 
1,1)-t 

0.78* 
(2.40) 

0.04* 
(2.07) 

0.91* 
(59.63)

12.1*
(3.92)

- - - - 0.08* 
(3.93) 

-5.83 

NM-GRJ 
GARCH (1,1)-
skew 

0.70* 
(2.17) 

0.04* 
(2.21) 

0.92* 
(64.76)

- -0.1* 
(3.49)

13.3 *
(3.58)

- - 0.07* 
(4.08) 

-5.83 

Notes: * 5% confidence level. t-statistics are shown in brackets. * * The estimated parameter 
constant in mean is multiplied by 1000.   
  
Table 4 shows the backtesting of the VaR models for the number-of-violations, RMSE, 
Christoffersen (1998) tail-loss, and White’s (2000) bootsrap reality check tests. 
According to the number of violations test, the NM-GARCH model the best one. 
According to RMSE criteria, however, the the Riskmetrics-EWMA is the best model, 
and the NM-GARCH is the worst. Since the tail-loss and reality check tests are more 
appropriate, the predictive performance of the GARCH models should be tested with 
those tests. Christoffersen (1998) tail-loss test shows that that the NM-GARCH 
outperforms all other competing models, since the lowest p-values belongs to these 
model. Same as tail-loss test, White’s (2000) bootsrap reality check shows that the 
NM-GARCH with the skewed Student-t distribution is the best model compare to the 
other volatility models. Only the FIGARCH (1,1) with the Skewed student-t distribution 
has better forecasting performance than the NM-GARCH (1,1) with the normal and the 
Student-t distribution, but not the NM-GARCH (1,1) with the skewed Student-t  
distribution. This evidence also shows that the NM-GARCH model should be 
estimated with skewed Student-t distribution. The comparison of the GARCH models’ 
out-of-sample forecasting graphs is shown in Figure 2. This graph indicates that NM-
GARCH models capture the fat-tailed behavior better than the benchmarked GARCH 
models. This evidence shows that mixture of errors improves the predictive 
performance of volatility models.   Figure 3 shows the tail-loss (LRCC) versus the 
reality check (RC) tests. This figure indicates that the LRCC and the RC tests have 
approximately same value for Riskmetrics-EWMA and GARCH models, but the 
statistics values vary for other models.  

Table 4 
Backtesting of VaR Models 

Model No. of violations* RMSE LRCC** RC*** 
Riskmetrics-EWMA 31 0.0371 38.282 0.0039 
GARCH (1,1)-n 30 0.0376 37.457 0.0038 
GARCH (1,1)-t 30 0.0370 37.251 0.0038 
GARCH (1,1)-skew 28 0.0392 32.427 0.0039 
GRJ GARCH (1,1)-n 30 0.0375 24.519 0.0039 
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Model No. of violations* RMSE LRCC** RC*** 
GRJ GARCH (1,1)-t 27 0.0385 23.705 0.0036 
GRJ GARCH (1,1)-skew 25 0.0399 12.236 0.0020 
FIGARCH (1,1)-n 28 0.0377 25.340 0.0030 
FIGARCH (1,1)-t 25 0.0387 23.705 0.0023 
FIGARCH (1,1)-skew 22 0.0397 13.956 0.0006 
NM-GRJ GARCH 1,1)-n 21 0.0391 6.654 0.0018 
NM-GRJ GARCH ( 1,1)-t 19 0.0403 3.572 0.00017 
NM-GRJ GARCH (1,1)-
skew 

18 0.0409 2.559 0.00000 

Notes: * Number of violations for left tail.  ** The LRCC represents Christoffersen’s (1998) 
conditional coverage test based on 2

2χ  test with %1 confidence level. *** The RC represents 
White’s (2000) bootsrap reality check with 1000 bootsrap replications where the loss function is 
estimated with the mean squared error (MSE).   

 
Figure 2 

Comparison of the VaR Models at 01.0=α  
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Figure 3 
The Tail-loss (LRCC ) versus The Reality Check (RC) tests 

 

5. Conclusion   

This paper investigates the relative performance of asymmetric normal mixture 
generalized autoregressive conditional heteroskedasticity (NM-GARCH) and the 
benchmarked GARCH models with daily stock market returns from the JSE, South 
Africa. The NM-GARCH model is benchmarked against the Riskmetrics-EWMA, the 
GARCH, the asymmetric GARCH, and the fractionally integrated GARCH models with 
normal, Student-t, and skewed Student-t distributions. The main advantage of the NM-
GARCH model is that it can capture time variation in both conditional skewness and 
kurtosis by a mixture of normal distribution. The predictive performance of volatility 
models is compared with RMSE, Christoffersen’s (1998) tail-loss, and White’s (2000) 
bootsrap reality check tests. It is found that the NM-GARCH (1,1) models significantly 
reduces the number of violations, which is an important factor in determining the VaR 
by the financial as well as non-financial institutions. According to the tail-loss and the 
reality check tests, the NM-GARCH model outperforms the benchmarked models. 
Besides, the NM-GARCH with skewed student-t distribution is found to be the most 
accurate model, where FIGARCH (1,1) with the skewed Student-t distribution is found 
to be the second best model according to the reality check test. The empirical 
evidence shows that the NM-GARCH(1,1) with the skewed Student-t distribution 
improves the predictive performance of volatility models with the mixture of 
distributions.   
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