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ADDING EMD PROCESS AND FILTERING 
ANALYSIS TO ENHANCE 
PERFORMANCES OF ARIMA MODEL 
WHEN TIME SERIES IS MEASUREMENT 

DATA 

Feng-Jenq LIN 

Abstract 

In this paper, one process that integratesthe Empirical Mode Decomposition with 
filtering analysis was proposed to reconstruct the de-noise data series when the original 
is measurement data. The ARIMA model was augmented with the above process (here 
from referred to as EF-ARIMA) to treat de-noise measurement data. Model fit and 
forecasting performance of EF-ARIMA, using de-noise data set, were compared to 
those of the traditional ARIMA, which used the original data set, in an empirical study. 
By examining the MAE, MAPE, RMSE and Theil's inequality coefficients, it was 
concluded that EF-ARIMA outperformed its traditional counterpart. It also shows that 
the proposed hybrid forecasting approach is feasible and reliable. The results suggest 
application implications for forecasting measurement data sets in other areas as well. 
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I. Introduction 

The Autoregressive Integrated Moving Average (ARIMA) model (Box and Jenkins, 
1976), a linear combination of time-lagged variables and error terms is one of the most 
widely used forecasting techniques. When the data series is of seasonality and trends 
in nature, the seasonal ARIMA is used to model and to forecast in many fields. Both 
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modelsare limited because they assume linear relationships among time-lagged 
variables, making them inapplicable to non-linear relationships (Zhang et al., 1998). 
For non-linear and non-stationary signal analysis, the Empirical Mode Decomposition 
(EMD), a stage of Hilbert-Huang Transform (HHT) proposed by Huang et al. (1998), is 
better suited. It adaptively represents the local characteristics of the given signal data 
(Huang et al., 1998). The concept of confidence limit for EMD, which can be applied to 
the analysis of nonlinear and non-stationary processes, was also introduced by using 
various adjustable stopping criteria in the sifting processes of the EMD step to generate 
a sample set of Intrinsic Mode Functions (IMFs) (Huang et al., 2003). By using EMD, 
any complicated signal can be decomposed into a number of Intrinsic Mode Functions 
(IMFs), which have simpler frequency components and high correlations, making 
forecasts easier and more accurate (Chen et al., 2012). However, in most empirical 
cases, when the meaningful IMFs are used as input for one forecasting model, it is 
difficult to decide how many meaningful IMFs should be kept (or summarized) and used 
for reconstructing the forecasting model, especially when the original is measurement 
data. There is still no consensus on the selection criterion in the studies just discussed. 
To reduce the noise (error message or unimportant message) in time series data and 
to improve forecasting performance, some researchers have developed hybrid 
forecasting approaches by combining EMD with computer learning technologies such 
as the neural networks, the support vector machine, etc. (Yang et al., 2007; Zhu et al., 
2007; Shen et al., 2008; Hamad et al., 2009). With the similarpurposes in mind, we want 
to augment the traditional ARIMA model for time series measurement data with IMFs 
derived from an EMD process. The significance test uses partial correlation and 
incremental R-square to filter IMFs. Meaningful IMFs are then summarized and used to 
reconstruct the de-noise data series for ARIMA model. It is our main motivation in this 
paper. 
At the same time, the proposed hybrid forecasting approach combining the EMD 
process and filtering analysis with ARIMA model is used to forecast an empirical case, 
the monthly industrial productive index of Taiwan, to illustrate its forecasting 
performance. Final results show that our hybrid EF-ARIMA approach performs better 
than the traditional ARIMA do. It also presents the feasibility and reliability of our 
proposed hybrid forecasting approach. 

2. Methodology 

2.1. Literature Review for EMD 
The essence of Empirical Mode Decomposition (EMD) is the sifting process which 
extracts a finite number of Intrinsic Mode Functions (IMFs) based on the local 
characteristic time scale and one residue (R; also can be regarded as an IMF), which 
generally represents the trend of data series in the original data. The extracted IMFs 
contain a range of frequencies, from high to low, and represent periodic patterns in the 
original data series. Individually, an IMF has simpler frequency components with high 
correlations (Chen et al., 2012). Hence, EMD can deal with non-linear and non-
stationary data (Huang et al., 1998). More EMD related details can be found in the 
introduction of Huang et al. (1998). 
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The EMD process has been successfully used to decompose the data series in many 
different fields, such as water wave (Huang et al., 1999), wind speed (Liu et al., 2009), 
structural health monitoring (Vincent et al., 1999), ocean waves (Veltcheva and Soares, 
2004), fault diagnosis of roller bearings (Yu et al., 2005; Cheng et al., 2006), fault 
diagnosis ofrotating machinery(Wu and Qu, 2008), cardiorespiratory synchronization 
(Wu and Hu, 2006), financial fluctuation (Yang and Lin, 2012; Wang et al., 2009), oil 
price (Yu et al., 2008), tourism demand (Chen et al., 2012), metro passenger flow (Wei 
and Chen, 2012), etc. In addition to decomposing a data series into a finite number of 
IMFs and analyzing them, the last four studies also use meaningful IMFs as input data 
for forecasting models. All of these references show that using IMFs as data yields 
better performance than using the original data alone. 

2.2. Constructing the EF-ARIMA Model 
A hybrid EF-ARIMA model is proposed for better model fit and forecasting for time series 
measurement data.  

Figure 1 
The framework of a hybrid forecasting approach 

 
It is made of a traditional ARIMA augmented with EMD and a filter. The EF-ARIMA is 
constructed by going through three stages (Figure1): the EMD stage (decomposing the 
data series into IMFs), the filtering stage (identifying the meaningful IMFs by significance 
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test) and the hybrid model stage (reconstructing a de-noise data series to build EF-
ARIMA). The three stages are described in detail next. 
Stage 1: The EMD Stage 
Firstly, the original data series is decomposed into a finite number of Intrinsic Mode 
Functions (IMFs) and one residue (R) by using the sifting process in an EMD.After the 
data series was decomposed,since meaningful IMFs need to be retained for the 
reconstruction of the de-noise data series the input data to ARIMA, non-contributing 
IMFs must be reduce or removed before forecasting models are built. 
Stage 2: The Filtering Stage 
The IMFs derived during the EMD stage aredecomposed from high to low frequencies 
according to their contributing priorities for the original data. However, it is not clear how 
many non-suitable IMFs should be treated as noise and how many suitable IMFs should 
be used along with R to reconstruct the de-noise data series. Most researchers simply 
resort to some subjective criterion. Note that the original data series is equal to the sum 
of all IMFs and R: 

Original data series Y = IMF1 + IMF2 + … + IMFp+ R 
To identify meaningful IMFs, objectively, the following two steps will be taken: 
Step 1: Determining the priority of all IMFs sequentially 
Simple correlation and partial correlation are used to determine the priority set of all 
IMFs, { (1)IMF , (2)IMF ,…, (P)IMF }, by following p number iterations in this step: 

1. Calculate the simple correlations between(Y- R) and JIMF , that is 
Corr( Y-R , JIMF ) = 

JIMFR),(Yr  , J{1, 2, …, p } 
where the p simple correlations are calculated in this iteration. Now, if we suppose 

5IMF  is the highest simple correlation with (Y-R), then let the symbol (1)IMF =

5IMF . 
2. Given the controlling variable (1)IMF , the partial correlations between (Y-R) and 

JIMF  can be calculated and they are exactly the same as their simple correlation 
counterparts, between (Y-R- (1)IMF ) and JIMF , i.e., 

(1)J IMF  | IMF , R)(Yr  = 
J(1) IMF  , )IMF-R(Yr  , J{1, 2, …, p } and J 5 

where the (p-1) partial correlations are calculated in this iteration. Suppose 3IMF  
is the highest correlation with (Y-R- (1)IMF ) now, then let the symbol (2)IMF =

3IMF . 
3. Given the set of 2 controlling variables { (1)IMF , (2)IMF }, the partial correlations 

between (Y-R) and JIMF  can be calculated and they are exactly the same as their 
simple correlation counterparts (Y-R- (1)IMF - (2)IMF ) and JIMF , i.e.: 

(2)(1)J IMF ,IMF |IMF , R)(Yr  = (2)(1)J(2)(1) IMF,IMF  | IMF , )IMF-IMF-R(Yr  , J{1, 2, …, p } and J 3,5 
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where the (p-2) partial correlations are calculated in this iteration. Suppose 1IMF  
is the highest partial correlation with (Y-R- (1)IMF - (2)IMF ) now, then let the symbol 

(3)IMF = 1IMF . Repeat for the remaining (p-3) iterations. 

Step 2: Retaining the meaningful IMFs by using the incremental R-square 
Note that in step 1, the contributing priorities of all IMFs for the original data are 

objectively determined. Now, start by substituting 


J

j
) j (IMF

1
in Equation (1) with IMF(1). 

R-square 2
(1)R  is obtained. Repeat the process and obtain 2

(2)R  by adding IMF(1) and 
IMF(2). 

 ( Y-R ) = 0β̂ + 1β̂ 


J

j
) j (IMF

1
, J{1, 2, …, p} (1) 

Suppose 2
(0)R = 0, then we now can define 

 2
(J)ΔR = 2

(J)R - 2
1)-(J R ,J{1, 2, …, p} (2) 

where: 2
(J)R  represents the coefficient of determination when one particular (J)IMF  is 

added into the regression model. The incremental R-square 2
(2)ΔR is now obtained from 

Equation (2). As more iterations are performed, more 2
(J)ΔR are obtained. 

For most situations, the 2
(J)ΔR  will gradually die down in a damped exponential fashion 

with no oscillation when the index J is increased. Hence, in order to test whether a 

particular 2
(J)ΔR  is zero or not, the standard error ( n1/ )will be employed for 

evaluating the significance of the coefficients of partial autocorrelation function (PACF) 
based on the asymptotic results of Quenouille (1948). That is, we check whether 

2
(J)ΔR  is statistically significant at, say, the 5 percent level by determining whether it 

exceeds n2/  in magnitude. A particular (J)IMF  can be used to reconstruct the de-

noise data series for original data when its absolute value is larger than n2/ in 
magnitude. Otherwise, it is treated as noise. 
Stage 3: Building the EF-ARIMA  
The hybrid EF-ARIMA is now complete with an ARIMA model equipped with an EMD 
with a filtering process that eliminates noise. 
To put our EF-ARIMA into test, we use the industrial productive index of Taiwan as our 
original data series. We compare its model fit and forecasting performance to those of 
the traditional ARIMA. 
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3. The Empirical Case 

3.1. Data Sets 
To illustrate the usefulness of the proposed EF-ARIMA and evaluate its noise reduction 
effect on measurement data, the official monthly industrial production index (from 
January 2000 to December 2012),obtained from the Taiwanese Ministry of Economic 
Affairs, is used (Figure 2). There are 156 monthly data points in total. The data series 
exhibits a long-term upward trend with short-term fluctuations that are independent from 
one time period to the next. The index appears to be non-stationary in that the mean 
increases over time.  

Figure 2 
The Monthly Industrial Production Index in Taiwan 

(Jan. 2000 - Dec. 2012) 

 
A training period and a testing period are used to evaluate the performance of the 
proposed EF-ARIMA model. Since a longer training period gives more reliable and 
better results, it is decided that the first ten years (Jan. 2000 to Dec. 2010) serves as 
the training period and the next two years (Jan. 2011 to Dec. 2012) as the testing period. 
The iterative forecasting is performed on our empirical case. 
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3.2 The EMD process 
Following the first stage in Figure 1, the monthly industrial production index of Taiwan 
is decomposed into six IMFs (named 1IMF , 2IMF , …, 6IMF ) and one residue (called R), 
as shown in Figure 3. The IMFs obtained are graphically illustrated in the order they are 
extracted, indicative of the order of frequency (or period) from the highest frequency to 
the lowest one. IMFs with higher frequencies (or shorter periods) are extracted first and 
the ones with lower frequencies (or longer periods) are extracted later. The first few 
IMFs represent the high time variants or noise in the original data, while the last few 
IMFs represent the longer period components. The last component is the residue, which 
represents the long trend of monthly industrial production index. The IMFs are obtained 
using the Matlab software (Matlab 2008b). 

Figure 3 
The IMFs and R for Industrial Production Index in Taiwan 
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3.3. The Filtering Process 
During Stage 2 in Figure 1, we prioritize IFMs and filter out the noise. In order toidentify 
and retain the meaningful IMFs for reconstructing de-noise data series, the following 
two filtering steps are executed: 
Step 1: Determining the priority of all IMFs considered sequentially 
Because we do not know which IMFs contribute more to (Y-R), the partial correlations 
are calculated to determine the priority of all IMFs by six iterations in this step. 
The correlation coefficients between (Y-R) and all IMFs are calculated individually in the 
first iteration. Of all correlations between (Y-R) and IMFs, IMF4  is found to have the 
highest correlations (0.4974 and 0.5121). It is therefore identified as (1)IMF , the most 
important component. 
Then, the correlation coefficients between (Y-R- (1)IMF ) and all remaining IMFs are 
calculated individually in the second iteration. Similarly, given the controlling variable 
IMF4, IMF3 is found to be the most contributing IMF (with correlations of 0.6803 and 
0.4709) and thus identified as (2)IMF .the most important component. 

After six iterations, all the IMFs  are identified in the order of their contribution. Table 2 
shows our sequence ( 4IMF , 3IMF , 1IMF , 2IMF , 6IMF , and 5IMF ). 

Table 2 
The Correlation Coefficients between (with_var) and IMFs 

Iter. Correlation 
Coefficients (with_var) IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 

1 Pearson Y-R -0.0533 0.2423 0.44794 0.4974 0.4234 0.2248 
Spearman 0.2096 0.1537 0.41448 0.5121 0.3985 0.3691 

2 Pearson Y-R-IMF(1) 0.1879 0.0680 0.6803 -- -0.0251 0.2818 
Spearman 0.3568 0.1882 0.4709 -- -0.0084 0.4955 

3 Pearson 
Y-R-



2

1j
) j (IMF  

0.5000 0.35876 -- -- 0.11410 0.4473 
Spearman 0.4842 0.44784 -- -- 0.12286 0.5029 

4 Pearson Y-R-


3

1j
) j (IMF  -- 0.88880 -- -- 0.31199 0.37468 

Spearman -- 0.73482 -- -- 0.26107 0.56382 

5 Pearson Y-R-


4

1j
) j (IMF  -- -- -- -- 0.37680 0.8919 

Spearman -- -- -- -- 0.37958 0.9046 

6 Pearson 
Y-R-



5

1j
) j (IMF  

-- -- -- -- 1.0000 -- 
Spearman -- -- -- -- 1.0000 -- 

Note: (with_var) represents Y- R-


K

1j
) j (IMF , where K equals the number of iterations. 

 

Step 2: Retaining the meaningful IMFs by examining incremental R-squares 
Next, in order to identify the meaningful IMFs to reconstruct the de-noise data series for 
the original series, the incremental R-square ( 2ΔR ) is calculated when one particular 
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(J)IMF  is added to the following regression model sequentially in each iteration, as 
shown in Table 3. 

( Y-R ) = 0β̂ + 1β̂ 


J

i
) i (IMF

1
,  J{1, 2, …, 6} 

Results show that 5IMF  is the only IMF not to be used because its absolute value does 

not exceed 0.1705 ( 1322/ ) under the 5 percent significance level. The other IMFs (
4IMF , 3IMF , 1IMF , 2IMF , 6IMF ) are used to reconstruct the de-noise data series. 

 
Table 3 

2R and 2ΔR  when an IMF is Added to Simple Regression Formula 

Iteration Response 
Variable Added IMF Predictor 

Variable 
2R  2ΔR  2ΔR  

1 

Y- R 

4IMF  IMF(1) 0.2474 0.2474 0.4974 

2 3IMF  


2

1i
) i (IMF  0.5797 0.3323 0.5765 

3 1IMF  


3

1i
) i (IMF  0.6737 0.0940 0.3066 

4 2IMF  


4

1i
) i (IMF  0.9011 0.2274 0.4769 

5 6IMF  


5

1i
) i (IMF  0.9874 0.0863 0.2938 

6 5IMF  


6

1i
) i (IMF  1.0000 0.0126 0.1123 

 

3.4. Building the ARIMA and EF-ARIMA Models 
After applying the EMD process and filtering analysis, the de-noise data series of the 
training set (Taiwan monthly industrial production index of Taiwan (from January 2000 
to December 2010)) is obtained and then used to build the optimal EF-ARIMA model. 
The final parameter estimates, T values and related statistics of the model are as 
following: 

1211112
11  0.91080.1251 0.14700.9960ΔΔ   ttttt ε εεYŶ  

(36.4686*)      (-3.7809*)      (3.1215*)      (-30.6758*) 
2R =0.6029 2R =0.5926D.W.=2.1683 

Q(6)=6.0472   Q(12)=13.926   Q(18)=15.746   Q(24)=21.968 
where: * represents the estimate being significant at 0.05 level. 
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tY1Δ represents variable being first differencing transformation ( 1
1Δ  ttt YYY ). 

For benchmarking, the traditional ARIMA model is applied to the original industrial 
productive index of the same period. The final parameter estimates, T values and 
related statistics of optimal traditional ARIMA model are as following: 

1211112
11  0.90820.1293 0.14030.9968ΔΔ   ttttt ε εεYŶ  

(36.2267*)      (-3.5958*)      (3.2539*)     (-30.8586*) 
2R =0.5972 2R =0.5867D.W.=2.1416 

Q(6)=5.9086   Q(12)=12.938   Q(18)= 14.743   Q(24)=20.585 
where: * represents the estimate being significant at 0.05 level 

tY1Δ represents variable being first differencing transformation ( 1
1Δ  ttt YYY ). 

Both optimal models are suitable in the statistical tests of parameter significance and 
residual diagnosis (Q statistic) for the test of goodness-of-fit. 
From the optimal traditional ARIMA model, two findings can bedescribed as following: 
1. It chances that time-lagged variables and error terms of the model are same as the 

corresponding ones in EF-ARIMA model, although they are usually not the same. 
2. Although data series are not the same, from values of 2R and 2R , the explanatory 

ability of the EF-ARIMA model is better than that of the traditional model. It implies 
the EMD and filtering process can indeed reduce or remove the noise from original 
measurement data to make better model fit. 

3.5. Validating Forecasting Performances 
After both optimal models have been built, the testing samples, industrial production 
indices from January 2011 to December 2012, are used to evaluate their forecasting 
performances. Three widely used performance indexes, mean absolute error (MAE), 
mean absolute percent error (MAPE), root mean square error (RMSE) and Theil's 
inequality coefficients (U1 and U2) are used to evaluate the residuals between actual 
and predicted values. Among these four indexes, MAEmeasures the average 
magnitude of prediction errors, MAPE measures the mean prediction accuracy, RMSE 
measures the prediction stability, and the Theil's inequality coefficient reflects the RMSE 
error in relative terms. In principle, the lower MAE, MAPE,RMSEandTheil's inequality 
coefficient values are, the better the model performances are. 
The actual index of the testing set and the forecasted monthly values using EF-ARIMA 
and the traditional ARIMA are illustrated in Figure 4. Overall the forecasted values 
obtained using EF-ARIMA are closer to the actual values than those obtained using 
traditional ARIMA. 
From Table 4, we can see that the four indexes (MAE, MAPE, RMSE and Theil's 
inequality coefficients) of the proposed hybrid ARIMA approach are 11.02, 8.64% and 
12.22 respectively. The forecasting performance of EF-ARIMA is clearing better than 
that of the traditional ARIMA. EF-ARIMA provides more reliable forecasts and improved 
forecasting performance in our empirical case study. Since MAPE is less than 10%, it 
is said to have the excellent level of predictive ability (Lewis, 1982). Our design and 
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results show that the EMD and filtering process indeed grasps the underlying 
information in the original data, and the hybrid EF- ARIMA provides a better forecasting 
result. 

Figure 4 
Actual Values and Forecasts of Industrial Production Index  

on Testing Set 

 
 

Table 4 
The Forecasting Performances between Two Optimal Models 

Models MAE MAPE RMSE U1 U2 
EF-ARIMA 11.02 8.64% 12.22 0.0515 0.1070 

Traditional ARIMA 14.57 11.40% 15.77 0.0576 0.1215 

4. Conclusions 

When the original data series is of measurement type, measurement errors are always 
unavoidable. In order to build areliable time series model with better forecasting 
performance, we proposed a process integrating the EMD process and filtering analysis 
in this study. It effectivelyreduces or removes the noise (error or unimportant message) 
from original data series and reconstructs the de-noise data series, which is expected 
to better grasp the underlying information. 
To illustrate the goodness of model fit and forecasting performance, an EF-ARIMA 
model using the de-noise data was developed and its results were compared to those 
of the traditional ARIMA using the original measurement data. From the empirical case 
in this paper, three important findings are noted as following: (1) Integrating the EMD 
and filtering processes indeed can help reduce or remove the noise from original 
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measurement; (2) Based on indexes of MAE, MAPE RMSE and Theil's inequality 
coefficients, the EF-ARIMA forecasts on testing samples are more reliable and accurate 
than forecasts using the traditional ARIMA model. (3) It also shows that the proposed 
hybrid forecasting approach is feasible and reliable. 

Finally, in this paper, we just check whether 2
(J)ΔR  is statistically significant at the 5 

percent level to identify the meaningful IMFs. Because it is up to the user to decide on 
the significance level, future researchers may also try to change this significance level 
to improve the de-noise data series. 
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