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Abstract 
This paper proposes a novel Luenberger approach based on directive SBM method and 
Luenberger indicator to solve the intertemporal effect of dynamic factors. The new 
Luenberger indicator can be decomposed into dynamic pure efficiency change index, 
dynamic scale efficiency change index, technology progress index and dynamic effect index. 
The empirical application focuses on the growth performances of ocean economy in 11 
coastal areas of China. The conclusions are as follows. First, the intertemporal effect of 
capital factor shows that the technical frontier is on the rise and the total factor productivity 
level is improved. The technical progress is the driving force of Chinese ocean economy 
growth performance. Second, the labor force, dynamic capital output and desirable output 
have positive relationships with the efficiency of ocean economy considering the 
environmental problem. However, the dynamic capital input, resource consumption and 
environmental pollution have negative effects, respectively. 
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1 Introduction 
China has achieved a significant improvement in the development of ocean economy since 
the implementation of the national maritime power strategy. In 2016, China’s gross ocean 
product (GOP) has reached $ 1085 billion, which accounts for 9.5% of the gross domestic 
product (GDP). The data shows that the ocean economy has become a new driving force to 
the national economy. However, while the government is pleased with the achievements of 
China's ocean economy development, the overexploitation and the destruction issues have 
become inescapable. Currently acutely restricted by the marine resources and environment, 
the ocean economy development has been proved to be destructive in many places 
(Douvere, 2008). A key challenge is to investigate the trend of Chinese ocean economy 
growth performance and explore the factors, which are essential for the management of 
ocean economy to provide better policy tools.  
From the point of view of sustainable economic growth, total factors productivity (TFP) 
analysis has become a key method to study the economic growth performance. The most 
widely used to analyze TFP is the Malmquist indicator. Namely, the Malmquist index based 
on traditional distance function can be decomposed into two parts, i.e., technological 
progress and efficiency changes. However, this method neglects to take the bad outputs into 
account, such as the consumption of resources and environmental pollution and it is a static 
model. An intriguing aspect is to incorporate the properties of the dynamic production 
technology into the TFP analysis. Chambers et al. (1996) designed a Luenberger 
productivity indicator with additive structure, which offered the powerful advantage of 
focusing on changes in input and output bundles. In recent years, the Luenberger 
productivity indica3tor has been broadly used to evaluate the evolution in productivity and 
efficiency for many economic units (Epure et al., 2011). For example, scholars have applied 
Luenberger index method to measure the efficiency of China’s environment or productivity 
problems (Barros and Peypoch, 2007). For these two methods, Chung et al. (1997) 
proposed a Malmquist-Luenberger (ML) index, which introduced directional distance 
function (DDF)3 into the traditional DEA model. The advantage of the ML index is to take 
undesirable outputs into the TFP framework for measuring economic growth efficiency. 
Furthermore, environmental factors have been introduced into the productivity analysis 
framework and empirical research on the Chinese economy gradually (Chen et al., 2010; Hu 
et al., 2011; Li et al., 2014; Ding et al., 2016). In the above-mentioned literature, we may see 
that most of the scholars presented the radial or oriented DEA model to calculate the DDF. 
In the imperfect situation, such as over input, under output, non-zero slack in input or output, 
the radial method may overestimate the efficiency of the evaluation unit, and the oriented 
approach also has difficulty in getting the accurate result for the reason of neglecting some 
aspects of input or output. To solve the problem, the non-radial and non-oriented approach 
for efficiency measure, i.e., the slack-based measure (SBM) was proposed by Tone (2001). 
Then Färe et al. (2010) and Fukuyama et al. (2010) constructed a generalized non-radial 
and non-oriented directional distance function, which had been applied to various types of 
productivity and efficiency studies (Boloori and Pourmahmoud, 2016).  
In the case of the ocean economy growth performance, there are a few papers recently 
published for measuring efficiency. As was stated above, the DEA methods had become 
popular tools to access the efficiency of ocean economy considering the environment and 
resources factors. It suggests that producing more economic values on the fewer price of 
resources and environment impact is an urgent problem to be solved (Kang et al., 2016; Yu 
et al., 2016). For instance, considering carbon emission, Huang and Fu (2013) calculated 
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the efficiency of low carbon ocean economy by using three-stage DEA method. Ding et al. 
(2017) assessed efficiency of ocean economy for 11 coastal areas with the help of the DEA-
Malmquist index model. They found that the true productivity growth accounting for pollution 
and irrational use of marine resources would be underestimated if the changes in 
undesirable outputs were ignored. Recently, along with the study of efficiency estimation, 
the research began to focus on exploring the dynamic capital invested in the ocean 
economy. The investment not only directly plays an important role in economic development, 
but also indirectly promotes the technological progress. Li et al. (2014) pointed out that 
investment and economic growth related strongly and showed somewhat lagged effect on 
long term. The reason was that it took a long time to form the production capacity for the 
fixed investment, limited by stable industrial structure and supply capacity (Lee et al., 2016). 
However, among the previous studies, the technical difficulty with the existing index models 
is how to deal with the dynamic input factors directly. For the DEA model, Färe and 
Grosskopf (1997) took the dynamic factor into account firstly. Then, Nemoto and Goto (2003) 
considered the fixed capital investment as the dynamic factors in the two periods. Namely, 
the fixed factor was both the input factor of the current period and the output factor of the 
previous period. Furthermore, Tone and Tsutsui (2010) introduced the dynamic factors 
proposed by Färe and Grosskopf (1997) into the method. Although there is some literature 
concentrated on the dynamic capital problem, few researches focused on the intertemporal 
effect of capital factor on the efficiency evaluation from the non-radial and non-oriented view.  
This paper aims to evaluate the efficiency of Chinese ocean economy growth under the 
environment and energy constraints. The contributions are as follows. Firstly, the paper 
introduces dynamic factors into the traditional Luenberger index model and proposes a 
new dynamic productivity index construction and decomposition method. Specifically, 
we combine the DDF with the SBM model to deal with the intertemporal effect of 
dynamic factors, which is called DSBI (directional slack-based index)-Luenberger model 
based on both desirable and undesirable outputs. Secondly, this new dynamic 
productivity index decomposition method is used to analyze the impact of input and 
output factors on the TFP of China's ocean economy. The capital factors are presented 
to describe the intertemporal effect on ocean economy growth. The empirical studies 
show that labor force, dynamic capital output and desirable output have positive 
relationships to the performance of ocean economy growth. On the contrary, dynamic 
capital input, resource consumption and environmental pollution have negative 
relationships to performance. Among the resource and environmental factors, the 
fishing, waste water and solid waste have significant negative impacts. The energy 
consumption and COD have positive impacts, which can help the government manage 
the ocean economy as regards these aspects. 
The remainder of this paper is structured as follows. Section 2 presents a new Luenberger 
indicator, i.e., the DSBI-Luenberger model. In section 3 the analysis of empirical results is 
given. There are some discussions about empirical analysis in section 4. Section 5 
concludes this paper. 

2. Model 
In this section, a dynamic DSBI-Luenberger model was set up. For that, this paper 
established a dynamic Luenberger indicator and gave analysis firstly. Then, the construction 
of a DSBI directional distance function was proposed. 
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2.1 The Dynamic Luenberger Indicator  
This paper incorporates dynamic factors in a Luenberger productivity indicator. This indicator 
does not require a selection from the perspective of measure, facilitates simultaneous 
consideration of decreased inputs and increased outputs, and supports cost minimization 
and income maximization. If we assume that there are N  production decision-making units 
during period T, then, each decision-making unit uses input factor x to produce M types of 
expected output factor y and I types of undesirable output factor b. In addition, there are R 
types of dynamic factor z (i.e., the outputs during period t constitute the inputs during period 

1t  ). Accordingly, we define the dynamic Luenberger indicator from period t to period t+1 
as follows:  
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 (1) 

In equation (1), g  is a direction vector that encompasses the undesirable output and the 
expected output, and tS  is the directional distance function during period t. When  1tS t   

and  1tS t  are derived, an infeasible solution results in outcome error. This paper uses all 
data throughout the analysis period to establish technical boundaries and then assesses the 
efficiency of all observed values within unified boundaries. Our method enables the 
difference in technical efficiency to be obtained from the observed values during adjacent 
periods. In addition, it facilitates the inclusion of unassessed sample points within the 
technical boundary, which effectively prevents problems with infeasible solutions. The 
specific calculation process is as follows. 
First, we use the following formula to derive the environmental inefficiency value GS under 
the unified boundary (intertemporal DEA) and environmental inefficiency value CS under the 
current technical boundary (current period DEA) based on the directional distance function, 
where the “c” and “v” subscripts represent constant returns to scale (CRS) and variable 
returns to scale (VRS): 

        C C CGS t CS t TG t     (2) 

In equation (2), TG is the technical gap, which indicates the measured efficiency gap within 
two different technical boundaries. We can now express the dynamic Luenberger 
productivity indicator by employing formula (3): 

       1 1t
t C CDL GS t GS t        (3) 

Analogously, the dynamic Luenberger productivity indicator can be decomposed into 
dynamic Luenberger efficiency change (DLEC) and dynamic Luenberger technical progress 
(DLTP) as follows:  

       1 1t
t C CDLEC CS t CS t       (4)  

    1 ( ) ( 1)t
t C CDLTP TG t TG t       (5) 

After considering scale efficiency factors, the DLEC decomposition results and the 
conventional productivity index results do not differ greatly. DLEC can be decomposed into 
dynamic Luenberger pure efficiency change (DLPEC) and dynamic Luenberger scale 
efficiency change (DLSEC), as shown in the following equations:     
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In equation (6), DLPEC is the change in dynamic pure efficiency from the t th period to period 
t+1, and DLSEC is the change in dynamic scale efficiency from period t to period t+1. These 
two indicators take the intertemporal effect of dynamic factors on overall efficiency changes 
into consideration, and both assess productivity changes induced by management, 
accumulation of experience, and scale.  
DLTP is obtained from changes in the technical gap (TG) during adjacent periods while 
considering the intertemporal effect of dynamic factors and can be decomposed into 
conventional Luenberger technical progress (LTP) and a Luenberger dynamic effect (LDE):  
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In summary, the dynamic Luenberger indicator from the period t to the period t+1 can be 
decomposed as follows:  
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  (8) 

Although this paper provides a detailed decomposition of the dynamic Luenberger 
productivity indicator, it only analyzes total factor productivity from the perspective of whether 
efficiency has increased and technology has advanced. However, we do not know which of 
the many input and output factors causes total factor productivity to increase, production 
technology to advance or decline, or production efficiency to increase. This paper uses the 
advantages of the Luenberger indicator to construct an analytical model of influencing 
factors as follows:  

           
       
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  (9) 

Equation (9) decomposes productivity DL into the five parts , , , ,x zi y zo bDL DL DL DL DL . For 
example,    1x x x

C CDL GS t GS t   . These decompositions express the effect of inputs, 
dynamic factor inputs, expected outputs, dynamic factor outputs, and undesirable outputs, 
respectively, on total factor productivity. We now use the dynamic Luenberger indicator to 
decompose the increase in total factor productivity into dynamic efficiency change and 
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dynamic technical progress, where the change in dynamic efficiency indicates the distance 
between the technical boundaries at the sample point, and dynamic technical progress 
indicates the degree to which the technical boundaries have expanded outward. Hence, The 
DLEC can be decomposed into the following factors. 
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In equations (10) and (11), the DLEC indicator is decomposed to , , ,x zi yDLEC DLEC DLEC
,zo bDLEC DLEC . For example,    1x x x

C CDLEC CS t CS t   . The corresponding DLTP 
indicator is decomposed to , , , ,x zi y zo bDLTP DLTP DLTP DLTP DLTP . For example, 

   1x x x
C CDLTP TG t TG t   . These decompositions indicate the contribution of inputs, 

dynamic factor inputs, outputs, dynamic factor outputs, and the environment, respectively, 
on efficiency and technical progress. The new dynamic Luenberger productivity index 
decomposition method proposed in this paper can link total factor productivity, changes in 
efficiency, and technical progress with dynamic factors and input/output factors, thus 
revealing the laws that govern changes in the ocean economy’s total factor productivity.  

2.2 The New Directional Distance Function  
Based on the slack variable method of Tone (2001), Fukuyama et al. (2010) incorporated 
slack variables in a directional distance function and proposed the slack-based model (SBM) 
for the measurement of efficiency losses. This model overcomes the technical issue of error 
caused by radial and orientation selection. This paper presents a new directional slack-
based index (DSBI), which incorporates dynamic factors in the SBM model. It defines the 
dynamic directional distance function of k decision-making units during the period t as 
follows:  
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In equation (12),  1, z , , z ,i o
nk t rk t mk t rk t ik tx y b      represent the N-dimensional inputs, R-dimensional 

dynamic input factors, M-dimensional expected outputs, R-dimensional dynamic output 
factors, and the I-dimensional undesirable output vector of decision-making unit k, 
respectively, and express the directional vectors of reduced inputs, reduced dynamic inputs, 
increased expected outputs, increased dynamic outputs, and reduced undesirable outputs, 
respectively, where  , , , ,x zi y zo bs s s s s  express the vectors of input redundancy, dynamic 
factor input redundancy, expected output gap, dynamic factors output gap, and undesirable 
output redundancy, respectively. In equation (12), the objective function maximizes the sum 
of the mean input inefficiencies and output inefficiencies, and the calculated distance 
function value represents the inefficiency level of that decision-making unit, where the larger 
that the value is, the lower the efficiency. To determine the specific sources of inefficiency, 
the inefficiency value can be decomposed as follows:  

t x zi y zo b
v v v v v vIE S IE IE IE IE IE     

uur
  (13)  

To estimate the distance function value, we selected the following direction vector to 
standardize the input and output slack variables:  

max min max min max min max min max min, , , ,x zi i i y zo o o b
n n n r r r m m m r r r i i ig x x g z z g y y g z z g b b            (14) 

This approach is adopted because the distance function that underlies this direction vector 
exhibits several excellent characteristics, such as being non-negative, being zero, Pareto-
Koopman efficiency, transitive invariance, and unit invariance.  

3. Empirical Results 

3.1 Data and Descriptions  
The analysis relies on a panel data of China’s 11 coastal regions over the period 2002–2012, 
which are collected from China Marine Statistical Yearbook (CMSY), China Statistical 
Yearbook (CSY), and China Marine Usage Management Declaration (CMUMD).  
The input indicators are as follows. In the sample, each coastal region has two inputs, that 
is, marine capital stock and marine labor force. For the labor force, it chooses the annual 
average ocean-related employment as a proxy. The marine capital stock is selected as the 
dynamic factor. Firstly, it estimates the capital stock of 11 coastal regions by referring to 
Zhang (2004), because there are no official statistics on it. It adopts the results from Zhang 
(2004) to set the original capital stock in 2000 and then estimates the current capital stock 
of 11 coastal regions as  1t tk k I   , where tk  represents the fixed capital stock and tI  
denotes annual physical capital investment. Here,   is the capital depreciation rate, denoted 
by 10.96%  (see details in the previous study of Ding et al., 2017). Furthermore, the 
former marine capital stock is used as the input variables and the current marine capital 
stock is considered as the output variable. 
The output indicators include one desirable output and three undesirable outputs. The 
paper details the data sources and calculation methods of each variable as follows. The 
desirable output is chosen from the perspective of economic efficiency. GOP is used as 
a proxy for economic efficiency and it is a sensitive indicator for measuring ocean 
economy efficiency. The undesirable outputs include two types of activities, i.e., 
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resource depletion and environmental pollution. Hence, from the resource depletion 
point of view, the marine fishery production is chosen, which has been the biggest threat 
to ocean health. The energy consumption is used as a proxy for the consumption of 
marine minerals, gas and petroleum. Then, from an environmental perspective, the 
undesirable outputs include marine industrial wastewater, marine industrial solid waste, 
and the removal rate of chemical oxygen demand (COD) in marine industrial 
wastewater.  

3.2 Analysis at the Level of Overall Ocean Economy 
At the level of geography, the average increase in the green total factor productivity of 
China’s ocean economy was 0.27%. However, although this increase reveals a growing 
trend, the growth rate remained at a relatively low level. Variations in the ocean economy 
green total factor productivity originate in dynamic efficiency changes and dynamic technical 
progress. The former reflects the intertemporal effect of dynamic factors (e.g., marine capital 
stock) on overall efficiency and assesses green productivity (DLEC) connected with 
efficiency improvements. That green energy productivity increased at an average rate of -
0.04% indicates that it has diverged from the technical boundary constructed using current-
period data and that China’s ocean economy green efficiency has not improved. The latter 
examines the intertemporal effect of dynamic factors on overall efficiency and assesses 
green productivity (DLTP) connected with technical progress. That green productivity 
increased at an average rate of 0.31% indicates that the technical boundary constructed 
using intertemporal data exhibits an increasing trend and that the level of green technology 
in China’s ocean economy has risen. Thus, it is evident that technological progress has been 
the primary driving force of China’s ocean economy green total factor productivity and that 
straightforwardly improving production technology will be an effective route to increasing 
China’s ocean economy green total factor growth.  
Based on formulas (3)-(5), this paper measures the dynamic Luenberger productivity 
indicators for various locations in coastal China and decomposes these indicators into 
DLPEC, DLSEC, conventional LTP, and Luenberger dynamic efficiency (LDE) (Table 
1).  

3.3 Analysis from the Dynamic Perspective  
Dynamic efficiency changes represent the combined effect of changes in dynamic pure 
technical efficiency and changes in dynamic scale efficiency. The former represent changes 
in productivity attributable to management, technology, and accumulation of experience and 
exhibited an average growth rate of 0.05%. The latter represent changes in productivity 
attributable to scale factors and exhibited an average growth rate of -0.09%. The negative 
growth rate of dynamic scale efficiency implies that the ocean economy green technical 
boundary under the current-period DEA is shifting towards unvarying returns to scale 
technology. In conclusion, changes in dynamic pure technical efficiency constitute the 
primary source of variation in China’s ocean economy green efficiency. Therefore, changes 
in conventional technical progress and the capital dynamic technology effect are jointly 
creating growth in the green total factor productivity of China’s ocean economy. The former 
is in the dominant position, and the growth rate of the capital dynamic effect is relatively low 
in comparison, which reflects that China’s ocean economy has not emphasized dynamic 
development and has neglected continuing economic development based on the input of 
marine capital.  
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Table 1 
Ocean Economy Green Total Factor Productivity Indicators and Their 

Decomposition 
Region DLTFP DLEC Decomposed 

indicators 
DLTP Decomposed 

indicators 
DLPEC DLSEC LTP LDE 

Tianjin  0.0094 0.0048 0.0069 -0.0021 0.0046 0.0025 0.0021 
Hebei 0.0062 0.0054 0.0025 0.0029 0.0008 0.0035 -0.0027 
Liaoning -0.0021 -0.0051 -0.0034 -0.0017 0.0030 0.0014 0.0016 
Shanghai  0.0164 0.0087 0.0059 0.0028 0.0077 0.0058 0.0019 
Jiangsu  -0.0026 -0.0008 0.0025 -0.0034 -0.0017 0.0034 -0.0051 
Zhejiang 0.0039 0.0017 0.0012 0.0005 0.0022 0.0007 0.0015 
Fujian  0.0011 -0.0053 -0.0031 -0.0022 0.0064 0.0042 0.0022 
Shandong 0.0083 0.0073 0.0058 0.0015 0.0010 0.0016 -0.0005 
Guangdong -0.0076 -0.0068 -0.0074 0.0006 -0.0008 -0.0001 -0.0007 
Guangxi -0.0039 -0.0107 -0.0087 -0.0019 0.0067 0.0064 0.0003 
Hainan 0.0010 -0.0033 0.0035 -0.0067 0.0043 -0.0017 0.0059 
Mean 0.0027 -0.0004 0.0005 -0.0009 0.0031 0.0025 0.0006 
 

3.4 Analysis at the Level of Regions 
Although the overall ocean economy green total factor productivity of coastal areas has been 
in a state of relatively slow growth, there were large differences between various coastal 
areas, and several provinces (Liaoning, Jiangsu, Guangdong, and Guangxi) have displayed 
decreasing performance. The increase in the ocean economy green total factor productivity 
of Liaoning and Guangxi has been constrained by decreasing dynamic pure technical 
efficiency and dynamic scale efficiency. Jiangsu’s 0.26% ocean economy green total factor 
productivity decrease is primarily attributable to the constraining effect of decreases in 
dynamic efficiency and dynamic technical progress (by 0.08% and 0.17%, respectively). In 
this case, decreasing dynamic efficiency and dynamic technical progress were attributable 
to low dynamic scale efficiency and capital dynamic effect. The decrease in Guangdong’s 
ocean economy green total factor productivity is attributable to three factors: changing 
dynamic pure efficiency, conventional technical progress, and capital dynamic effect. These 
results indicate that the harmful nature of developing the ocean economy at the expense of 
resource consumption and environmental pollution has begun to become apparent. In 
contrast, Shanghai, Tianjin, and Shandong had the highest ocean economy green 
productivity. Shanghai and Tianjin benefited from the early accumulation of capital and 
superior geographic conditions, while Shandong took advantage of its status as a leading 
maritime province and central and local government policies aimed at making it a “blue” 
economic zone to avoid any decline in ocean economy green productivity. While Zhejiang 
and Fujian are leading maritime provinces, their green total factor productivity values have 
been lower than that of Shandong, which is attributable in both cases to a low dynamic 
efficiency growth rate. The combined effect of a relatively low dynamic efficiency growth rate 
and decreasing technical efficiency due to the excessive resource dependence of the ocean 
economy and excessive environmental pollution has prevented these provinces from 
realizing the intensive use efficiency of various marine production factors.  
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4. Dynamic Factors Decomposition  

4.1 Results of Decomposition the Changes in the Green Total 
Productivity 

According to formula (9), total factor productivity can be obtained by comparing the 
green inefficiency value during adjacent periods within a unified boundary. If the 
productivity index associated with a certain input or output factor is positive, this 
indicates that the green inefficiency value connected with that factor has decreased, 
and the factor has a positive effect on green total factor productivity (and vice versa).  

Table 2 
Decomposition of Changes in Green Total Factor Productivity of China’s 

Ocean Economy Based on Different Input and Output Factors 
Region Total 

efficiency 
value 

Input Dynamic factors Output Total 
efficiency of 

resource 
and 

environment

Resource 
consumption 

Environmental pollution 

labor Capital 
Dynamic 

inputs 

Capital 
dynamic 
outputs

Energy fishing wasted 
water 

COD Solid 
waste 

Tianjin  0.0094 0.0085 -0.0019 0.0015 0.0082 -0.0070 0.0072 -0.0074 -0.0040 0.0029 -0.0057 
Hebei 0.0062 0.0041 -0.0019 0.0016 0.0079 -0.0056 0.0070 -0.0063 -0.0069 0.0061 -0.0055 
Liaoning -0.0021 -0.0019 -0.0017 0.0018 0.0062 -0.0065 0.0058 -0.0060 -0.0053 0.0037 -0.0047 
Shanghai  0.0164 0.0113 -0.0020 0.0021 0.0079 -0.0029 0.0047 -0.0068 -0.0027 0.0059 -0.0040 
Jiangsu  -0.0026 -0.0018 -0.0019 0.0017 0.0053 -0.0058 0.0020 -0.0053 -0.0038 0.0035 -0.0021 
Zhejiang 0.0039 0.0089 -0.0017 0.0016 0.0088 -0.0137 -0.0002 -0.0074 -0.0057 0.0050 -0.0054 
Fujian  0.0011 0.0095 -0.0020 0.0017 0.0049 -0.0130 0.0065 -0.0072 -0.0031 -0.0036 -0.0055 
Shandong 0.0083 0.0057 -0.0018 0.0017 0.0075 -0.0047 0.0067 -0.0074 -0.0065 0.0074 -0.0050 
Guangdong -0.0076 -0.0019 -0.0018 0.0017 0.0087 -0.0143 0.0059 -0.0071 -0.0048 -0.0021 -0.0061 
Guangxi -0.0039 -0.0085 -0.0016 0.0015 0.0070 -0.0023 0.0073 -0.0074 -0.0039 0.0064 -0.0047 
Hainan 0.0010 0.0039 -0.0017 0.0014 0.0055 -0.0080 0.0059 -0.0074 -0.0003 0.0007 -0.0069 
Mean 0.0027 0.0034 -0.0018 0.0017 0.0071 -0.0076 0.0053 -0.0069 -0.0043 0.0033 -0.0050 
 
Table 2 displays a breakdown of ocean economy green total factor productivity 
according to various input and output factors during the period 2003-2012. The table 
reveals that labor input, capital dynamic output, and expected output have a positive 
effect on the green growth performance of China’s ocean economy. In particular, the 
0.71% increase in green total factor productivity attributable to growth in the ocean 
economy indicates that the rapid growth of China’s ocean economy during the sampling 
period was the chief reason for increased productivity. Labor input was the second-most 
important cause of increased productivity and accounted for 0.34% of productivity. 
Compared with labor input, capital dynamic output accounted for relatively little 
productivity (only 0.17%). Factors with a negative influence on ocean economy green 
growth included capital dynamic input, resource consumption, and environmental 
pollution. If resource consumption and pollution emissions are combined, the total 
productivity value attributable to these factors is approximately -0.76%. This outcome 
indicates that resource consumption and pollution emissions are in fact the primary 
source of green inefficiency in China’s ocean economy and have a significant negative 
effect on the green growth performance of the ocean economy. Among indicators 
associated with resource consumption and pollution emissions, fishing, wastewater 
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discharges, and solid waste disposal have negative impacts on the green productivity. 
Fishing has the most significant negative impact, followed by solid waste disposal. 
Conversely, energy and COD emissions have a positive effect on green productivity, 
which indicates that energy conservation and reduced COD emissions can contribute 
considerably to improving the green growth of the ocean economy. However, we may 
notice an interesting issue in this regard: In the foregoing static analysis of the green 
efficiency of the ocean economy, we observed out that fisheries depletion and COD 
emissions make relatively large contributions to resource and environmental inefficiency 
and have the largest negative impacts on the productivity of the ocean economy. 
However, we also find that COD emissions have a positive influence on the green total 
factor productivity of the ocean economy. How can this phenomenon be best explained? 
Referring to formula (3), we may notice that total factor productivity is derived by 
comparing inefficiency values during adjacent periods of time within a unified boundary. 
Although the inefficiency value of COD emissions is relatively high, which indicates that 
in fact it constitutes the chief cause of resource and environmental inefficiency, the 
decreasing trend in inefficiency during the analysis period indicates that the inefficiency 
of COD emissions improved somewhat. Therefore, it has a positive influence on the 
green total factor productivity.  

4.2 Analysis of Factors at Regional Level 
At the level of regions, the factors that influence the green total factor productivity of the 
ocean economy in various coastal areas display the following characteristics: (1) The 
association between productivity and labor input reveals that the labor inputs of 
Shanghai, Fujian, Zhejiang, and Tianjin had a significant positive influence on their 
ocean economy green productivity, while the labor inputs of Guangdong, Guangxi, 
Liaoning and Jiangsu had a significant negative influence on their green productivity, 
and the labor input efficiency of these regions exhibited a decreasing trend. (2) The 
association between productivity and capital dynamic input factors (dynamic inputs and 
dynamic outputs are combined for the purpose of analysis) reveals that capital dynamic 
factors had a weakly negative, fluctuating influence (ranging from -0.01% to -0.03%) on 
ocean economy green productivity in the various coastal areas. Capital dynamic output 
had a 0.17% positive influence. When taking capital as the only input factor, a relatively 
large lag effect on the green total factor productivity of the ocean economy appears. 
Because the dynamic effect of marine capital stock more objectively reflects the effect 
of capital in the dynamic production process, using this factor not only helps avoid 
overestimating the improved efficiency of marine capital stock but also underestimating 
productivity associated with marine capital. Thus, the effect of marine capital stock on 
marine green total factor productivity can be objectively and accurately assessed. (3) 
Productivity results associated with outputs reveal that the outputs of the coastal areas 
had a positive influence on ocean economy green total factor productivity. This was 
most evident in the case of Zhejiang and Shanghai, which confirms that the GOP of the 
rapid growth of the ocean economy is the main path to the effective green growth of 
China’s ocean economy. However, why has the green total factor productivity of China’s 
ocean economy increased so slow, and why has it had negative growth in certain 
provinces? (4) Productivity results associated with resources and the environment 
reveal that resource consumption and pollution emissions have significant negative 
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effects on the green total factor productivity of the ocean economy in the various coastal 
areas. In particular, Guangdong, Zhejiang, and Fujian have the highest negative 
productivity associated with resources and the environment. This phenomenon answers 
the foregoing question. While the ocean economy has grown rapidly, overall resource 
use efficiency and environmental administration experienced notable, persistent 
problems during the sampling period. For instance, fishing, wastewater discharges, and 
waste disposal did not exhibit significant improvement, and all of these factors represent 
important constraints on the improvement of the green total factor productivity of the 
ocean economy.  

4.3 Dynamic Trends in Individual Periods 
The foregoing analysis addresses the influence of various input and output factors on 
green total factor productivity in various coastal areas during the period 2003-2012. 
However, we were unable to determine dynamic trends within individual periods. 
Because DLTFP, DLEC, and DLTP are derived from differences in the three variables 
defined in the second section of this paper during adjacent periods, they are based on 
the environmental inefficiency value GIE measured within a unified boundary, the 
environmental inefficiency value CIE, and TG measured within the current-period 
boundary. Therefore, by finding the changes in these three variables during the 
sampling period, we can obtain reasonable explanations for China’s ocean economy 
green growth performance, changes in efficiency, and changes in technical progress. 
Figure 1 shows the changes in the ocean economy green inefficiency GIE and the 
inefficiency GIE value of inputs, outputs, dynamic factors, resources, and pollution within a 
unified boundary during the period 2003-2012. According to formula (3), because 
productivity equals the GIE differences between the coastal areas during adjacent periods, 
if the inefficiency value during the period t+1 is greater than that during the period t, the 
productivity index will be positive (and vice versa). Figure 1 reveals that while the GIE value 
associated with resource consumption and pollution emissions during the period 2003-2006 
was higher than the GIE value during other periods, there was a monotonic decreasing trend, 
and the GIE value associated with inputs had a steadily increasing trend during this period. 
The inefficiency curves of other factors were relatively flat, which indicates that labor input, 
resource consumption, and pollution emissions were the main factors responsible for the 
negative growth in ocean economy green total factor productivity during the period 2003-
2006. For its part, the decrease in input efficiency was the primary cause of decrease in the 
green total factor productivity. During the period 2006-2008, the GIE value associated with 
inputs decreased from 0.2675 in 2005 to 0.2372 in 2006, while the GIE associated with 
resource consumption and pollution emissions decreased from 0.3633 in 2003 to 0.2556 in 
2006. Compared with earlier periods, the inefficiency values of input, resource, and 
environmental factors decreased during this period, which was the primary cause of the 
increase in the ocean economy green growth performance during this period. During the 
period 2008-2010, the ocean economy green inefficiency GIE value reached a peak. During 
this period, the GIE values associated with labor input, resource consumption, and 
environmental pollution emissions remained high and relatively flat. However, the GIE values 
associated with outputs and dynamic factors rose, and the GIE value associated with 
dynamic factors reached 0.1097 in 2009. The inadequate efficiency of dynamic factors in the 
ocean economy constituted the primary constraint on green growth in the ocean economy 
during this period. During the period 2010-2012, the GIE values associated with labor input, 
resource consumption, and pollution emissions displayed decreasing trends. However, the 
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inefficiency curve associated with output displayed an increasing trend and reached 0.1335 
in 2012, which was primarily associated with the growth in the ocean economy during the 
most recent two years. During this period, the increasing efficiency of resource consumption 
and the pollution emissions were the main factors driving the green total factor productivity 
increase in the ocean economy. Labor input efficiency was the second-most important factor 
during this period. In addition, the decrease in output efficiency cannot be neglected.  

Figure 1 
Changes in Ocean Economy Green Inefficiency GIE and Related Factors, 

2003-2012 

 
 

Figure 2 shows ocean economy green inefficiency CIE trends within the technical boundary 
during the current period. According to formula (4), changes in dynamic efficiency represent 
differences in CIE during adjacent periods in the coastal areas. The change in dynamic 
efficiency is positive when the CIE value for the period t+1 is larger than the value for the 
period t, which implies efficiency has increased, and negative when the CIE value 
decreases, which implies that efficiency has decreased. The trend of CIE change associated 
with resource consumption and pollution emissions during the entire period was similar to 
that of CIE change associated with green inefficiency in the ocean economy. The CIE value 
associated with inputs rose to 0.1836 during 2003 and 2004, which was a direct result of the 
change in dynamic efficiency shifting to negative during this period. Apart from dynamic 
factors, the CIE values associated with labor input, output, and resources/environment 
increased during the period 2008-2011, which accounts for the primary factors that explain 
the decrease in efficiency during this period.  
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Figure 2 
Changes in Ocean Economy Green Inefficiency CIE and Related Factors, 

2003-2012 

 
Figure 3 shows the trend of the ocean economy TG value in the coastal areas during the 
sampling period. According to formula (5), the dynamic technical progress rate is the 
difference in TG during adjacent periods, and the changes in the values obtained under 
different technical boundaries express technical progress trends. A comparison of Figure 1 
with Figures 2 and 3 reveals that while the trends in the ocean economy green inefficiency 
value GIE are largely similar, TG has the opposite trend. This indicates that changes in 
efficiency, not changes in technical progress, were the primary drivers of the downward trend 
in the green growth performance of China’s ocean economy during certain periods. We can 
observe from the effect of the various input and output factors on technical progress that 
resource consumption and pollution emissions were associated with a significant decrease 
in TG during the sampling period, followed by TG associated with labor input. In an opposite 
trend, TG associated with capital dynamic factors displayed a significant increasing trend, 
which indicates that capital dynamic factors have a significant positive effect on technical 
progress. Finally, output factors have the smallest effect on technical progress.  
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Figure 3 
Changes in Ocean Economy TG and Related Factors, 2003-2012 

 
 

5. Conclusions  
Taking the advantage of the dynamic Luenberger index, this paper analyzes the specific 
factors that influence the trend of total factor productivity, efficiency change and 
technological progress of the Chinese ocean economy. There are some comprehensive 
policy recommendations. For example, in Guangdong, Guangxi, Liaoning and Jiangsu 
regions, productivity declines related to labor input. Hence, the measures are provided to 
improve the growth performance of Chinese ocean economy, i.e., optimizing human 
resource allocation and increasing human capital investment. The ocean economy growth 
in Shanghai, Jiangsu and Zhejiang shows high resource dependence. Therefore, in order to 
develop ocean economy in these areas, the government should pay more attention to 
resources unified management to adjust and optimize structure of ocean economy. At the 
same time, the government should limit energy-intensive, high-emission projects strictly and 
improve project size and quality. In Fujian and Guangdong, environmental problems are 
most prominent for the growth of the ocean economy. Hence, ocean ecological reserve 
needs to be set up, which needs to balance the development and environmental protection. 
By controlling the discharge of pollutants into the sea strictly, improving the environment of 
the sea and strengthening the restoration and protecting ocean ecological environment, we 
can truly realize the green development of ocean economy in these areas. 
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