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Abstract 

In this paper, we propose a new model with random variance components for 
estimating small area characteristics. Under the proposed model, we derive the 
empirical best linear unbiased estimator, an approximation to terms of order (1/ )o m  
and an estimator whose bias is of order (1/ )o m  for its mean squared error, where m 
is the number of small areas in the population. 
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1. Introduction 

National surveys are generally designed for estimating parameters at national level. 
The inference is based on the sampling distribution and the size of the sample insures 
an adequate level of precision for the resulting estimators. 
There is a growing demand for estimations at sub-national level, region or county, for 
instance. In the sample survey theory these sub-populations are called domains or 
areas. If we base the inference on the sampling distribution, which is the distribution 
coming from the sampling design, the resulting estimator for some area characteristics 
called direct estimator has the same formula as the estimator for the same parameter 
at the national level, but it uses only the observations falling in the area. Because the 
national survey was designed for national estimation and not for the area under study, 
it happens more often than not that these observations are not enough to ensure an 
adequate level of precision for the direct estimator of the area parameter. This is why 
                                                           
∗ Polytechnic University of Bucharest, Free University of Brussels, mastefan@gmail.com, 

mastefan@ulb.ac.be. 

2. 



 Prediction of a Small Area Mean for an Infinite Population 

Romanian Journal of Economic Forecasting – 3/2009  23 

  

in this case the area is called small area and a new theory is needed to estimate the 
small area parameters. 
The new theory is called small area estimation theory. A detailed account is given in 
Rao J.N.K. (2003). In small area estimation, the inference is model based. This means 
that, first, one has to find a model for the population values of the variable under 
study, then check the model fit and, finally, base the inference on the model to get the 
estimator as well as a measure for its precision. The model based estimator for the 
small area characteristics called indirect estimator uses the entire national sample and 
not only the small area sample, because the population model acts like a link between 
different areas of the population. For this reason, it is said that the indirect estimator 
borrows strength from related small areas and its precision is generally better than 
that of the direct estimator. 
The parameter of interest is the small area mean. We consider only the infinite 
population case. In section 2 of our paper we propose a new model, which can be 
used for estimating the mean of a small area and give the formula for the best linear 
unbiased predictor of the mean under the proposed model. In section 3, first we derive 
an approximation to terms of order (1/ )o m  for the precision of the predictor 
measured by its mean squared error. Then, we shall obtain an estimator of bias of 
order (1/ )o m  for the precision of the predictor. In section 4, we present a Monte 
Carlo simulation showing the accuracy of both the approximation and the estimator of 
the precision. Finally, in section 5 we draw some conclusions and give a few 
directions for future research. 

2. A new model 

In our paper, we are interested in estimating the mean iµ  of small area i from a 
population composed of m small areas. We suppose that the sampling design is non 
informative, which means that the model for the population values holds true for the 
sample values. A wide range of models have been proposed and used in the literature 
for estimating iµ . Stukel D.M. and Rao J.N.K. (1999) proposed a two-fold nested error 
regression model with constant variances, useful in situations when the individuals are 
grouped in primary units and each small area is composed of several primary units. 
Cleary their model for the population and the sample has the form: 

t
ijk ijk i ij ijky v u e= + + +x β  

k=1,…, ijN ( )ijn , j=1,…, '
iM

'( )im , i=1,…,m 
(1) 

where: m is the number of small areas in the population; '
iM  and '

im  are the 

population and the sample number of primary units in small area i, respectively; ijN  

and ijn  are the population number of individuals and the sample number of individuals 

in primary unit j from small area i; t
ijkx  is the vector of auxiliary variable for individual k 
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in primary unit j from small area i; β  is the vector of fixed effects, iv  is the random 

small area effect following ),0(~ 2
νσν Ni ; iju  is the random primary unit effect 

following ),0(~ 2
uij Nu σ ; ijke  is the model error following ),0(~ 2

eijk Ne σ ; the 

effects iv , iju  and ijke  are independent.  

The variance components 2 2 2( , , )tv u eσ σ σ=2σ  are fixed and unknown. The sample is 

selected as follows: from the small area i a sample of '
im  primary units is selected and 

from each selected primary units a sample of ijn  individuals is selected.  

Model (1) supposes that the variances 2
uσ  and 2

eσ  are the same regardless of the 
small area or the primary unit. In practice, this hypothesis may be restrictive, 
especially if we deal with non homogenous small areas. For this reason, we propose a 
less restrictive model, with 2

uσ  and 2
eσ  depending on the small area. Clearly, our 

model is given by: 

ijk i ij ijky v u eµ= + + +  

k=1,…,N ( )n , j=1,…, 'M ( ')m , i=1,…,m 
(2) 

where: ),0(~ 2
νσν Ni , ),0(~ 2

uij Nu σ , ),0(~ 2
eijk Ne σ , ),(~ 11

2 αβσ lawi  and 

),(~ 22
2 αβτ lawi  ( ( , )law β α  designates an arbitrary  distribution of mean β  and 

variance α ).  

The effects iv , iju  and ijke  are conditionally independent. The other notations in (2) 
have the same meaning as in (1). 
Remark 1: In (2) we do not have auxiliary variables and the model supposes that we 
have both a balanced population and sample: N and n are the same regardless of i 
and j; 'M  and 'm  are the same regardless of i; we make these restrictive 
hypotheses for theoretical reasons. 

Remark 2: (2) supposes that 2
iτ  depends only on i and not on j; a more general 

model should incorporate 2
ijτ  instead of 2

iτ , but the theoretical results would be more 
difficult to obtain under this less restrictive model. 
The idea of passing from a constant to a random vector of variance components is not 
new. It can be found in Kleffe, J. and Rao, J.N.K. (1992), who did it for a one-fold 
nested error regression model, which is a model appropriate for a population without 
primary units. Initially, a one-fold nested error regression model with constant 
variances was proposed by Battese, G.E., Harter, R.M. and Fuller, W.A. (1988), but 
Kleffe, J. and Rao, J.N.K. (1992) transformed their model into a model with random 
variances. 
From (2), it can be seen that the mean of the small area i is given by: 
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' ' '

1 1 1 1 1

1 1 1
' ' '

M N M M N

i ijk i ij ijk
j k j j k

y v u e
M N M M N

µ µ
= = = = =

= = + + +∑∑ ∑ ∑∑  (3) 

For an infinite population 'M  is large enough and from (3) it can be seen that iµ  is 
approximately equal to a linear combination of the model effects: 
 

i ivµ µ≈ +   

As a consequence, predicting iµ  is equivalent to predicting ivµ + . We shall use the 

theory of the best linear unbiased predictor, denoted by iµ% . It is linear, because it is of 

the form t
iµ = l y% , where y is the vector of all the sample observations. It is unbiased, 

because ( ) ( )i iE Eµ µ=%  and it is best in the sense that from all the linear and 

unbiased predictors iµ%  has the least mean squared error. It can be verified (see 

Ştefan, M. (2005), chapter 4 for technical details) that under model (2) iµ%  is given by: 

 

( )
'i i iy y y

m
βµ
δ⋅⋅ ⋅⋅= − −%  

(4) 

 

where: 2
1 n

ββ β= + , 2 1 2

' 'v m m n
β βδ σ= + + ,

'

1 1

1
'

m n

i ijk
j k

y y
m n⋅⋅

= =

= ∑∑  and 

'

1 1 1

1
'

m m n

ijk
i j k

y y
mm n = = =

= ∑∑∑ . 

 

We can also compute exactly the mean squared error of (4) (see Ştefan, M. (2005), 
chapter 4 for details), which will be given by: 
 

2 2

2( )
' '
v

iMSE
m mm
βσ βµ
δ δ

= +%  (5) 

The best linear unbiased predictor iµ%  cannot be used to predict iµ , because, as one 

may see from (4), it depends on β  and δ  which are unknown. In practice, we look 
for (if possible) unbiased estimators of β  andδ , plug them into (4) and get what is 

called the empirical best linear unbiased predictor of iµ , which we will denote by ˆiµ . 
Clearly, it can be proved (see Ştefan, M. (2005) chapter 4 for details) that the 
estimators β̂  and δ̂  given below are unbiased: 
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'
2

1 1

1ˆ ( )
( ' 1)

m m

ij i
i j

y y
m m

β ⋅ ⋅
= =

= −
− ∑∑ , 2

1

1ˆ ( )
1

m

i
i
y y

m
δ ⋅⋅

=

= −
− ∑  (6) 

where: 
1

1 n

ij ijk
k

y y
n⋅

=

= ∑ .  

As a consequence, 2
ˆˆˆ
'v m

βσ δ= −  will be unbiased for 2
vσ . Then, ˆiµ  will be given by: 

 

ˆ
ˆ ( )ˆ'i i iy y y

m
βµ
δ⋅⋅ ⋅⋅= − −  (7) 

(7) is the predictor that can be used in practice to predict iµ . 

3. Approximation and estimation of ˆ( )iMSE µ  

We now have to measure the precision of ˆiµ , that is to compute its mean squared 

error ˆ( )iMSE µ . Contrary to ( )iMSE µ% , ˆ( )iMSE µ  cannot be computed exactly and it 

would be naïve to consider that they are equal. In fact, we shall consider ( )iMSE µ%  

the naïve mean squared error of ˆiµ , that is ˆ( ) ( )N i iMSE MSEµ µ= % . ˆiµ  contains in its 

formula the estimators β̂  and δ̂  compared to iµ% , which contains the fixed unknown 

constants β  and δ  instead. For this reason, we expect ˆiµ  to have a larger variability 

than iµ% , that is ˆ( ) ( )i iMSE MSEµ µ> % . In section 4, the numerical results will show 

that ˆ( )N iMSE µ  can represent a serious underestimation of ˆ( )iMSE µ . 

The following theorem gives an approximation to terms of order (1/ )o m  for 
ˆ( )iMSE µ  ( (1)O  represents a quantity that remains bounded when m→∞  and 

(1/ )o m  represents a quantity that, multiplied by m, tends to zero whenm→∞ ): 
Theorem 1. Let the model (2) and the following regularity conditions be: 

a) ' (1)m O=  and (1)n O= ; b) 2
iσ  and 2

iτ  have finite twelfth order moments. 

Then: 
 

2 42

2 2 3

3 ' 1 2 1 3ˆ( ) (1/ )
' ( ' 1) '( ' 1) ' '

v v
i

mMSE o m
mm m mm m m mm

σ β σ αβ αµ
δ δ δ δ

−
= + + − +

− −
 

(8)
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where: 2
1 2n

αα α= + . 

Proof: See Ştefan, M. (2005), chapter 4, pp.100-156 for technical details.  
(8) shows that the approximation correct to terms of order (1/ )o m  will be given by: 
 

2 42

2 2 3

3 ' 1 2 1 3ˆ( )
' ( ' 1) '( ' 1) ' '

v v
A i

mMSE
mm m mm m m mm

σ β σ αβ αµ
δ δ δ δ

−
= + + −

− −
 (9) 

If the number m of small areas in the population is large enough (generally 30m ≥  is 
sufficient), then ˆ( )A iMSE µ  is a good approximation of ˆ( )iMSE µ , the relative error 
being negligible. 

ˆ( )A iMSE µ  is unknown because it depends on the unknown constants 2 , ,vσ β δ  and 

α . As a consequence, it cannot be used for estimating ˆ( )iMSE µ . The naïve 

approach would be to replace in the formula of ˆ( )N iMSE µ  the unknown quantities by 

their estimators, resulting in the naïve estimator ˆ( )N imse µ . By simulation (see section 

4), we check that ˆ( )N imse µ  can have large negative bias. The following theorem 

gives an estimator for ˆ( )iMSE µ  of bias of order (1/ )o m : 

Theorem 2. Let the model (2) and the same regularity conditions be as above. Let: 
 

'
2 2

1

1ˆ ( )
' 1

m

i ij i
j
y y

m
γ ⋅ ⋅⋅

=

= −
− ∑ , 2 2 2

1

' 1 ˆˆ ˆ( )
( ' 1)

m

i
i

m
m m

α γ β
=

−
= −

+ ∑  and 

2 2

2 2

ˆ ˆ ˆ ˆ ˆ1 ( 1) 4 1 1 1ˆˆ( ) ( ) ( )ˆ ˆ ˆ ˆ' ' ' ' 1 ' '( ' 1)i
mmse

m mm mm m m m m
β β βα αµ β
δ δ δ δ

−
= − + + +

− −
 

(10) 

Then, the bias of ˆ( )imse µ  as an estimator of ˆ( )iMSE µ  is of order (1/ )o m . 

Proof: See Ştefan M. (2005), chapter 4, pp.100-156 for technical details. 
As above, when m is large enough ( 30m ≥ ), ˆ( )imse µ  can be used as an estimator 
of negligible bias. 

4. Monte Carlo study 

In this section, we shall present the results of Monte Carlo simulations showing how 
ˆ( )A iMSE µ  and ˆ( )imse µ  perform as approximation and estimation of ˆ( )iMSE µ , 

respectively. The results are shown for the first small area of the population. The 
computer program written in S-Plus is presented in the Appendix. 
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Without loss of generality, we fixed 0µ = , 30m = , ' 2m = , 2n =  and 2 300β = . 

Then, we took several values for 2
vσ  and 1β  equal to 15, 30, 60, 150, 300 and 600, 

so that the ratios 1 2/β β  and 2
2/vσ β  take the values 0.05, 0.1, 0.2, 0.5, 1 and 2. We 

then computed for the first small area of the population (i=1) the values of ˆ( )N iMSE µ  

and ˆ( )A iMSE µ  given by (5) and (9). The Monte Carlo simulated parameters are 

computed from G=10000 samples ijky , i=1,…,m; j=1,…, 'm  and k=1,…,n. Each 

sample ijky  was generated as follows:  

- we generated 2
1σ , 2

2σ ,…, 2
30σ  from 1( )χ β  ( 1 12α β⇒ = ) and 2

1τ , 2
2τ ,…, 2

30τ  from 

2( )χ β  ( 2 22α β⇒ = ) 

- we generated ijke  from 2(0, )iN τ , iju  from 2(0, )iN σ  and iν  from 2(0, )vN σ (which 

gave 1 1g gµ ν= ) 

- for g=1,…,G we computed the sample observations ijk i ij ijky v u e= + +  and using 

these values we obtained: 1ˆ gµ , 1ˆ( )gmse µ  and 1ˆ( )N gmse µ  according to their 
respective formulas. 
Then we computed the Monte Carlo mean squared error of 1µ̂  given by: 

 
10000

2
1 1 1

1

1ˆ ˆ( ) ( )
10000MC g g

g
MSE µ µ µ

=

= −∑  (11) 

Using (11) we computed the relative errors of 1ˆ( )AMSE µ  and 1ˆ( )NMSE µ  by: 

 

1 1

1

ˆ ˆ( ) ( )100
ˆ( )

A MC

MC

MSE MSERE
MSE
µ µ

µ
−

=  and 

1 1

1

ˆ ˆ( ) ( )100
ˆ( )

N MC
N

MC

MSE MSERE
MSE
µ µ

µ
−

=  

(12) 

The Monte Carlo values of 1ˆ( ( ))E mse µ  and 1ˆ( ( ))NE mse µ  were simulated by: 

 
10000

1 1
1

1ˆ ˆ( ( )) ( )
10000MC g

g
E mse mseµ µ

=

= ∑  and 

10000

1 1
1

1ˆ ˆ( ( )) ( )
10000MC N N g

g
E mse mseµ µ

=

= ∑  

(13) 
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Using (13) the relative bias of 1ˆ( )mse µ  and 1ˆ( )Nmse µ  will be given by: 

1 1

1

ˆ ˆ( ( )) ( )100
ˆ( )

MC MC

MC

E mse MSERB
MSE
µ µ

µ
−

= , 

1 1

1

ˆ ˆ( ( )) ( )100
ˆ( )

MC N MC
N

MC

E mse MSERB
MSE
µ µ

µ
−

=  

(14) 

The two tables below present the numerical results of our simulations. 
Table 1 

Relative errors (%) of 1 1ˆ ˆ( ) / ( )N AMSE MSEµ µ  

(m=30, ' 2m = , n=2) 
    

1 2/β β     

  0.05 0.1 0.2 0.5 1 2 
 0.05 -45.73/-6.82 -39.71/0.43 -46.22/-2.91 -51.89/-1.73 -60.30/-2.97 -68.74/-4.00 
 0.1 -25.24/0.01 -27.30/-0.51 -30.47/-0.87 -39.91/-3.32 -44.36/0.16 -51.52/2.65 

2
2/vσ β  0.2 -13.60/1.39 -14.74/1.34 -18.37/-0.22 -22.01/1.62 -32.19/-1.32 -41.21/-0.34 

 0.5 -8.00/-1.24 -6.58/0.72 -8.55/-0.15 -9.70/1.79 -16.80/-0.75 -25.04/-1.45 
 1 -2.81/0.71 -4.69/-0.86 -3.61/0.81 -5.63/0.54 -10.24/-1.31 -16.46/-2.58 
 2 -1.37/0.42 -2.28/-0.32 -2.33/-0.05 -3.36/-0.15 -2.78/1.96 -6.06/1.51 

 
Table 2 

Relative bias (%) of 1 1ˆ ˆ( ) / ( )Nmse mseµ µ  

(m=30, ' 2m = , n=2) 
    

1 2/β β     

  0.05 0.1 0.2 0.5 1 2 
 0.05 -80.50/-3.42 -84.10/2.01 -89.38/1.05 -107.02/-

0.04 
-
117.19/1.86 

-
129.07/2.23 

 0.1 -52.35/1.85 -55.98/1.48 -60.88/1.92 -77.37/-1.16 -88.72/5.86 -
112.96/6.08 

2
2/vσ β  0.2 -29.63/3.31 -32.05/3.39 -37.68/1.65 -47.08/4.23 -64.35/0.91 -83.28/3.77 

 0.5 -14.69/-0.06 -14.21/1.83 -17.31/0.94 -22.76/2.86 -33.81/0.57 -49.03/0.70 
 1 -6.38/1.45 -8.39/-0.11 -8.60/1.16 -12.41/1.24 -19.70/-0.45 -30.47/-1.49 
 2 -3.07/0.92 -4.62/-0.34 -5.09/-0.07 -6.64/0.37 -7.62/2.93 -14.39/2.30 
 
From Tables 1 and 2 one may see that the underestimations of 1ˆ( )NMSE µ  and 

1ˆ( )Nmse µ  can be important. NRE  and NRB  decrease in absolute value when 

1 2/β β  is fixed and 2
2/vσ β  increases. On the other hand, they increase when 

2
2/vσ β  is fixed and 1 2/β β  increases. As far as RE  and RB  are concerned, they 
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are small for all the values of 1 2/β β  and 2
2/vσ β  considered in our simulations, 

which confirms the accuracy of theoretical results in Theorems 1 and 2. 

5. Conclusion 

In this paper, we propose a two-fold nested error regression model with random 
variances. Under this model and in the infinite population case we derive the empirical 
best linear unbiased predictor, an approximation and an estimator for its mean 
squared error. 
Presently, we study the finite population case. In this case, the approximation 

i ivµ µ≈ +  is no longer valid. For predicting ( ) /i ijk iy Nµ = ∑ , we split the small 
area population into two: the observed and the unobserved units, and the unobserved 
units will have to be predicted by the best (in the sense of the mean squared error) 
linear unbiased predictor. Then, an approximation and an estimator of bias of order 

(1/ )o m  will have to be obtained. The results will be the subject of another paper. 
Often in practice, statisticians deal with time series data. For instance, we have data 
that could be modelled using a one-fold nested error regression model, but if, 
moreover, the observations are done in time, then a supplementary index t for time is 
needed, and the one-fold model will transform into a two-fold model. Thus, the theory 
in this paper can be used to handle such data. Of course, the independence 
hypotheses on the effects iv , iju  and ijke  will have to be dropped, because in time the 
observations on the same units are correlated.  
In dealing with such a model, one can use a result presented in Fuller, W.A. and 
Battese, G.A. (1973). Clearly, they show that given the model = +z Wβ ψ , where 
ψ  is a vector of mean 0 and of variance-covariance matrix V, it is possible to find a 

transformation matrix T so that the errors ∗ =ψ Tψ  of the transformed model 
= +Tz TWβ Tψ  be non-correlated and with constant variances. We can use the 

results presented in this paper under the model = +Tz TWβ Tψ  and then return to 
the initial model via the transformation T. 
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Appendix 

The function genereazabazadate computes the relative errors and the relative bias in 
the case of an infinite population: 
 
genereazabazadate<-function(miu,sigmav,beta1,beta2,m,mprim,n,G) 
{ 
alpha1<-2*beta1;alpha2<-2*beta2;alpha<-alpha1+alpha2/n^2 
beta<-beta1+beta2/n;delta<-sigmav+beta/mprim 
EQMmiuchap1<-(3*mprim-1)*beta^2/(m*mprim^2*(mprim-1)*delta) 
+2*alpha/(m*mprim*(mprim-1)*delta)+sigmav*beta/(mprim*delta)- 
3*sigmav^2*alpha/(m*mprim^2*delta^3) 
EQMmiuchap1N<-beta/mprim-(m-1)*beta^2/(m*mprim^2*delta) 
sigmai<-rep(0,m); 
listay<-array(,dim=c(n,mprim,m)) 
listae<-array(,dim=c(n,mprim,m)) 
u<-matrix(,m,mprim);v<-rep(0,m);ybari<-rep(0,m);ybarij<-matrix(,m,mprim) 
EQMMmiuchap1<-0;EMeqmmiuchap1<-0;EMeqmmiuchap1N<-0 
 for(g in 1:G){ 
 sigma<-rchisq(m,beta1) 
 tau<-rchisq(m,beta2) 
 v<-rnorm(m,mean=0,sd=sqrt(sigmav)) 
  for(i in 1:m){ 
  u[i,]<-rnorm(mprim,mean=0,sd=sqrt(sigma[i])) 
   for(j in 1:mprim){ 
   listae[,j,i]<-rnorm(n,mean=0,sd=sqrt(tau[i])) 
   listay[,j,i]<-miu+v[i]+u[i,j]+listae[,j,i] 
   } 
  ybarij[i,]<-colMeans(listay[,,i]);ybari[i]<-mean(listay[,,i]) 
  } 
 sigmai<-rowVars(ybarij,SumSquares=TRUE)/(mprim-1) 
 betachap<-sum(rowVars(ybarij,SumSquares=TRUE))/(m*(mprim-1)) 
 deltachap<-sommecarres(ybari)/(m-1) 
 alphachap<-(mprim-1)*mean(sigmai^2)/(mprim+1)-betachap^2 
 miuchap1<-ybari[1]-(ybari[1]-mean(ybari))*betachap/(mprim*deltachap) 
 miu1<-miu+v[1] 
 EQMMmiuchap1<-EQMMmiuchap1+(miuchap1-miu1)^2 
 eqmmiuchap1<-betachap/mprim-(m-1)*betachap^2/(m*mprim^2*deltachap)+ 
 4*betachap^2/(m*mprim*(mprim-1)*deltachap)+ 
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 4*betachap*alphachap/(m*mprim^3*deltachap^2)+ 
 4*alphachap/(m*deltachap*mprim^2*(mprim-1)) 
 EMeqmmiuchap1<-EMeqmmiuchap1+eqmmiuchap1 
 eqmmiuchap1N<-betachap/mprim-(m-1)*betachap^2/(m*mprim^2*deltachap) 
 EMeqmmiuchap1N<-EMeqmmiuchap1N+eqmmiuchap1N 
 } 
EQMMmiuchap1<-EQMMmiuchap1/G 
EMeqmmiuchap1<-EMeqmmiuchap1/G;EMeqmmiuchap1N<-EMeqmmiuchap1N/G 
RB<-100*(EMeqmmiuchap1-EQMMmiuchap1)/EQMMmiuchap1 
RE<-100*(EQMmiuchap1-EQMMmiuchap1)/EQMMmiuchap1 
REN<-100*(EQMmiuchap1N-EQMMmiuchap1)/EQMMmiuchap1 
RBN<-100*(EMeqmmiuchap1N-EQMMmiuchap1)/EQMMmiuchap1 
listarezultate<list(relerror=RE,relbias=RB,EQM=EQMmiuchap1,EQMMC=EQMMmiuc
hap1, 
Eeqm=EMeqmmiuchap1,naifrelerror=REN,naifrelbias=RBN,EQMN=EQMmiuchap1N, 
EeqmN=EMeqmmiuchap1N) 
return(listarezultate) 


