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Abstract1

This paper compares several statistical models for daily stock return volatility in terms 
of sample fit and out-of-sample forecast ability. The focus is on U.S. and Romanian 
daily stock return data corresponding to the 2002-2010 time interval. We investigate 
the presence of leverage effects in empirical time series and estimate different 
asymmetric GARCH-family models (EGACH, PGARCH and TGARCH) specifying 
successively a Normal, Student's t and GED error distribution. We find that GARCH 
family models with normal errors are not capable to capture fully the leptokurtosis in 
empirical time series, while GED and Student’s t errors provide a better description for 
the conditional volatility. In addition, we outline some stylized facts about volatility that 
are not captured by conventional ARCH or GARCH models, but are considered by the 
asymmetric models and document their presence in empirical time series. Finally, we 
report that volatility estimates given by the EGARCH model exhibit generally lower 
forecast errors and are therefore more accurate than the estimates given by the other 
asymmetric GARCH models. 
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1. Introduction

The subject of volatility has always been one of great interest for participants in 
financial markets, for researchers and even for the general public, often being 
associated by the latter with the notion of risk. In the current context of an ongoing 
global financial crisis, terms like volatility forecasting or risk management are 
nowadays the most important topics in the financial world. There is no doubt that 
financial market volatility has historically played a crucial role in financial decision 
making and that volatility forecasts have important applications in areas such as 
option pricing, hedging strategies, portfolio allocation, as well as Value-at-Risk (VaR) 
forecasts and optimal capital charges under the Basel Accord. 

In this paper we shall discuss some of the most important methods for modeling and 
explaining volatility behavior, as well as the major procedures for volatility forecasting 
and forecast accuracy, always with an application on empirical time series from both 
the US and Romanian markets. 

One very important aspect that must always be considered is the fact that financial 
time series, such as stock returns or exchange rates exhibit some patterns that have 
been well documented in the literature and that are crucial for correct model 
specification, as well as estimation and forecasting. This is why we start by presenting 
below these so-called stylized facts about volatility, before explaining and applying 
different conditional volatility models on empirical time series. 

1.1. Stylized facts about volatility in empirical time series 

Fat tails 

When compared to the normal distribution, the empirical distribution of financial time 
series exhibits a fourth moment (kurtosis) higher than the normal value of 3 and 
therefore has fatter tails

2
.

Volatility clustering 

Another stylized fact is the so-called volatility clustering, which refers to the 
observation of large movements being followed by large movements and is an 
indication of persistence in past shocks.  

Leverage effects 

First suggested by Black (1976), this styled fact refers to the idea that price 
movements are negatively correlated with volatility. 

Long memory 

This characteristic means that volatility is highly persistent and there is evidence of 
near unit root behavior of the conditional variance process. There are two alternative 
methods of modeling this propriety: a unit root or a long memory process. Both ARCH 
family and Stochastic Volatility (SV) models use the second approach. 

                                                          
2
 In the financial literature the notions of “fat tails” and “heavy tails” are used interchangeably, 

both referring to leptokurtic distributions. Because they refer to the density of the distribution 
in the tail area, the term ”heavy” is mathematically more appropriate, although the term “fat” is 
better suited from a visual point of view. 
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Co-movements in volatility 

When analyzing time series from different markets, one observes that big movements 
in one financial time series is matched by big movements in another time series from 
a different market.

In order to get reliable forecasts of future volatility, researchers must consider and 
incorporate in their models these stylized facts. 

1.2. Literature review 

Two of the most widely used models in investigating return volatility are the 
Autoregressive Conditional Heteroskedasticity (ARCH) and Generalized ARCH 
(GARCH) developed by Engle (1982), and extended by Bollerslev (1986) and Nelson 
(1991). Two important characteristics found when investigating financial time series, 
heavy tails and volatility clustering, i.e. the tendency for large (small) swings in prices 
to be followed by large (small) swings of random direction, can be captured by the 
GARCH family models. It is important to point out that, unlike other models for 
volatility, ARCH models formulate conditional variance of returns via maximum 
likelihood procedure, instead of using sample standard deviations. 

Many empirical studies in the financial literature found support for the ARCH/GARCH 
models and their extensions. Akgiray (1989) finds GARCH consistently outperforms 
other models in all sub-periods and under all evaluation measures while Pagan and 
Schwert (1990) find EGARCH is best especially in contrast to nonparametric. Cao and 
Tsay (1992) document that E-GARCH gives the best forecast for small stocks which 
they explain by a leverage effect. Bali (2000) documents the usefulness of GARCH 
models, the nonlinear ones in particular, in forecasting one-week-ahead volatility of 
U.S. T-Bill yields. 

In general, models that allow for volatility asymmetry came out well in the forecasting 
contest because of the strong negative relationship between volatility and shocks. 
Charles Cao and Ruey Tsay (1992), Ronald Heynen and Harry Kat (1994), Lee 
(1991), and Adrian Pagan and G. William Schwert (1990) favor the EGARCH model 
for volatility of stock indices and exchange rates. On the other hand, Brailsford and 
Faff (1996) and Taylor (2001) find GJR-GARCH to outperform GARCH in stock 
indices.  

Franses and Van Dijk (1998) study the performance of the GARCH model and two of 
its non-linear modifications, respectively the Quadratic GARCH of Engle and Ng 
(1993) and the Glosten, Jagannathan and Runkle (1992) model to forecast weekly 
stock market volatility. They find that the QGARCH model is best when the estimation 
sample does not contain extreme observations such as the 1987 stock market crash 
and that the GJR model cannot be recommended for forecasting. 

Hansen and Lunde (2005) compare 330 ARCH-type models in terms of their ability to 
describe the conditional variance. The models are compared out-of-sample using DM-
$ exchange rate data and IBM return data, where the latter is based on a new data set 
of realized variance. The authors find no evidence that a GARCH(1,1) is outperformed 
by more sophisticated models in the analysis of exchange rates, whereas the 
GARCH(1,1) is clearly inferior to models that can accommodate a leverage effect in 
the analysis of IBM returns.
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Donaldson and Kamstra (1997) document important differences between volatility in 
international markets, such as the substantial persistence of volatility effects in Japan 
relative to North American and European markets.

De Santis and Imrohoroglu (1997) investigate stock returns and volatility in emerging 
financial markets and find clustering, predictability and persistence in conditional 
volatility, as others have documented for mature markets. However, they document 
that emerging markets exhibit higher conditional volatility and conditional probability of 
large price changes than mature markets.

Nam, Pyun and Arize (2002) use asymmetric nonlinear smooth-transition (ANST) 
GARCH(M) models and find that, for monthly excess returns of US market indexes 
over the period 1926–1997, negative returns on average reverted more quickly, with a 
greater reverting magnitude, to positive returns than positive returns revert to negative 
returns.

If the volatility of the US stock market, as well as other developed and emerging 
markets has long been investigated, there are not many studies on the Romanian 
financial market. 

Harrison and Paton (2004) use data on stock markets in two transition economies 
(Romania and the Czech Republic) to demonstrate the importance of using the 
correct GARCH specification. They show that, when returns are characterized by ‘fat 
tails’ or kurtosis the use of a GARCH-t specification is appropriate. 

Lupu (2007) calibrates an EGARCH (Exponential GARCH) model for the logarithmic 
returns of the Romanian composite index BET-C. The article provides the testing of 
the predictive power of the model by estimating the model and then evaluating its 
performance on an out of sample test. 

Tudor (2008) employs GARCH-family models to investigate the Risk-Return Tradeoff 
on the Romanian stock market. Various time series methods are employed, 
including the simple GARCH model, the GARCH-in-Mean model and the exponential 
GARCH. Results of the study confirm that E-GARCH is the best fitting model for the 
Bucharest Stock Exchange composite index volatility in terms of sample-fit. 

Syllignakis and Kouretas (2008) use weekly stock market data to examine whether the 
volatility of stock returns of ten emerging capital markets of the new EU member 
countries (including Romania) has changed as a result of their accession in the EU. 
They find that the high volatility of stock returns of all new EU emerging stock markets 
is associated mainly with the 1997-1998 Asian and Russian financial crisis while there 
is a transition to the low volatility regime as they approach the accession to EU. 

Finally, Tudor (2008) employs symmetric GARCH models to investigate the volatility 
on the Romanian and American stock markets. The paper considers two empiric time 
series from each market (the composite index BET-C and TLV stock for Bucharest 
Stock Exchange and the S&P 500 index and the Coca-Cola stock for New York Stock 
Exchange) and finds that the volatility of the TLV Romanian stock TLV cannot be 
modeled by GARCH, while the symmetric GARCH models are correctly specified for 
S&P 500 and KO. For BET-C the estimated models did not remove all 
heteroskedasticity from the residuals, suggesting that other specifications for the 
variance equation must be found. 
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In this paper, we continue the preliminary analysis from Tudor (2008) by investigating 
the presence of asymmetric effects in empirical time series of stock returns from the 
Romanian and US stock markets. We begin with a brief review of the asymmetric 
GARCH-family statistical models. Further, we investigate the presence of leverage 
effects in empirical time series. Afterwards, for those financial series where evidence 
for asymmetry is found, asymmetric GARCH models for conditional volatility (such as 
E-GARCH, T-GARCH and P-GARCH) are further estimated. Different specifications 
for the error term distribution are further considered until models that best capture 
conditional volatility characteristics for each return series are selected. Afterwards, 
forecasting ability of the four asymmetric GARCH models is investigated. Some 
concluding remarks are given in the end of the paper. 

2. Asymmetric GARCH-class models: empirical 

estimation

2.1. An overview on the asymmetric conditional volatility models 

The simple GARCH model, besides its main virtue which consists in its simplicity, has 
also two important shortcomings. On one hand, it can be hard to fit, especially when 
more than one lag on each variable is involved. On the other, it also restricts the 
impact of a shock to be independent of its sign, whereas there is evidence of an 
asymmetric response for some markets, notably the stock market. Stock return 
volatility increases following a sharp price drop, but a price rise of the same size may 
even lead to lower volatility.

Indeed, in the basic GARCH model only squared residuals enter the conditional 
variance equation, therefore the signs of the residuals or shocks have no effect on 
conditional volatility. However, a stylized fact of financial volatility is that bad news 
(negative shocks) tends to have a larger impact on volatility than good news (positive 
shocks). In other words, volatility tends to be higher in a falling market than in a rising 
market. Based on this conjecture, the asymmetric news impact on volatility is 
commonly referred to as the leverage effect (Zivot (2008)). 

Nelson (1991) proposed a GARCH-class model named Exponential GARCH that 
allows for asymmetric effects and therefore solves one of the important shortcomings 
of the symmetric models. While the GARCH model imposes the nonnegative 
constraints on the parameters

3
, EGARCH models the log of the conditional variance 

so that there are no restrictions on these parameters:

                                                          
3
 The GARCH (p,q) model for the conditional volatility is written as: 
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variance equation is therefore a function of three terms: the mean w0, news about volatility 
from the previous period, measured as the  lag of the squared residual from the mean 
equation (the ARCH term) and last period’s forecast variance (the GARCH term). 
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Note that the left-hand side is the logarithm of the conditional variance. This implies 
that the leverage effect is exponential, rather than quadratic, and that forecasts of the 
conditional variance are guaranteed to be nonnegative.

The presence of leverage effects can be tested by the hypothesis that  < 0. If 
 0, then the impact is asymmetric. 

E-GARCH basically models the log of the variance (or standard deviation) as a 
function of the lagged logarithm of the variance/std dev and the lagged absolute error 
from the regression model. It also allows the response to the lagged error to be 
asymmetric, so that positive regression residuals can have a different effect on 
variance than an equivalent negative residual. 

Another extension of the classic GARCH model that allows for leverage effects is the 
Threshold-GARCH. The idea of the Threshold ARCH (or TARCH) model is to divide 
the distribution of the innovations into disjoint intervals and then approximate a 
piecewise linear function for the conditional standard deviation (Zakoian (1994)), and 
the conditional variance respectively (Glosten et al. (1993)).

Rabemananjara and Zakoian (1993) extend this preliminary Threshold model by 
including the lagged conditional standard deviations (variance respectively) as a 
regressor, which is known as the TGARCH model. They also give conditions for 
covariance-stationarity in their study. 

T-GARCH is therefore estimated with the following equation: 
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In other words, depending on the t-i being above or under the threshold value (which
equals zero), 

2
t-i will have different effects on the conditional variance 

2
t, as it follows: 

 When t-i is positive, total effects are given by ai
2
t-i;

 When t-i is negative, total effects are given by 
2)( itiia .

This is why in the case of TGARCH we expect i to be positive, so that bad news 
would have a more powerful effect on volatility than good news. 

Another well-known asymmetric GARCH-family model is the PGARCH (Power
GARCH) developed by Ding, Granger and Engle (1993).

The model they proposed (PGARCH (p,d,q)) has the following equation:
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where d is a positive coefficient and i represents leverage effects.

When d = 2, the above equation becomes a classic GARCH model that allows for 
leverage effects and when d = 1 the conditional standard deviation will be estimated. 
In addition, we can increase the flexibility of the PGARCH model by considering d as
another coefficient that must also be estimated [see Zivot (2008)]. 

2.2. Estimation of asymmetric conditional volatility models on empirical 
time series 

2.2.1. Data and methodology 

We consider two empirical time series from each market (US and Romania), 
consisting in stock indices returns, as well as individual stock returns. For each market 
we chose a comprehensive and diversified stock index along with a well-known 
individual stock. For Bucharest Stock Exchange, we consider the composite index 
BET-C and the IMP stock (Impact Bucharest), a company listed on the first tier at 
BSE. BET-C is a market capitalization weighted index and reflects the price 
movement of all the companies listed on the BSE regulated market, Ist and IInd 
Category, excepting the SIFs. 

For New York Stock Exchange we consider the Standard and Poor’s index and also 
the KO stock (Coca-Cola). S&P 500 is an equity value-weighted arithmetic index and 
in mid-1989 represented 76 percent of the equity capitalization of the NYSE. Daily 
returns are computed as logarithmic price relatives: Rt = ln(Pt)/ln(Pt-1), where t P is the 
daily price at time t.

The approach taken in this paper is one-step-ahead forecasts. One-step-ahead 
prediction is useful in evaluating the adaptability of a forecasting model. Since our 
main goal is to evaluate the volatility forecasting performance of different asymmetric 
volatility models, we wish to consider a reasonably large hold-out sample. Therefore, 
the sample data set is divided into two parts. The first part covers a seven years 
period (January 02, 2001-February 09, 2008) and comprises daily observations, 
totaling a number of 1853 observations for each empirical time series, or a total of 
7412 daily observations. The second part covers the period February 09, 2008-
February 08, 2010), or 433 daily observations for each financial series. We use the 
first part of the data set for estimating the initial parameters of the models, while the 
second part of the data set serves for producing out of sample forecasts. To assess 
the forecasting performance of various models, we need to compare forecasted 
volatilities with actual volatilities. Unfortunately, the actual volatility is not directly 
observed and hence it has to be estimated. A common approach in the literature is to 
use the absolute or squared daily return to estimate the daily volatility. We will follow 
the latter convention and use squared log-returns as a proxy for volatility in our study. 

2.2.2. Preliminary investigations and Empirical characteristics  

Table 1 presents the summary statistics (mean, standard deviations, skewness, 
kurtosis,  Jarque-Bera normality test and ADF unit root test) for daily stock returns. 

We notice that the daily return of the Romanian composite index BET-C had a mean 
value of 0.124% during the considered period, well above the returns of the other 
financial assets, while its daily volatility represented by the standard deviation (1.31%) 
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is above the volatility of the two American series, but smaller than the volatility of IMP 
stock.  

Furthermore, as mentioned before, we present four statistics which are calculated 
using the observations in the full sample: Skewness, Kurtosis and the Jarque-Bera 
normality test. The skewness coefficient is negative for three out of the four time 
series (with the exception of S$P500), suggesting that the three series have a long left 
tail while kurtosis is very high in all cases (from 5.79 for S$P 500 to an extreme value 
of 80.82 for IMP a reflection that all distributions are highly leptokurtic. As expected, 
the Jarque-Bera test rejects normality at the 5% level for all series.

Table 1 

Descriptive statistics and preliminary investigations 

 BET-C IMP KO S&P 500 
 Mean 0.001240 0.000339 6.64E-05 1.98E-05 
 Median 0.000664 0.000000 0.000000 0.000118 
 Maximum 0.062457 0.139762 0.053273 0.055744 
 Minimum -0.102876 -0.622378 -0.105973 -0.050468 
 Std. Dev. 0.013187 0.034257 0.011917 0.010548 
 Skewness -0.464047 -5.057259 -0.661180 0.056924 
 Kurtosis 8.040739 80.82222 10.07767 5.794280 
 Jarque-Bera 2028.295* 475495.3* 4002.639* 603.8436* 
 ADF Unit Root Test -35.47425* -38.92070* -45.30357 -42.31412* 
* Significant at 0.01. 

** ADF test is conducted at level and the lag length is chosen automatically, based on Schwartz 
Information Criterion with the maximum number of lags allowed equal to 24.  

Finally, the stationarity of the four series is tested by conducting the Augmented 
Dickey Fuller Unit Root Test. The specifications of the ADF tests were given by the 
graphical representation of each of the return series (trend, intercept, no trend and 
intercept). In all four cases, the null hypothesis of a unit root is rejected. We therefore 
conclude that the time series are stationary at level and we can proceed to model the 
conditional volatility with GARCH-class models. 

Next, Figure 1 presents the evolution of daily logarithmic returns of the four series 
during the considered time period. We observe that volatility clustering seems to be 
present in all cases, with the possible exception of the Romanian stock IMP. A series 
with some periods of low volatility and some periods of high volatility is said to exhibit 
volatility clustering. Volatility clustering can be thought of as clustering of the variance 
of the error term over time: if the regression error has a small variance in one period, 
its variance tends to be small in the next period, too. In other words, volatility 
clustering implies that the error exhibits time-varying heteroskedasticity (unconditional 
standard deviations are not constant). In conclusion, the time-series plot of the daily 
returns in Figure 1 clearly shows the familiar volatility clustering effect, along with a few 
occasional very large absolute returns, more so in the case of IMP stock. 
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Figure 1 

Daily logarithmic returns (BET-C, IMP, S&P500 and KO) 
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Further, we test for asymmetric effects on conditional volatility in the four financial series 
investigated. A simple diagnostic for uncovering possible asymmetric effects is the 
sample correlation between squared returns and lagged returns, or Corr(r

2
t, rt-1) [see 

Zivot (2008)]. A negative value for this correlation coefficient provides evidence for 
potential leverage effects. Table 2 presents estimates of this coefficient for the four time 
series. We notice that the correlation between r

2
 and rt-1 has a small negative value in all 

cases, indicating weak evidence for asymmetry.  Asymmetric GARCH models could 
therefore perform well in explaining conditional volatility for the four financial series. 

Table 2

Testing for asymmetric effects on conditional volatility for the four 

empirical time series 

Series Corr (r
2
t, rt-1)

BET-C -0.064103 
IMP -0.054781 

S&P 500 -0.076307 
COCA-COLA -0.077161 

2.2.3. Model estimates 

First, we filter conditional mean structure in the data by estimating ARMA(p,q) models 
with AR(p) and MA(q) orders determined by AIC. The results from mean equations 
(not presented here) show generally significant parameters for lagged returns but 
insignificant parameters for lagged errors, indicating that the best suited model for the 
mean equation is an AR(1,) model for all time series. We used ACF, PACF and the Q 
test to test for any remaining serial correlation in the mean equation and to check the 
specification of the mean equation. We conclude that the mean equation is correctly 
specified, as all Q-statistics are not statistically significant.

Furthermore, we estimate a series of asymmetric GARCH-family models to explain 
conditional variance and volatility clustering for each of the four series: EGARCH (1, 
1), TGARCH (1,1) and PGARCH (1,d,1), for d = 1, 2. Parameter estimates are 
reported in Table 3. 
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Table 3

Parameter estimates of asymmetric GARCH models 

Conditional
Volatility
Model

C ARCH(-1) GARCH(-1 
1

BET-C

EGARCH -2.20263 
(0.0000)

0.384592
(0.0000)

0.781001

(0.0000)

-0.073308

(0.0000)
TGARCH 2.40E-05 

(0.0000)
0.199268
(0.0000)

0.615096
(0.0000)

0.138734
(0.0000)

PGARCH2 2.41E-05 
(0.0000)

0.264638
(0.0000)

0.614187
(0.0000)

0.132520
(0.0000)

PGARCH1 0.002966 
(0.0000)

0.238949
(0.0000)

0.591016
(0.0000)

0.182367
(0.0000)

IMP

EGARCH -3.667686 
(0.0000)

0.449178
(0.0000)

-0.237577
(0.0000)

0.505156
(0.0000)

TGARCH 0.000386 
(0.0000)

0.135619
(0.0000)

0.404536
(0.0000)

0.485432
(0.0000)

PGARCH2 0.000385 
(0.0000)

0.334011
(0.0000)

0.361860
(0.0000)

0.405473
(0.0000)

PGARCH1 0.012596 
(0.0000)

0.275923
(0.0000)

0.461376
(0.0000)

0.465636
(0.0000)

S&P 500 

EGARCH -0.20523 
(0.0000)

0.064212
(0.0000)

0.983489
(0.0000)

-0.112774
(0.0000)

TGARCH 9.96E-07 
(0.0000)

-0.021700
(0.0000)

0.946638
(0.0000)

0.126625
(0.0000)

PGARCH2 1.17E-06 
(0.0000)

0.030717
(0.0000)

0.930263
(0.5527)

0.911049
(0.5634)

PGARCH1 0.000162 
(0.0000)

0.052584
(0.0000)

1.000000
(0.0000)

0.942371
(0.0000)

COCA-COLA

EGARCH -0.15726 
(0.0000)

0.099124
(0.0000)

0.990578
(0.0000)

-0.058158
(0.0000)

TGARCH 1.27E-06 
(0.0000)

0.011829
(0.0000)

0.942468
(0.0000)

0.079203
(0.0000)

PGARCH2 1.28E-06 
(0.0000)

0.042162
(0.0000)

0.942442
(0.0000)

0.468554
(0.0000)

PGARCH1 9.58E-05 
(0.0000)

0.054729
(0.0000)

0.951922
(0.0000)

0.564532
(0.0000)

Note: p-values associated with the Student test are presented in parentheses. 
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With only one exception (for the PGARCH2 model estimated for S&P 500) the 
coefficients that reflect leverage effects ( 1) are statistically significant at 1% for all 
series.  

The value of the statistically significant coefficient  indicates the magnitude of the 
leverage effect, and the sign of its direction. If results agree that asymmetric effects 
are present for the four time series, they are mixed in what the direction of the 
asymmetry is concerned.

EGARCH models show a negative and significant  parameter for BET-C, Coca-Cola 
and S&P500 suggesting that past negative shocks have a greater impact on 
subsequent volatility than positive shocks do. On the contrary, for the Impact stock the 
leverage coefficient is positive and also statistically significant, showing that future 
stock volatility is greater influenced by past positive events. 

TGARCH leverage effects are positive and significant for the four series, attesting that 
bad news increase volatility.

The results of the estimation of PGARCH models confirm that the asymmetric effects 
are present for BET-C, IMP, KO and S&P500. PGARCH1 and PGARCH2 
coefficients are positive and significant (with the one exception mentioned before), 
though with the opposite sign than expected. The positive innovations would imply a 
higher next period conditional variance than negative innovations of the same sign, 
indicating that the existence of leverage effect is not observed in returns of the four 
stock market return series.

The mixed results concerning the leverage effect encountered in our analysis are not 
quite unusual as shown by Glosten, Jagannathan and Runkle (1993) and cited by 
Zlatko (2007). They provided a brief overview of the conflicting results in the literature 
and then explained why both positive and negative relationship between past returns 
and subsequent volatility would be consistent with theory. 

We can attest that asymmetric effects are indeed present on the US and Romanian 
return series, thus we expect the asymmetric GARCH family models to perform better 
than a simple symmetric GARCH in explaining conditional volatility for the considered 
time series.  

In Table 4 we present information criteria and the log-likelihood function for the 
estimated asymmetric models and also for a simple GARCH (1,1) model estimated for 
the same financial series. Results confirm that, as expected, asymmetric models have 
both smaller values for information criteria and bigger log-likelihood functions than the 
simple GARCH(1,1) (with the exception of the Romanian index BET-C and common 
stock Impact, for which the symmetric model outperforms two of the asymmetric 
ones).

Information criteria show that the asymmetric PGARCH2 is the best in explaining 
conditional volatility for the Romanian index BET-C and also for the Romanian stock 
IMP, EGARCH is the most suited for S&P 500, and PGARCH1 has the best 
specifications for explaining Coca-Cola’s conditional volatility. 
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Table 4

Information criteria and log-likelihood function for symmetric and 

asymmetric GARCH models 

Model AIC BIC Log-likelihood 

BET-C

GARCH -6.02717 -6.01822 5587.173 

EGARCH -6.00047 -5.98854 5563.440 

TGARCH -6.03247 -6.02055 5593.091 

PGARCH2 -6.03256 -6.02063 5593.171 

PGARCH1 -6.00447 -5.99255 5567.147 

IMP

GARCH -4.096805 -4.087861 3798.690 

EGARCH -4.088361 -4.076436 3791.867 

TGARCH -4.109550 -4.097525 3810.591 

PGARCH1 -4.088502 -4.076576 3791.997 

PGARCH2 -4.109569 -4.097644 3811.516 

S&P 500 

GARCH -6.54375 -6.53481 6065.792 

EGARCH -6.58939 -6.57746 6109.071 

TGARCH -6.58844 -6.57651 6108.191 

PGARCH1 -6.58733 -6.57541 6107.168 

PGARCH2 -6.58410 -6.57217 6104.171 

COCA-COLA

GARCH -6.23872 -6.22978 5783.180 

EGARCH -6.26482 -6.25290 5808.364 

TGARCH -6.25499 -6.24306 5799.251 

PGARCH2 -6.25494 -6.24301 5799.204 

PGARCH1 -6.26573 -6.25380 5809.202 

Finally, we re-estimate the models after having eliminated the restrictive assumption 
that the error terms follow a normal distribution. In order to accomplish this goal, we 
assume that residuals follow successively a Student distribution and also a 
Generalized Errors Distribution (or GED), two of the distributions capable of 
incorporating “fat tails” usually present in empirical distributions. Therefore, we 
estimate both the simple  GARCH (1,1) and the best fitted asymmetric GARCH-class 
model for each of the four time series considering first that the residuals follow a 
Student distribution, and after that a GED. Table 5 presents AIC, BIC and log-
likelihood functions in all cases.
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Table 5

Information criteria and log-likelihood function for estimated non-

Gaussian GARCH models 

Model AIC BIC Log-
likelihood

AIC BIC Log-
likelihood

BET-C Student Distribution GED 

GARCH -6.138227 -6.126301 5691.067 -6.1438 -6.1318 5696.234 

PGARCH2 -6.139696 -6.124789 5693.428 -6.14595 -6.1310 5699.224 

IMP Student Distribution GED 

GARCH -4.796309 -4.78438 4447.781 -4.47007 -4.4611 4144.525 

PGARCH2 -4.798431 -4.78352 4450.746 -4.46944 -4.4575 4144.943 

S&P 500 Student Distribution GED 

GARCH -6.571648 -6.55972 6092.632 -6.57918 -6.5672 6099.618 

EGARCH -6.595090 -6.609997 6129.162 -6.613870 -6.5989 6132.751 

COCA-
COLA

Student Distribution GED 

GARCH -6.348831 -6.33690 5886.192 -6.34300 -6.3310 5880.793 

PGARCH1 -6.36466 -6.34976 5901.866 -6.35745 -6.3425 5895.183 

Results in Table 5 confirm that in two out of four cases (for BET-C and S&P 500), the 
best specifications are found in models that consider GED for the error terms’ 
distribution, while for the two time-series of common stocks (Impact and Coca-Cola) a 
Student distribution brings better results. Nevertheless, for all series a non-Gaussian 
distribution of the error terms is more appropriate than the very restrictive normality 
assumption. One should notice that in all cases the log-likelihood function for the 
asymmetric GARCH is higher than for the corresponding symmetrical one. Only in the 
case of IMP (GED) we find similar values for the log-likelihood function, which 
determined the information criteria to favor the symmetric model. 

In conclusion, the best specifications for modeling and explaining conditional volatility 
of the four stochastic processes are: PGARCH(1,2,1) model with GED standard errors 
for BET-C, PGARCH(1,2,1) model with Student’s t standard errors for Impact, 
EGARCH(1,1) model with GED standard errors for S&P 500 and  PGARCH(1,1,1) 
model with a Student distribution for residuals in the case of the Coca-Cola stock. 

Parameter estimates of the above presented specifications together with the ARCH 
LM test that investigates any signs of heteroskedasticity left in the residuals are 
presented in Table 6. For the ARCH LM test, the null hypothesis investigated is that 
there are no more ARCH effects in the residuals and the value of p (the number of 
lags) used in running the test is 20. For all time series, the LM test results validate the 
homoskedasticity assumption (last column in Table 6) and attest that all volatility 
models are correctly specified.
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Table 6

Estimated parameters and ARCH-LM test for the best specified 

conditional volatility models 

Time 

Series

Model C ARCH 

(-1)

GARCH

(-1
1 GED/ 

DOF

Log

likelihood

BIC ARCH 

LM

BET-C PGARCH
(1,2,1)

1.83E-05
(0.0000)

0.35208
(0.0000)

0.607035
(0.0000)

0.117526
(0.02)

1.05376
(0.0000)

5699.2 -6.13 1.02985 
(0.4220)

IMP PGARCH
(1,2,1)

0.242138
(0.0000)

0.37211
(0.0000)

0.36192
(0.0000)

0.565840
(0.00)

2.00018
(0.0000)

4450.704 -4.78 0.270961 
(0.9999)

S&P

500

EGARCH
(1,1)

-0.1932
(0.0000)

0.06809
(0.0002)

0.985057
(0.0000)

-0.11805
(0.00)

1.42396
(0.0000)

6132.7 -6.59 0.847490 
(0.6559)

Coca-

Cola

PGARCH
(1,1,1)

8.67E-05
(0.0062)

0.05374
(0.0000)

0.952965
(0.0000)

0.497242
(0.00)

5.22677
(0.0000)

5901.8 -6.34 0.556495 
(0.9422)

NOTE: - p-values are presented in parentheses; 

3. Forecasting Performance of asymmetric GARCH 

Models

Besides estimation, the other important application and use of conditional volatility 
models is for forecasting volatility. Accurate volatility forecasts are important to 
different categories of participants in the financial world, such as traders, investors, 
risk managers or researchers and estimates of future volatility are critical inputs in 
both option pricing models and value-at-risk models. 

Figlewski (2004) shows that all ARCH-type models share three significant 
shortcomings as forecasting tools. First, they all seem to need a large number of data 
points for robust estimation. Second, they are subject to the general problem that the 
more complex any model is and the larger the number of parameters it involves, the 
better it will tend to fit a given data sample, and the quicker it will tend to fall apart out-
of-sample. Thirdly, these models essentially focus on variance one step ahead and 
are not designed to produce variance forecasts for a long horizon. When trying to 
forecast more than a few periods ahead, the forecasts can not incorporate any new 
information from the (unknown) future disturbances, and will simply converge to the 
long run variance at a rate that depends on the value of (a1 + b1).

If in the previous section we selected the most adequate model for each financial 
asset in terms of criteria based on the goodness of fit of the candidate models, in this 
section we will select the best model on the basis of the forecasting performance of 
the candidate models. 

To this end, we consider the squared log-returns as a proxy for the actual volatility and 
proceed to producing one-day out-of-sample volatility forecasts for each of the four 
investigated time series. GARCH models are estimated using a moving window of 6 
years of data (1853 daily observations), as in the previous section. We start with the 
sample ranging from the first trading day of January 2001 until the 8

th
 of February 

2008. The estimated models then are used to obtain 1- step-ahead forecasts of the 
conditional variance during the next trading day of February 2008 (11th). Next, the 
window is moved one day into the future, by deleting the observation from the first 
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trading day of January 2001 and adding the first forecasted observation. As we roll 
over the sample, the various GARCH models are re-estimated on this sample, and are 
used to obtain further forecasts. This procedure is repeated until the final estimation 
sample consists of the last window of 1853 observations ending on February 8th 
2010.

To evaluate and compare the forecasts from the different models, several evaluation 
criteria are computed, with true volatility measured by the squared realized log-return. 

In the literature a variety of statistics have been used to evaluate and compare 
forecast performance. These include root mean square error (RMSE), mean absolute 
error (MAE), mean absolute percentage error (MAPE), mean mixed error (MME), the 
Theil-U statistic, and the LINEX loss function. Among these, RMSE, MAE and MAPE 
are conventionally used error statistics. Similar to Bluhm and Yu (2001), we argue that 
for practitioners like options traders relative profits and thus relative volatility are often 
more important than absolute values. Therefore, we use MAPE to measure the 
performance of out-of-sample model forecast results, defined as follows: 

,
ˆ1

1

T

t ht

htht

T
MAPE

where: T is the number of out-of-sample observations minus the number of days of 

the forecast horizon; t  the actual volatility at the period t; t
ˆ is the forecasted 

volatility at the period t. 

Table 7 reports in Panel A the mean absolute percentage error (MAPE) for each of the 
asymmetric GARCH models and each financial time series for the out-of-sample 
period February 9th 2008 to February 8th 2010. 

Similar to Brailsford and Faff (1996), each error statistic is also expressed on a 
relative basis where the benchmark is the value of the statistic for the worst 
performing model for each time series (Panel B). 

Table 7 

Out-of-sample mean absolute percentage errors for asymmetric 

conditional volatility models 

Conditional
Volatility 

Model

BET-C IMP S&P 500 KO

PANEL A:  Mean Absolute Percentage Error (MAPE) - Actual 

EGARCH 0.39629 0.43598 0.44865 0.47560 
TGARCH 0.54390 0.66732 0.46768 0.66103 
PGARCH2 0.47653 0.41753 0.65498 0.78532 
PGARCH1 0.68965 0.63578 0.71534 0.64289 

PANEL B: Mean Absolute Percentage Error (MAPE) - Relative 

EGARCH 0.574625 0.65333 0.627184 0.605613 
TGARCH 0.788661 1 0.653787 0.841733 
PGARCH2 0.690974 0.625682 0.915621 1 
PGARCH1 1 0.952736 1 0.818634 



 Asymmetric Conditional Volatility Models 

Romanian Journal of Economic Forecasting – 3/2010 89

An examination of Table 7 reveals that EGARCH models exhibit generally lower 
forecast errors. For three out of the four series, respectively BET-C, S&P500 and KO 
we find that EGARCH is associated with lower actual values for MAPE. Only for the 
Romanian stock IMP we find that PGARCH2 produces the most accurate out-of-
sample forecasts, while EGARCH ranks second. The PGARCH1 models are the worst 
performing two times, respectively in the case of stock market indices BET-C and 
S&P500 (see Panel B).

While the MAPE estimates for all four GARCH models may be considered as high in 
absolute terms, they only intend to give a relative indication of overall forecasting 
performance. Nevertheless, our reported results are lower than those given by 
Brailsford and Faff (1996), although higher than results found in Balaban (2000) or 
Balaban, Bayar and Faff (2006). 

In summary, although a different conditional volatility model was found best suited for 
each series in terms of in-sample modeling, on an out-of-sample basis EGARCH 
clearly dominates the other models, ranking first in terms of forecasting performance 
in three cases and second in the fourth case. Thus, the MAPE statistic clearly 
identifies the EGARCH model as superior. Nevertheless, caution should be used in 
the interpretation of these results, as a change in sample size, rolling window, forecast 
horizon, frequency of observations and other variables could greatly impact the above 
findings.

4. Conclusions 

Modeling and forecasting volatility in financial markets has always been an important 
subject of inquiry and research in the literature and its relevance has even increased 
nowadays in the very turbulent financial world.

In this paper, our goal was to compare various models of stock volatility both in terms 
of sample fit and out-of-sample forecasting performance. Taking the 2001-2010 period 
as a sample and using daily observations for four different return series from the 
Romanian and US stock markets, we conclude that the asymmetric GARCH-family 
models give a better explanation of returns’ volatility than the simple GARCH model. 
For each of the four time series, we find the corresponding asymmetric conditional 
volatility model that has the best suited specifications. 

In addition, we have examined the empirical performance of the asymmetric GARCH 
models for forecasting volatility in US and Romanian stock markets and found that 
mean absolute percentage errors are substantially lower for volatility forecasts 
conducted with the Exponential GARCH model.

Summing up, the results presented in this paper confirm previous findings in the 
literature that return series are uncorrelated in time, but they present the phenomenon 
of volatility clustering. In addition, we can report that GARCH family models with 
normal errors are not capable to fully capture the leptokurtosis in empirical time series, 
while GED and Student’s t errors provide a better description for the conditional 
volatility. Finally, asymmetric effects are present in empirical data and asymmetric 
models that are capable of allowing different responses to different past shocks 
perform better in explaining conditional volatility. 
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