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Abstract 

I compare the two alternative paradigms of business cycles for the case of the 
Romanian economy, namely the mainstream view that business cycles are driven by 
stochastic shocks and the nonlinear view, known as the endogenous business cycles 
theory, which states that business cycles are driven by deterministic processes. The 
comparison is based on the run of several tests for nonlinearity and chaos, such as 
the BDS test or the maximum Lyapunov exponent. 
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1. Introduction 

The mainstream macroeconomic model, known as the dynamic stochastic general 
equilibrium model, is a development of the real business cycles (RBC, hereafter) as 
proposed by Kydland and Prescott (1982). Originally, the model was based on the 
assumption of perfect competition, with the business cycles viewed as driven by 
stochastic shocks. The following extensions of the baseline model, which took into 
account the various imperfections that are present in the real economies, preserved, 
however, several fundamental assumptions specific to the RBC: rational expectations 
of the agents, optimizing agents (firms and households), with the economy viewed as 
driven by stochastic exogenous shocks to technology (Solow residual), preferences, 
policy rules, etc. 
An alternative view of the business cycles dates back to the first years of 
macroeconomics. Models such as those proposed by John Hick, Nicholas Kaldor or 
John Goodwin, advocated a view based on the hypothesis that the model economy is 
self-generating recurrent cycles that result from the structure of the underlying process 
(see Benhabib, 1994). This second view was for a long period considered as not very 
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relevant. However, after the ‘80s, the interest in this view was reignited. Among the 
factors that contributed to this are the contributions by Grandmont (1985) and also the 
rapid development of nonlinear tests, mainly derived from physics. 
Starting with the ‘80s, a series of contributions, such as those of Brock (1988) or 
Scheinkman (1990), discovered that it was evidence that some economic time series 
might be characterized by chaos. However, the findings remain debated and more 
recent research points that no definite conclusion are reached yet. 
Most of the research on the existence of chaos was done on financial data or 
exchange rates. There is also some research done on macroeconomic data (see 
Takala and Viren, 1996) although this is rather a marginal interest, mainly due to the 
limitations of data for the case of macroeconomic time series. 
In this context, the present paper proposes to test for the existence of deterministic 
chaos in the Romanian business cycles. Some previous paper, such as those of Albu 
(2001) or Purica and Caraiani (2009), underscored some of the nonlinear features of 
business cycles in the Romanian economy. In this study, we go deeper into the 
nonlinear features of the Romanian business cycles by testing for the existence not 
only of nonlinear properties but also of chaotic patterns in the data. 
The paper is organized as follows. The second section discusses the methodology 
and explains the techniques used. The following section shows the estimation results 
and discusses the main economic implications of the results. The last section 
concludes and suggests some possible extensions of the present paper. 

2. Methodology 

The methodology is based on a series of tests and techniques derived from nonlinear 
techniques originally used in physics. We focus on the discussion of three main 
techniques and tests, which were extensively employed in applications in economics 
and finance: the BDS test, the Hurst coefficient and the maximum Lyapunov exponent. 

2.1. The BDS Test 
The BDS test is due to Brock, Dechert and Scheinkman (1987), who proposed a way 
to test whether a series is independent and identically distributed or not. We present 
the statistics in a short manner, following Zivot and Wang (2005) or Tsay (2010). 
Formally, the BDS statistics is defined as: 

 ( )1,..., +−= mtt
m
t xxx  

with: T the number of observations, δ the distance between two points and σk(δ,T) 
obtained from σk(δ) when C and N are replaced by C1(δ,T) and N(δ,T). Key to this 
statistics is the concept of correlation integral, with Ck(δ,T) being the correlation 
integral for a k embedding dimension. Through the correlation integral one estimates 
the probability that any of two k-dimensional points are within a δ distance of each 
other. 
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Under the null hypothesis of independent and identically distributed series, the 
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The BDS statistics converges in distribution to N(0,1): 
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Thus, the null hypothesis of an independent and identical distributed series is rejected 
at 5% significance level each time ..V ,m 961>ε  

2.2. The Hurst Coefficient 
The Hurst coefficient dates back to the contributions of British hydrologist H. Hurst 
who developed this approach when studying the flows of the river Nile. He proposed 
the R/S method to estimate the level of what is known today as the Hurst coefficient. 
We present in a short manner what is meant by the Hurst coefficient (see Gao et al., 
2007 for a more in-depth analysis and presentation of different approaches in 
computing it). 
Hurst (1951) found that many time series behave according to the following power-law 
relationship: 
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where: H is the Hurst coefficient. 
For discrete time series analysis, the procedure consists in the following steps. 
Consider a time series yn, n=1,…,N. The running sum ym of the time series is given by: 
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The range can be defined as: 

 ( ) ( )minmax NNN yyR −=  
With 

 NNS σ=  
As we are interested how (R/S) behaves when, for successive subintervals of τ of N, 
we substitute τ for N and get the Hurst coefficient from the following equation: 
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The value of the Hurst exponent helps us to distinguish between different types of time 
series 
• A series for which 0<H<1/2 is considered as behaving in an anti-persistent way; 
• The time series for which 1/2<H<1 are characterized by persistent correlation; 
• Finally, for the series for which the Hurst coefficient is equal to ½, there is short 

range dependency. 

2.3. The Maximum Lyapunov exponent 
As the literature points (see Dingwell, 2006), there is no unanimously accepted 
definition of chaos. However, some authors pointed to some workable definition. For 
example, Strogatz (1994) showed that chaos can be defined as “aperiodic long-term 
behavior in a deterministic system that exhibits sensitive dependence on initial 
conditions”. The Lyapunov exponent is used in order to detect the existence of the 
sensitivity to the initial conditions. 
We describe in a succinct manner the mathematical foundations, following Dingwell 
(2006). Since the data used is discrete, the approach presented here is the one based 
on discrete systems. 
We consider a map of the following form: 

 i
j meanmeankjki VV ++ −=Λ ln

 
where: x is a vector of state variable that can be single or multidimensional, µ is a 
vector of parameters, while k is an index indicating the iteration step. 
The baseline idea of the Lyapunov exponent is to trace two trajectories of the system 
that start from two different initial states. Formally, one can write: 
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Here λ is the Lyapunov exponent, εn is the distance between the two trajectories after 
n iterations, with the assumption that: 
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 Since we are interested in the case when ε0 tends towards zero, the final 
expression is given by: 
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 There are many methods proposed to estimate the Lyapunov exponent, 
among them those proposed by Wolf et al. (1985), Abarbanel et al. (1990), Kantz and 
Schreiber (2004) or Rosenstein et al. (1993). We will apply a few of these techniques 
in the estimation section. 
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3. Data and results 

3.1. Data used 
I use monthly data of the Romanian index of industrial production. The data dates 
back to January 1991 and the sample ends up in December 2010. The initial series is 
not seasonally adjusted and is taken as a series with December 1990 as fixed base. 
Before using it, the series was seasonally adjusted using the Census X12 procedure. 
Afterwards, the series was logged using the natural logarithm and then transformed by 
means of the first difference. The final series, see Figure 1, is stationary. 

Figure 1 
Log differenced series of the index of industrial production 
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Source: Own Computations. 

3.2. The BDS Test 
In the literature (see, for example, Barnet et al., 1995), the BDS test is viewed as a 
first step in testing for nonlinearity. While BDS cannot be conceived as a test of 
linearity versus chaos, it is best to be viewed as a test of linearity against a general 
class of possible nonlinear models. 
In Table 1 we present the results of the BDS test for the series of industrial production 
presented in the previous section. We consider embedding dimensions from 2 to 7 as 
well as a radius that depends on the standard deviation, with four different cases 
considered. Overall, a wide range of possibilities is covered through this approach. We 
can see that the null hypothesis of linearity is rejected for the cases considered. What 
kind of nonlinearity characterizes the series could, however, be revealed with the help 
of different tests, as resulting from the following sections. 
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       Table 1 
The BDS results  

σ/m 0.5σ σ 1.5σ 2σ 
2 4.1095 3.9243 3.4019 2.3396 
3 6.4171 5.3689 4.2113 2.6029 
4 7.2515 5.8589 4.4819 2.5185 
5 8.4400 6.0996 4.6433 2.5984 
6 8.4870 6.1387 4.6742 2.7095 
7 9.5266 6.5865 4.7880 2.8108 

Source: Own computations.   

3.3. Estimated Maximum Lyapunov Exponent 
Computing the maximum Lyapunov exponent is one of the most direct way to test for 
the existence of chaos in a given time series. At the time, the economic time series, 
and especially the macroeconomic ones, are not as long as the series in physics, 
where these concepts emerged from. In order to account for the possibility that the 
results are sensitive to the method employed in deriving the maximum Lyapunov 
exponent, we use several different approaches found in literature. 
We consider two of the most used tests when computing the maximum Lyapunov 
exponent. Both tests are not only known to perform well for chaotic process, but can 
also deal in a robust manner with the presence of noise, which characterizes most of 
the economic and financial time series. The key parameter of embedding dimension is 
set by having in mind three different cases, with dimensions that vary from 1 to 7, from 
2 to 7 or from 3 to 7. The results are presented in Table 2. We obtain clear evidence of 
chaotic dynamics in the series of industrial production. Some further tests could take 
into consideration also the low number of observations as well as how much the noise 
distorts the computation of the Lyapunov exponent. 

Table 2 
The Maximum Lyapunov Exponent  

Embedding 
Dimension Kantz (1994) approach Rosenstein et al. (1993) 

approach 
1:7 0.01125 0.00691 
2:7 0.01435 0.00632 
3:7 0.01876 0.01876 

Source: Own computations. 

As a final assessment of the Lyapunov exponent, we also derive a moving window 
maximum Lyapunov exponent. For a sliding window of 110 observations, with a step 
of 15, the local maximum Lyapunov exponent is computed using the Wolf approach. 
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Figure 2 
Moving Window Maximum Lyapunov Exponent 

 
Source: Own computations. 

The moving Lyapunov exponent suggested can be understood from the perspective of 
the dynamics of Romanian economy. The highest Lyapunov exponent is registered at 
the beginning of transition, when the economy was affected by a sudden drop in 
output, which can be rather interpreted within the endogenous business cycle theory. 
It is also remarkable that the other two recessions were characterized by rising 
Lyapunov exponents as compared to the growth period. Moreover, the only period 
with a negative Lyapunov exponent was registered within the stable growth period 
between 2000 and 2010. Nevertheless, much caution should be exerted, especially 
towards this last graphic, as it is based on less desirable number of observations. 

3.4. The Hurst Coefficient 
First, we compute the coefficient based on the R/S approach (see Figure 3). The Hurst 
exponent, calculated from the R/S statistics, is 0.283276.  

Figure 3 
Estimated Hurst Coefficient based on R/S Statistics 

 
Source: Own computations. 
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This is an indication that the series is characterized by long-memory and, moreover, is 
also characterized by anti-persistence. 
Given the sensitivity of the value of the Hurst coefficient to the methods used, I also 
employ here a rolling estimation of the Hurst coefficient. Such an approach not only 
gives a more complete picture of the coefficient, but allows for the identification of 
specific episodes where the value of the Hurst coefficient fluctuated. The rolling 
estimation is based on rolling windows. These are windows of a fixed dimension. The 
values on the horizontal axis stand for the starting point of the window (the first 
observation). 

Figure 4 
Estimated rolling Hurst coefficient  
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Source: Own computations. 

Overall, the Hurst coefficient is found to range between 0 and 0.5 indicating an anti-
persistent time series. Furthermore, the value of the Hurst coefficient dropped 
consistently during the two periods of recessions, as one may see from the period 
corresponding to the beginning of the sample, when the transformational recession 
happened, from the period corresponding to 1997-1998, as well as from the last 
period, after observation 200, that corresponds roughly to the period after the Fall of 
2008, when the last recession in Romania began.  



Institute for Economic Forecasting 
 

 Romanian Journal of Economic Forecasting – 3/2012 150

  

4. Conclusion 

The recent financial crisis highlighted the limits of our understanding of the business 
cycles. Coupled with the findings that numerous time series have nonlinear or even 
chaotic properties, the view of the economy as driven by inherently unstable dynamic 
processes, as supported by the endogenous business cycle theory, has received 
increased support. 
This paper adds evidence to the case of the presence of nonlinearities and chaotic 
patterns in the macroeconomic time series. Although limited due to the nature of 
macroeconomic data, which is also the case for financial data, relative to the size of 
data from sciences such as physics, geology or biology, the paper found solid 
evidence in the favor of nonlinearity and deterministic chaos in the macroeconomic 
fluctuations in Romania. 
More work could be done in this direction by testing and modeling the nature of 
processes driving the Romanian business cycles, which could improve the forecasts 
capabilities. 
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