TESTING FOR NONLINEARITY IN G7 MACROECONOMIC TIME SERIES

Nilgün ÇİL YAVUZ* Veli YILANCI^{**}

Abstract

In this study, we test the linearity of G7 macroeconomic time series over the period 1959Q1-1999Q4. The stationarity properties of this dataset was before tested by Aksoy and Ledesma (2008) employing unit root tests which are based on linear and nonlinear models. Aksoy and Ledesma (2008) concluded that the variables have uncertain order of integration. Therefore, by employing a recently introduced linearity test of Harvey et al. (2008), which is a powerful test even the order of integration is not certain, we test the linearity of this dataset to determine which kind of unit root test should have been used. We also show that more than half of the series are nonlinear which indicates the importance of testing the nonlinearity of macroeconomic time series.

Keywords: nonlinearity; time series; unit root; G7; stationarity

JEL Classification: C220

Introduction

Economy is nonlinear as stated by Granger and Terasvirta (1993). Even, "the real world is nonlinear" as expressed by Fan and Yao (2003, p.125). Testing and modeling this nonlinearity (especially threshold autoregressive (TAR) and smooth transition autoregressive (STAR) type) in economic and financial variables has become very popular over recent years¹ since traditional tests and models may lose power when the series under investigate are characterized by a nonlinear data generating process.

Not only several new linearity tests have been introduced in the last years, but also new unit root tests which consider nonlinearity in the data generation process have also been developed (see Kapetanios *et al.* 2003, Kapetanios and Shin, 2006, Sollis, 2009 and Kruse, 2010 among others). Based on the fact that these unit root tests have better power than the standard unit root tests (such as Augmented Dickey Fuller

^{*} Department of Econometrics, Faculty of Economics, Istanbul University,

E-mail: yavuznc@istanbul.edu.tr

Department of Econometrics, Faculty of Economics, Istanbul University, E-mail: yilanci@istanbul.edu.tr

¹ See Granger and Terasvirta (1993), Stock and Watson (1998), Franses and van Dijk (2000) and Clements et al. (2004) among others.

Institute for Economic Forecasting

unit root test), recent empirical studies employed the mentioned unit root test tests to test the stationarity of macroeconomic time series. For example, while Liew *et al.* (2004), Bahmani-Oskooee and Gelan (2006) and Zhou *et al.* (2008) investigated the purchasing power parity theory, Gustavsson and Österholm (2006, 2007), Craigwell *et al.* (2011) examined the unemployment hysteresis by using Kapetanios *et al.* (2003) unit root test. Chang (2012) approached to the Purchasing Power Parity hypothesis in a nonlinear framework by employing Kapetanios *et al.* (2003) and Sollis (2009) unit root test, Chortareas *et al.* (2003) investigated the current account solvency in Latin America countries, employing Kapetanios and Shin (2006) unit root test.

These studies test the unit root hypothesis against the nonlinear stationary processes. On the other hand, since there are some other studies which investigate same issues with linear unit root tests (see Bahmani-Oskooee, 1998 and Kalyoncu, 2009), and both linear and nonlinear unit root tests (see Aksoy and Ledesma, 2008) there emerges a question: Should we employ linear or nonlinear unit root tests? A solution to this problem is to use linearity tests and to pre-test the linearity of the series before determining the type of unit root test. However, linearity tests such as Teräsvirta (1994) and Luukkonen *et al.* (1988) are based on the assumption that the series are stationary, hence they lose power in the case of nonstationarity. Fortunately, recently Harvey et al. (2008) developed a new linearity test which is a powerful even the order of integration is not certain and also has good size and power property against both STAR and TAR alternatives.

In this study, we examine linearity properties of 43 quarterly time series of the G7 countries² over the period 1959-1999 which was categorized into four groups by Stock and Watson (2004) as "asset prices", "activity", "wages, goods and commodity prices" and "money" by employing Harvey *et al.* (2008) linearity test, to provide a guideline to the future studies which test the stationarity of the macroeconomic time series. The stationarity properties of this dataset was investigated before by Aksoy and Ledesma (2008) employing both linear and nonlinear unit root tests. They found 11.64 % of the series as stationary using linear unit root tests and 45.78% of the series found to be stationary using nonlinear unit root tests, they found to be as nonstationary using nonlinear unit root tests. Therefore, the linearity test of Harvey *et al.* (2008) can be used to determine the type of the unit root test (linear or nonlinear) which should has been employed to test the stationarity of the series.

We organized the remainder of the study as follows. Section 2 describes the linearity test. Section 3 presents the test results, and Section 4 summarizes and concludes the paper.

II. Econometric Methodology

The linearity test proposed by Harvey *et al.* (2008) referred to as the W_{λ} test, is applicable in cases in which the order of integration of the time series (y_t) under

² The G7 countries include the United States, Canada, the United Kingdom, Japan, Germany, France, and Italy.

³ See continuation of Table 3 on page 21 from Aksoy and Ledesma's study for details.

investigation is uncertain. This test statistic is calculated as follows:

$$\boldsymbol{W}_{\lambda} = \{1 - \lambda\} \boldsymbol{W}_{S} + \lambda \boldsymbol{W}_{U} \tag{1}$$

where: λ is a function that converges in probability to zero when y_t is I(0) and to one when y_t is I(1). The function can be computed by using

$$\lambda(U,S) = \exp\left(-g\left(\frac{U}{S}\right)^2\right)$$
(2)

in which, *g* is a finite positive constant⁴. *U* and *S* show unit root and stationarity test statistics, respectively. Harvey et al. (2008) suggest using the standard Dickey-Fuller unit root statistic for *U* and the nonparametric stationarity statistic of Harris et al (2003) for *S*. If y_t is I(0), $(U/S)^2$ diverges, resulting in λ converging to zero, and if y_t is I(1),

 $(U/S)^2$ converges to zero, resulting in λ converging to one.

Indeed, we have 3 linearity test statistics in (1); W_{λ} , W_{s} and W_{u} . W_{λ} is a weighted average of W_{s} and W_{u} which are test statistics used for testing linearity when the series is stationary or has a unit root, respectively. We now explain how these statistics are computed.

For an I(0) time series y_t , $t = 1, \dots, T$, where T is sample size, a nonlinear AR(1) model can be denoted as follows:

$$\begin{aligned} \mathbf{y}_t &= \boldsymbol{\mu} + \mathbf{v}_t \\ \mathbf{v}_t &= \boldsymbol{\rho} \mathbf{v}_{t-1} + \delta f(\mathbf{v}_{t-1}, \boldsymbol{\theta}) \mathbf{v}_{t-1} + \varepsilon_t \end{aligned} \tag{3}$$

where: ε_t is a zero mean *IID* white noise process. ρ , δ and the function $f(.,\theta)$ are chosen such that v_t is globally stationary. The function $f(.,\theta)$ is assumed to admit a Taylor series expansion at around $\theta = 0$, such that (3) is approximated to the second order by

$$\mathbf{V}_t = \delta_1 \mathbf{V}_{t-1} + \delta_2 \mathbf{V}_{t-1}^2 + \delta_3 \mathbf{V}_{t-1}^3 + \varepsilon_t \tag{4}$$

In (4), the null hypothesis of linearity and alternative of nonlinearity are expressed as

$$\begin{aligned} H_{0,S} &: \delta_2 = \delta_3 = 0 \\ H_{1,S} &: \delta_2 \neq 0 \quad \text{and/or} \quad \delta_3 \neq 0 \end{aligned}$$

where: $H_{..s}$ denotes a hypothesis under the assumption of y_t being I(0). Equation (4) can be rewritten as a regression model in terms of the observed y_t :

$$\mathbf{y}_{t} = \beta_{0} + \beta_{1} \mathbf{y}_{t-1} + \beta_{2} \mathbf{y}_{t-1}^{2} + \beta_{3} \mathbf{y}_{t-1}^{3} + \varepsilon_{.}$$
(5)

In terms of Equation (5), the null and alternative hypotheses become

$$\begin{aligned} H_{0,S} : \beta_2 &= \beta_3 = 0\\ H_{1,S} : \beta_2 &\neq 0 \text{ and / or } \beta_3 \neq 0 \end{aligned}$$

Romanian Journal of Economic Forecasting – 3/2012

71

⁴ Following Harvey et al. (2008) and Yoon (2009, 2010a, 2010b) we set g=0.1.

The standard Wald statistic for testing of $H_{0.8}$ against $H_{1.8}$ is

$$W_{\rm S} = T \left(\frac{RSS_{\rm S}^{\prime}}{RSS_{\rm S}^{\rm u}} - 1 \right)$$

where: RSS_{S}^{u} and RSS_{S}^{r} are, respectively, the residual sums of squares from the unrestricted OLS regression (Equation 5) and the restricted OLS regression under the null is:

$$\mathbf{y}_t = \beta_0 + \beta_1 \mathbf{y}_{t-1} + \varepsilon_t \tag{6}$$

 $W_{\rm s}$ will follow an asymptotic $\chi^2(2)$ distribution under the null hypothesis.

 W_{U} is a linearity test employed when the series under investigate is I(1) that is nonlinearity is assumed to enter through the first differences of y_{t} :

$$y_{t} = \mu + V_{t}$$

$$\Delta V_{t} = \phi \Delta V_{t-1} + \varsigma f(\Delta V_{t-1}, \theta) \Delta V_{t-1} + \varepsilon_{t}$$
(7)

where: ρ , δ and the function $f(.,\theta)$ are chosen such that Δv_t is globally stationary. If the function $f(.,\theta)$ is assumed to admit a Taylor series expansion at around $\theta=0$ again, (7) is approximated to the second order by

$$\Delta \mathbf{V}_t = \varsigma_1 \Delta \mathbf{V}_{t-1} + \varsigma_2 (\Delta \mathbf{V}_{t-1})^2 + \varsigma_3 (\Delta \mathbf{V}_{t-1})^3 + \varepsilon_t$$
(8)

The null of linearity and alternative of nonlinearity are given by

$$H_{0,U} : \varsigma_2 = \varsigma_3 = 0$$

$$H_{1,U} : \varsigma_2 \neq 0 \quad \text{and/or} \quad \varsigma_3 \neq 0$$

where: $H_{,U}$ denotes a hypothesis under the assumption of y_t being I(I). (8) is rewritten as a regression model as follows

$$\Delta \mathbf{y}_{t} = \varsigma_{1} \Delta \mathbf{y}_{t-1} + \varsigma_{2} (\Delta \mathbf{y}_{t-1})^{2} + \varsigma_{3} (\Delta \mathbf{y}_{t-1})^{3} + \varepsilon_{t}$$
(9)

Since $\Delta y_t = \Delta v_t$, (8) and (9) are essentially identical and the null and the alternative hypotheses are the same as given above. The corresponding Wald statistic

$$W_{U} = T\left(\frac{RSS_{U}^{r}}{RSS_{U}^{u}} - 1\right)$$

follows an asymptotic $\chi^2(2)$. Where RSS_U^u and RSS_U^r again denote, respectively, the residual sums of squares from the unrestricted OLS regression (Equation 9) and the restricted OLS regression under the null, i.e.

$$\Delta \mathbf{y}_t = \varsigma_1 \Delta \mathbf{y}_{t-1} + \varepsilon_t \tag{10}$$

Regression models (5, 6, 9, and 10) can be augmented to allow for higher order autoregressive models to account for serial correlation. We determine optimal lag length using general to specific method performed at the 5% level⁵.

⁵ Yoon (2009) showed that Harvey et al. (2008) linearity test is not robust to outliers. Furthermore, in their paper, Chan and Ng (2004) showed that the five linearity tests which they examine in their study lose power in the existence of outliers. That is, the existence of outliers can affect the power of the linearity tests.

Testing for Nonlinearity in G7 Macroeconomic Time Series

III. Empirical Results

We tested the linearity of macroeconomic variables of G7 the countries over the period 1959Q1-1999Q4 by employing linearity test of Harvey *et al.* (2008). This dataset, which consists of up to 43 time series of the G7 countries, was previously used by Stock and Watson (2004) and Aksoy and Ledesma (2008) and is available at <u>http://www.princeton.edu/~mwatson/publi.html</u>. In their paper, Stock and Watson (2004) employed forecasts that based on individual predictors and also forecast combination methods to forecast output growth of the series. On the other hand, Aksoy and Leon-Ledesma (2008) tested the stationarity properties of the dataset by employing both linear and nonlinear unit root tests and obtained mixed results. Thus, by using the linearity test of Harvey et al. (2008) whose power is not effected by the integration of the series, we suggest which kind of unit root test should have been used for testing the stationarity of the series.

We presented the summary of the linearity test results as rejection percentages of the linearity hypothesis in Table 1⁶. We found 23 of 37 Canadian, 15 of 30 French, 24 of 35 German, 19 of 36 Italian, 14 of 37 Japanese, 21 of 32 UK and 34 of 43 US macroeconomic series as nonlinear. On the other hand, we found 75 of 125 of asset prices, 33 of 49 of activity, 21 of 34 of wages, goods and commodity prices and 21 of 38 of money time series as nonlinear. Consequentially, we found 60.40 % of the series as nonlinear. As compared to the other variables, the variables under the title of Activity, are found to be more nonlinear, the main reason of this nonlinearity is that these variables are more effected from the national and international events than the other variables (both national and international economic and political events may cause the nonlinearity of macroeconomic variables. For example, see the studies of Brooks and Hinich (1998) and Romera-Meza *et al.* (2007) which reveal the events that cause nonlinearity.

Table 1

				0				
	Canada	France	Germany	Italy	Japan	UK	US	Total
Asset Prices	61.11%	46.15%	68.75%	45.00%	43.75%	65.00%	81.82%	60.00%
Activity	50.00%	37.50%	87.50%	66.67%	62.50%	57.14%	75.00%	67.35%
Wages, goods and commodity prices	60.00%	80.00%	80.00%	50.00%	40.00%	80.00%	80.00%	61.76%
Money	83.33%	50.00%	33.33%	66.67%	0.00%	na	100.00%	55.26%
Total	62.16%	50.00%	68.57%	52.78%	37.84%	65.63%	81.40%	60.40%

Rejection Percentage of Linearity

Note: "na" indicates the unavailability of data series.

The nonlinearity in different variables is due to different reasons. The nonlinearity in the interest rates may be due to transaction costs (Zhou, 2011) and stock prices may be nonlinear because of the existence of heterogeneous agents (Killian and Taylor, 2003) and presence of market frictions. On the other hand, Reitz and Slopek (2009)

⁶ Appendix 1 shows the details. We replicate the data descriptions of the variables as defined by Stock and Watson (2004) in Appendix 2.

asserted that the heterogeneous agents and their nonlinear trading impact cause the swings in oil prices. Term spread may be nonlinear, since risk premia may be time varying and exhibit nonlinearity as specified by Fama (1990).

The results that we obtained have two important implications. First, we found more than half of the series as nonlinear which shows that nonlinearity is an important property of macroeconomic series. Second; we suggest using Harvey *et al.* (2008) linearity test to determine the type of the unit root tests (whether linear or nonlinear) before testing the stationarity of the series, since using unit root tests which based on linear models can give inaccurate results if the data generation process is nonlinear.

V. Conclusion

In this study, we employed a recently introduced linearity test of Harvey *et al.* (2008), which is powerful even if the order of integration is uncertain, and tested the linearity of G7 macroeconomic time series. This dataset has been before employed by Stock and Watson (2004) and Aksoy and Ledesma (2008). In their study, Aksoy and Ledesma (2008) tested the stationarity of the dataset by employing linear and nonlinear unit root tests. Since the results of these tests give mixed results, it can be stated that the integration properties of this dataset is uncertain. Thus, by employing Harvey et al. (2008) linearity test, we determine which kind of unit root tests should have been used in order to test the stationarity of the series. Furthermore, we suggest Harvey *et al.* (2008) linearity test to be employed before testing the stationarity properties of the series to determine whether linear or nonlinear unit root test should be used in future studies. On the other hand, the nonlinearity of more than half of the macroeconomic variables of G7 macroeconomic time series can be interpreted as the importance of testing nonlinearity in empirical studies.

References

- Aksoy, Y. and Leon-Ledesma, M.A., 2008. Non-Linearities and unit roots in G7 macroeconomic variables. *The B.E. Journal of Macroeconomics*, 8, pp.1-44.
- Bahmani-Oskooee, M., 1998. Do exchange rates follow a random walk process in Middle Eastern countries?. *Economics Letters*, 58(3), pp.339-344.
- Bahmani-Oskooee, M. and Gelan, A., 2006. Testing the PPP in the non-linear STAR framework: evidence from Africa. *Economics Bulletin* 6(17), pp.1–15.
- Brooks, C. and Hinich, M.J. (1998. Episodic nonstationarity in exchange rates. *Applied Economics Letters*, 5(11), pp.719-722.
- Chan, W-S. Ng, M-W., 2004. Robustness of alternative non-linearity tests for SETAR models. *Journal of Forecasting*, 23, pp.215 –231.
- Chang, T., 2012. Nonlinear adjustment to purchasing power parity in China. *Applied Economics Letters*, 19:9, 843-848.
- Clements, M. P., Franses, P. H., and Swanson, N. R., 2004. Forecasting economic and financial time-series with non-linear models. *International Journal of Forecasting*, 20, pp.169-183.

— Romanian Journal of Economic Forecasting – 3/2012

74

Testing for Nonlinearity in G7 Macroeconomic Time Series

- Craigwell, R., Mathouraparsad, S., and Maurin, A., 2011. Unemployment hysteresis in the English-speaking Caribbean: evidence from non-linear models. *International Research Journal of Finance and Economics*, 65, pp.98-111.
- Fama, E., 1990. Term Structure Forecasts of Interest Rates, Inflation, and Real Interest Rates. *Journal of Monetary Economics*, 25, pp.59-76.
- Fan, J. and Yao, Q., 2003. Nonlinear Time Series: Nonparametric and Parametric Methods. Springer.
- Franses, P. H. and Dijk, D. V., 2000. *Non-Linear Time Series Models in Empirical Finance*, Cambridge University Press.
- Granger, C.W.J., and Teräsvirta, T., 1993. *Modelling Nonlinear Economic Relationships (Advanced Texts In Econometrics)*, Oxford University Press.
- Gustavsson, M., and Österholm, P., 2006. Hysteresis and non-linearities in unemployment rates. *Applied Economics Letters*, 13(9):545-548.
- Gustavsson, M., and Österholm, P., 2007. Does Unemployment Hysteresis Equal Employment Hysteresis?. *Economic Record*, 83:159–173.
- Harris, D., McCabe, B.P., and Leybourne, S.J., 2003. Some limit theory for autocovariances whose order depends on sample size. *Econometric Theory*, 10, pp.829-864.
- Harvey, D. I., Leybourne, S. J., and Xiao, B., 2008. A powerful test for linearity when the order of integration is unknown. *Studies in Nonlinear Dynamics & Econometrics*, 12, Article 2. Available at: < <u>http://www.bepress.com/snde/vol12/iss3/art2</u>>.
- Kalyoncu, H., 2009. New evidence of the validity of purchasing power parity from Turkey. *Applied Economics Letters*, 16(1), pp.63-67.
- Liew, V. K.-S., Baharumshah, A.Z. and Chong, T. T.-L., 2004. Are Asian real exchange rates stationary?. *Economics Letters* 83(3), pp.313–316.
- Luukkonen, R., P. Saikkonen, and Teräsvirta, T., 1988. Testing linearity against smooth transition autoregressive models. *Biometrika*, 75, pp.491-499.
- Reitz, S., and Slopek, U., 2009. Non-Linear Oil Price Dynamics: A Tale of Heterogeneous Speculators?. *German Economic Review*, 10 (3), pp.270-283.
- Romero-Meza, R., Bonilla, C. A., and Hinich, M.J., 2007. Nonlinear event detection in the Chilean stock market. *Applied Economics Letters*, 14(13), pp.987-991.
- Stock, J. H. and Watson, M. W. (1998. A comparison of linear and nonlinear univariate models for forecasting macroeconomic time series. *NBER Working Papers*, No: 6607.
- Stock, J. H. and Watson, M. W. (2004. Combination forecasts of output growth in a seven-country data set. *Journal of Forecasting*, 23, pp.405-430.
- Teräsvirta, T. (1994). "Specification, estimation, and evaluation of smooth transition autoregressive models. *Journal of the American Statistical Association*, 89, pp.208-218.
- Yoon, G., 2009. It's all the miners' fault: On the nonlinearity in U.S. unemployment rates. *Economic Modelling*, 26, pp.1449-1454.

Romanian Journal of Economic Forecasting – 3/2012

75

- Yoon, G., 2010a). "Nonlinearity in real exchange rates: an approach with disaggregated data and a new linearity test. *Applied Economics Letters*, 17, pp.1125-1132.
- Yoon, G., 2010b. Nonlinearity in US Macroeconomic Time Series. *Applied Economics Letters*, 17, pp.1601-1609.
- Zhou, S., 2011. Nonlinear stationarity of real interest rates in the EMU countries", *Journal of Economic Studies*, 38(6), pp.691-702.
- Zhou, S., Bahmani-Oskooee, M., and Kutan, A.M., 2008. Purchasing Power Parity before and after the Adoption of the Euro. *Review of World Economics*, 144(1), pp.134-150.

Appendix 1

Linearity Test Results							
W_{λ}	Canada	France	Germany	Italy	Japan	UK	US
Asset Prices							
Rovnght	3.64	na	4.02	0.65	47.12*	1.04	11.76*
Rtbill	1.5	7.29**	2.35	8.53**	na	1.39	13.05*
Rbnds	Na	Na	na	11.33*	na	0.86	35.44*
Rbndm	Na	Na	na	4.15	na	na	31.95*
Rbndl	14.44*	2.65	6.16**	3.62	20.82*	19.4*	23.94*
Rrovnght	10.73*	Na	8.35**	9.65*	3.58	17.96*	5.39***
Rrtbill	0.57	2.51	12.28*	0.74	na	13.24*	15.41*
Rrbnds	Na	Na	na	1.35	na	12.45*	13.04*
Rrbndm	Na	Na	na	2.57	na	na	6.07**
Rrbndl	2.31	2.35	6.67**	4.19	6.05**	9.51*	3.38
Rspread	4.94***	Na	6.24**	9.88*	1.64	2.1	29.22*
Exrate	3.73	4.59	3.14	1.84	1.32	2.45	6.91**
Rexrate	1.55	8.71**	5.8***	3.17	0.77	11.14*	6.91**
Stockp	6.94**	5.28***	35.52*	5.88***	4	6.28**	21.13*
Rstockp	7.65**	3.77	19.58*	25.58*	4.22	4.85***	19.34*
Divpr	12.29*	10.06*	2.75	8.78**	22.21*	25.57*	8.91**
House	27.27*	Na	na	na	5.04***	4.9***	4.45
Rhouse	19.65*	Na	na	na	2.55	4.7***	0.15
Gold	2.56	4.86	9.66*	3.76	1.23	2.72	1.38
Rgold	6.23**	3.53	4.3	0.8	1.27	3.14	5.19***
Silver	53.53*	31.03*	33.14*	24.85*	44.97*	32.24*	49.24*
Rsilver	48.18*	22.01*	25.25*	25.84*	31.52*	19.61*	32.47*
		•	Act	ivity			
Rgdp	2.46	3.78	13.81*	8.32**	7.2**	17.23*	2.93
lp	8.38**	7.7**	5.32***	14.03*	4.64***	8.73**	5.21***
Ċapu	1.77	0.44	21.36*	0.09	17.29*	na	7.07**
Emp	4.48	4.1	36.72*	na	4.26	0.6	8.85**
Unemp	5.75***	5.48***	18.34*	1	2.01	0.91	1.76
Pgdp	3.95	5.3***	0.21	10.55*	7.84**	3.94	4.67***
CPI	17.83*	1.52	12.6*	7.83**	3.75	13.07*	9.23*
PPI	22.19*	2.09	11.98*	na	5.36***	6.26**	7.43**
Wages, goods and commodity prices							
Earn	6.38**	5.49***	5.12***	na	9.44*	15.4*	3.07
Commod	25.68*	4.95***	3.47	8.9**	1.78	11.09*	35.55*
Oil	4.34	12.46*	12.51*	10.06*	3.67	9.56*	5.57***
Roil	3.36	5.48***	7.71**	4.06	6.83**	4.75**	2.99
Rcommod	5.25***	1.13	6.38**	2.01	3.4	0.63	0.55
Money							
M0	na	Na	na	na	3.59	na	105.1*
M1	5.45***	7.79**	1.06	28.1*	2.99	na	13.32*

Linearity Test Results

Institute	for	Economic	For	recasting
-----------	-----	----------	-----	-----------

W_{λ}	Canada	France	Germany	Italy	Japan	UK	US
M2	11.97*	Na	4.58***	9.12**	2.48	na	6.35**
M3	4.87***	5.11***	1.45	37.07*	2.71	na	6.76**
Rm0	na	Na	na	na	4.28	na	11.62*
Rm1	6.53**	0.03	0.23	3.76	3.19	na	6.19**
Rm2	7.06**	Na	0.66	4.65***	3.47	na	20.55*
Rm3	2.12	0.7	6.13**	4.38	3.97	na	13.94*

Rm32.120.76.13**4.383.97na1Note: *, **, *** show rejection of the null hypothesis of linearity at 1%, 5%, 10 % levels
respectively. "na" indicates the unavailability of data series.

Testing for Nonlinearity in G7 Macroeconomic Time Series

Appendix 2

Abbreviation	Description			
CPI	Consumer Price Index			
Capu	Index of Capacity Utilization			
Commod	Commodity Price Index			
Divpr	Dividend Price Index			
Earn	Wages			
Emp	Employment			
Exrate	Nominal Exchange Rate			
Gold	Gold Prices			
House	House Price Index			
lp	Index of industrial Production			
M0	Money: M0			
M1	Money: M1			
M2	Money: M2			
М3	Money: M3			
Oil	Oil Prices			
Pgdp	GDP deflator			
Ppi	Producer Price Index			
Rbndl	Interest Rate: long term Government bonds			
Rbndm	Interest Rate: Medium term Government bonds			
Rbnds	Interest Rate: Short term Government bonds			
Rcommod	Real Commodity Price Index			
Rexrate	Real Exchange Rate			
Rgdp	Real GDP			
Rgold	Real gold prices			
Rhouse	Real House Price Index			
Rm0	Real Money: M0			
Rm1	Real Money: M1			
Rm2	Real Money: M2			
Rm3	Real Money: M3			
Roil	Real Oil Prices			
Rovnght	Interest rate: overnight			
Rrbndl	Real Long Term Bond Rate: rbndl-CPI Inflation			
Rrbndm	Real Medium Term Bond Rate: rbndm-CPI Inflation			
Rrbnds	Real Short Term Bond Rate: rbnds-CPI Inflation			
Rrovnght	Real overnight rate: rovnght- CPI Inflation			
Rrtbill	Interest rate: short term Government Bills			
Rsilver	Real Silver Prices			
Rspread	Term spread: rbndl-rovnght			
Rstockp	Real stock price index			
Rtbill	Real short term bill rate: rtbill- CPI Inflation			
Silver	Silver Prices			
Stockp	Stock price index			
Unemp	Unemployment Rate			

Descriptions of Variables