INSURANCE ACTIVITY AND ECONOMIC GROWTH NEXUS IN 31 REGIONS OF CHINA: BOOTSTRAP PANEL CAUSALITY TEST¹

Hongbing HU² Meng SU³ Wenhua LEE⁴

Abstract

This study applies the bootstrap panel Granger causality test to investigate the relationship between insurance activity and economic growth using data from 31 regions of China over the period 1997-2011. Empirical results indicate that the direction of causality seems to be in favor of the neutrality hypothesis in 21 out of 31 regions and a one-way Granger causality running from economic growth to insurance activity in 7 regions. Regarding the direction of insurance activity to economic growth nexus, we find a one-way Granger causality from insurance activity to economic growth for Jiangsu, Zhejiang, and Shandong.

Keywords: insurance activity; economic growth; Bootstrap Panel Granger Causality Test

JEL classification: G22; C23; O16

. Introduction

Theoretical studies and empirical evidence showed that countries with betterdeveloped financial systems enjoy faster and more stable long-run growth. Welldeveloped financial markets have a significant positive impact on total factor productivity, which translates into higher growth rate. Therefore, the relationship between financial development and economic growth has long been one of the hotly

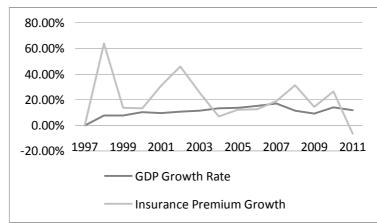
¹ This study was presented at 2013 Global Business, Economics, and Finance Conference, Wuhan University, China, 9-11 May 2013.

² Corresponding author. Zhongnan University of Economics and Law, Wuhan. Email: hongbinghu@yahoo.com.

³ ZNUFE, Email: su_yinuan@yahoo.com.cn.

⁴ ZNUFE, Email: liwenhua_1987@yahoo.com.cn.

debated issues of whether the financial sector actually contributes to the real sector in the process of economic development (Muhsin Kar, 2011).


Regarded as the risk management service provider in financial sectors, insurance market activity not only plays a vital role in a myriad of economic transactions through risk transfer and loss compensation, but is also seen to promote financial intermediation, thus contributing to economic growth. According to Outreville (2012), insurance activity contributes to economic growth in several ways:⁵ (1) promoting financial stability for both households and firms; (2) mobilizing and channeling savings; (3) supporting trade, commerce, entrepreneurial activity, and social programs; (4) encouraging the accumulation of new capital and fostering a more efficient allocation.

Over the past two decades, we have witnessed an increasing share of insurance sector in the aggregate financial sector in almost every developing and developed country. Insurance companies, together with mutual and pension funds, are one of the biggest institutional investors in the stock, bond and real estate markets, and their possible impact on the economic development will rather grow than decline, due to issues such as ageing societies, widening income disparity, globalization and the increase in risks and uncertainties in most societies. The growing links between the insurance and other financial sectors also emphasize the possible role of insurance activity in economic growth.

Particularly in emerging markets such as China, the insurance industry has grown at a rate of over 10 percent annually in most years since 1997. Figure 1 illustrates the parallel and rapid growth of total insurance premiums relative to GDP growth rate. We can clearly see that the insurance premium growth rate has far exceeded that of economic development, except for the period 2004-2006 and the year 2011.

Figure1

Relationship between GDP Growth Rate and Insurance Premium Growth Rate

⁵ See, for example, Das, Davies, and Podpiera (2003), UNCTAD(2005a), USAID(2006), and Haiss and Sumegi (2008).

Romanian Journal of Economic Forecasting – XVI(3) 2013

Despite the potential role that the insurance sector may play in financial and economic development, the assessment of a potential causal relationship between insurance market activity and economic growth has not been as extensively studied as other financial sectors, such as bank or stock market. This situation reflects both data availability and the rather arcane reputation of the insurance sector in economic circles (Marco Arena, 2008).

Previous surveys focus on the relationship between insurance consumption (life and nonlife) and income level (GDP per capita) as well as insurance and financial development. For instance, Beenstock, Dickinson and Khajuria (1986) find that nonlife insurance demand is associated with GDP per capita in a sample of 12 industrialized countries between 1970 and 1981. Outreville (1990), Browne, Chung, and Frees (2000) obtain similar empirical results using the data from 55 developing countries over the period 1983-1984 and the data from OECD countries over the 1986-1993 period. Browne and Kim (1993) find that life insurance consumption per capita is positively associated with GDP per capita for a sample of 45 countries in the period of 1980 to 1987. Outreville (1996) finds that life insurance demand is associated positively with GDP per capita, but not with financial development, in a sample of 48 developing countries for the year 1986.

However, the assessment of a potential causal relationship between insurance market activity and economic growth has not been extensively studied (Marco Arena, 2008). Ward and Zurbruegg (2000) studied the potential causal relationship between economic growth and insurance market activity for nine OECD countries for the period 1961-1996, using annual real GDP as a measure of economic activity and annual real total written premiums as a measure of insurance activity. Long-term relationships for five countries (Australia, Canada, France, Italy and Japan) are found using a vector autoregression error correction model on a country-by-country basis. Webb, Grace and Skipper (2002) study the causal relationship of banks, life and nonlife insurance activity on economic growth in the context of a revised Solow-Swan neoclassical growth model, where the authors include financial activities (including bank, life and nonlife insurance) as additional inputs in the production function, which is assumed to be a Cobb-Douglas type. Marco Arena (2008) uses the generalized method of moments (GMM) for dynamic models of panel data for 55 countries between 1976 and 2004 to test whether there is a causal relationship between insurance market activity and economic development, finding that both life and nonlife insurance have a positive and significant causal effect on economic growth. Chang, TY (2012) applies the bootstrap panel Granger causality test to test whether insurance activity promote output using data from 12 OECD countries between 1979 and 2008. Empirical results indicate a one-way activity for most of these 12 OECD countries, with the exception of Japan, Netherlands, and Sweden, and a feedback between output and insurance activity in both Italy and the UK.

While empirical research already showed that the causal link between insurance development and economic growth is not more prominent, this article investigates the relationship between insurance development and economic growth in a sample of 31

-Romanian Journal of Economic Forecasting – XVI(3) 2013

regions⁶ over the period 1997-2011 by focusing on region-specific analysis. Because of the principle that the time period (T) needs to be bigger than the cross-section units (N), we break down these 31 regions to 3 sub-areas: the eastern region (i.e., Beijing, Tianjin, Shanghai, Hebei, Liaoning, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, Hainan), the central region (i.e., Shanxi, Jilin, Heilongjiang, Anhui, Jiangxi, Henan, Hubei, Hunan), and the western region (i.e., Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Inner Mongolia, Guangxi, Ningxia, Xinjiang, Tibet). In detecting causal linkages, we apply panel causality approach, which is able to examine both cross-section interrelations and region-specific heterogeneity.

This article is organized as follows. Section II presents the data used in our study and Section III briefly describes the bootstrap panel Granger causality test proposed by Kónya (2006). Section IV presents our empirical results. Section V concludes this article and discusses some economic and policy implications of our empirical findings.

. Data

The annual data used in this study cover the period from 1997 to 2011 for 31 regions of China. The variables in this study include per capita real Gross Domestic Product (PRGDP) and real insurance density⁷ (RID). The insurance density has been extensively employed as proxy of the insurance markets' activities to investigate the relationship between the insurance market development and macroeconomics in the existing literature (Ward and Zurbruegg, 2000; Arena, 2008, etc.; Chen *et al.*, 2011). Both per capita real GDP and real insurance density are taken from annual Yearbook of China's Insurance, which is a publication from the China Insurance Regulatory Commission (CIRC), and have been transformed into real terms (using CPI 1997=100) in our study.

Methodology

Our empirical methodology is carried out in two steps. First, we devote our attention to preliminary analysis to investigate cross-section dependence and slope homogeneity. In the second step, based on the results from preliminary analysis we apply an appropriate panel causality method, which is able to represent cross-section and slope homogeneity features our panel data set to do the test. In what follows, we briefly outline the econometric methods.

III.1. Testing Cross-Section Dependence

One important issue to be considered in a panel causality analysis is testing for crosssection dependence across the regions. The rationale behind taking into account the cross-section dependence is due to the fact that a shock affecting one region may also affect other regions because all the regions will be influenced by the policies and

Romanian Journal of Economic Forecasting - XVI(3) 2013 -

⁶ Include provinces, autonomous regions and municipalities directly under the Central _ Government.

⁷ Insurance density is equal to (life insurance premium +nonlife insurance premium)/population.

instructions issued by the Central Government. Besides, with a high degree of economic integration and exchange, other regions will be sensitive to the economic shock of a region. If there is cross-section dependence, estimating sets of equations with Seemingly Unrelated Regressions (SUR) is more efficient than that of equationby-equation with least-squares (OLS) (Zellner, 1962). It is worthwhile noting here that ignoring cross section dependency leads to substantial bias and size distortions (Pesaran, 2006), which implies that testing for the cross section dependence is an essential step in a panel data analysis.

To test for cross-sectional dependency, the Lagrange Multiplier (LM) test of Breusch and Pagan (1980) has been extensively used in empirical studies. The procedure to compute the LM test requires the estimation of the following panel data model:

$$PRGDP_{it} = \alpha_i + \beta_i' RID_{it} + u_{it} \quad \text{for } i = 1, 2, ..., N; \ t = 1, 2, ..., T$$
(1)

where: *i* is the cross section dimension, *t* is the time dimension and a_i and β_i are the individual intercepts and slope coefficients that are allowed to vary across regions. In the LM test, the null hypothesis of no cross section dependence - H_0 : Cov $(u_{it}, u_{jt}) = 0$ for all *t* and $i \neq j$ - is tested against the alternative hypothesis of cross section dependence H_1 : Cov $(u_{it}, u_{jt}) \neq 0$, for at least one pair of $i \neq j$. In order

to test the null hypothesis, Breusch and Pagan (1980) developed the LM test as

 $LM = T \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \hat{\rho}_{ij}^{2}$ (2)

where: $\hat{\rho}_{ij}$ is the sample estimate of the pairwise correlation of the residuals from OLS estimation of (1) for each *i*. Under the null hypothesis of no cross-sectional dependency with a fixed N (number of cross-sections) and time period $T \rightarrow \infty$, the statistic has chi-square asymptotic distribution with N(N - 1)/2 degrees of freedom. It is important to note that the LM test is applicable with N relatively small and T sufficiently large. This drawback was attempted to be solved by Pesaran (2004) by the following scaled version of the LM test:

$$CD_{LM} = \left(\frac{1}{N(N-1)}\right)^{1/2} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} (T\hat{\rho}_{ij}^2 - 1)$$
(3)

Under the null hypothesis with $T \rightarrow \infty$ and $\rightarrow \infty$, this test statistic has the standard normal distribution. Though CD_{LM} is applicable even for N and T large, it is likely to exhibit substantial size distortions when N is large relative to T. The shortcomings of the LM and the CD_{LM} tests clearly show a need for a cross-sectional dependency test

186 ————Romanian Journal of Economic Forecasting – XVI(3) 2013

that can be applicable with large N and small T. In that respect, Pesaran (2004) proposed the following test for cross-sectional dependence (CD):

$$CD = \sqrt{\left(\frac{2T}{N(N-1)}\right)} \left(\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \hat{\rho}_{ij} \right)$$
(4)

However, in some cases that the population average pair-wise correlations are zero, the CD test is lacking power, although the underlying individual population pair-wise correlations are non-zero (Pesaran et al., 2008). Furthermore, when the mean of the factor loadings is zero in the cross-sectional dimension, the CD test can not reject the null hypothesis in stationary dynamic (Sarafisidis et al., 2009). In order to solve this problem, Pesaran et al. (2008) raises a modified version of the LM test based on the exact mean and variance of the LM statistic. This bias-adjusted LM test is:

$$LM_{adj} = \left(\frac{2T}{N(N-1)}\right)^{1/2} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \hat{\rho}_{ij} \frac{(T-k)\hat{\rho}_{ij}^2 - \mu_{T_{ij}}}{\left(r_{T_{ij}}^2\right)^{1/2}}$$
(5)

where: $\mu_{T_{ij}}$ and $v_{T_{ij}}^2$ are the exact mean and variance of $(T - k)\hat{\rho}_{ij}^2$, respectively, that

are provided in Pesaran et al. (2008). Under the null hypothesis with first $T \rightarrow \infty$ and

 $N \rightarrow \infty$, LM_{adi} test is asymptotically distributed as standard normal.

III.2. Testing Slope Homogeneity

Deciding whether or not the slope coefficients are homogenous is another very important issue. As indicated bt Granger (2003), the causality from one variable to another variable by imposing causality restrictions on estimated coefficients is the strong null hypothesis. Moreover because of region specific characteristics, the homogeneity assumption of the parameters cannot capture the heterogeneity (Breitung, 2005).

Standard F-tesr is the most familiar way to test the null hypothesis of slope homogeneity- H_0 : $\beta_i = \beta$ for all *i* against the heterogeneity hypothesis H_1 : $\beta_i \neq \beta_i$ for a

non-zero fraction of pairwise slopes for $i \neq j$. The F test is valid for cases when the

cross section dimension (N) is relatively small and the time dimension (T) of panel is large; the explanatory variables are strictly exogenous; and the error variances are homoskedastic. Similarly Swamy (1970) relaxed homoscedasticity assumption of the F test and developed the slope homogeneity test on the dispersion of individual slope estimates from a suitable pooled estimator. However, both the F and Swamy test require that panel data N is small relative to T. Pesaran and Yamagata (2008)

proposed a standardized version of Swamy test (the so-called 1/2 test). The 1/2 test is

valid as $(N,T) \rightarrow \infty$ without imposing any restrictions on the relative expansion rates

Romanian Journal of Economic Forecasting – XVI(3) 2013 – 187

of N and T when the error terms are normally distributed. The first stepof the \overline{A} test approach, is to compute the following modified version of the Swamy test:

$$\tilde{S} = \sum_{i=1}^{N} \left(\hat{\beta}_{i} - \tilde{\beta}_{WPE} \right)' \frac{x_{i}M_{\tau}x_{i}}{\tilde{\sigma}_{i}^{2}} \left(\hat{\beta}_{i} - \tilde{\beta}_{WPE} \right)$$
(6)

where: $\hat{\beta}$ is the pooled OLS estimator, $\tilde{\beta}_{wppr}$ is the weighted fixed effect pooled estimator, M_r is an identity matrix, the $\tilde{\sigma}_i^2$ is the estimator of error variance σ_i^2 . Then, the standardized dispersion statistic can be written as as:

$$\widetilde{\Delta} = \sqrt{N} \left(\frac{N^{-1} \widetilde{S} - k}{\sqrt{2k}} \right)$$
(7)

Under the null hypothesis with the condition of $(N,T) \rightarrow \infty$ so long as $\sqrt{N}/T \rightarrow \infty$ and

the error terms are normally distributed, the $\tilde{\Delta}$ test has asymptotic standard normal distribution (Chang et al.,2013). By using bias-adjusted version, the small sample

properties of $\mathbf{\tilde{\Delta}}$ test can be improved under the normally distributed errors:

$$\tilde{\Delta}_{adj} = \sqrt{N} \left(\frac{N^{-1} \tilde{S} - E(\tilde{F}_{it})}{\sqrt{var(\tilde{F}_{it})}} \right)$$
(8)

where: the mean $E(\tilde{z}_{it}) = k$, and the variance $var(\tilde{z}_{it}) = \frac{2k(r-k-1)}{r+1}$.

III.3. Panel Causality Test

188 •

The existence of both cross-section dependency and heterogeneity across these 31 regions indicates that a panel causality method is needed to account for these dynamics. The bootstrap panel causality approach proposed by Kónya (2006) can just account for the two features mentioned above. Seemingly Unrelated Regression (SUR) estimation of the set of equation and the Wald tests with individual specific region bootstrap critical values are the basis of this approach. The using of region-specific bootstrap critical values implies that the variables in the system do not need to be stationary, which means that the variables can be used in level form and panel unit root test and cointegration analyses are not required. In addition, by imposing region specific restrictions, we can also identify in which and how many regions exists Granger causal relation between insurance activity and economic growth.

The system to be estimated in the bootstrap panel causality approach can be written as the follows:

$$y_{1,t} = \alpha_{1,1} + \sum_{l=1}^{ly_1} \beta_{1,1,l} y_{1,t-l} + \sum_{l=1}^{lx_1} \delta_{1,1,l} x_{1,t-l} + \varepsilon_{1,1,t}$$
$$y_{2,t} = \alpha_{1,2} + \sum_{l=1}^{ly_1} \beta_{1,2,l} y_{2,t-l} + \sum_{l=1}^{lx_1} \delta_{3,2,l} x_{2,t-l} + \varepsilon_{3,2,t}$$

Romanian Journal of Economic Forecasting – XVI(3) 2013

$$y_{N,t} = \alpha_{1,N} + \sum_{l=1}^{ly_1} \beta_{1,N,l} y_{N,t-l} + \sum_{l=1}^{lx_1} \delta_{1,N,l} x_{N,t-l} + \varepsilon_{1,N,t}$$
(9)

and

$$\begin{aligned} x_{1,t} &= \alpha_{2,1} + \sum_{l=1}^{l} \beta_{2,1,l} y_{1,t-l} + \sum_{l=1}^{l} \delta_{2,1,l} x_{1,t-l} + \varepsilon_{2,1,t} \\ x_{2,t} &= \alpha_{2,2} + \sum_{l=1}^{l} \beta_{2,2,l} y_{2,t-l} + \sum_{l=1}^{l} \delta_{2,2,l} x_{2,t-l} + \varepsilon_{2,2,t} \\ \vdots & x_{N,t} &= \alpha_{2,N} + \sum_{l=1}^{l} \beta_{2,N,l} y_{N,t-l} + \sum_{l=1}^{l} \delta_{2,N,l} x_{N,t-l} + \varepsilon_{2,N,t} \end{aligned}$$
(10)

where: *y* refers to *PRGDP*, *x* refers to *RID*, *I* is the lag length. Because each equation in this system has different predetermined variables while the error terms might be contemporaneously correlated (i.e., cross-sectional dependency), these sets of equations are the SUR system.

In the bootstrap panel causality approach, there are alternative causal linkages for a region in the system that (i) there is one-way Granger causality from x to y if not all $\delta_{1,i}$

are zero, but all β_{2i} are zero, (ii) there is one-way Granger causality running from y to

x if all $\delta_{1,i}$ are zero, but not all $\beta_{2,i}$ are zero, (iii) there is two-way Granger causality

between x and y if neither $\delta_{1,i}$ nor $\beta_{2,i}$ are zero, and finally (iv) there is no Granger

causality between x and y if all $\delta_{1,i}$ and $\beta_{2,i}$ are zero (Chang et al., 2013)...

Because the results of the causality test may be sensitive to the lag structure, determining the optimal lag length is crucial for robustness of findings (Tsangyao Chang, 2012). As indicated by Kónya (2006), the selection of optimal lag structure is important because the causality test results may depend critically on the lag structure. In general, both too few and too many lags may cause problems. Too few lags mean that some important variables are omitted from the model and this specification error will usually cause bias in the retained regression coefficients, leading to incorrect conclusions. On the other hand, too many lags waste observations and this specification error will usually increase the standard errors of the estimated coefficients, making the results less precise. For a relatively large panel, equation and variable with varying lag structure would lead to an increase in the computational burden substantially. In determining lag structure we follow Kónya's approach that maximal lags are allowed to differ across variables, but to be same across equations.

We estimate the system for each possible pair of ly_1 , lx_1 , ly_2 , lx_2 respectively by assuming from 1 to 4 lags and then choose the combinations which minimize the Schwarz Bayesian Criterion.

- 189

Romanian Journal of Economic Forecasting – XVI(3) 2013

IV. Empirical Results

As outlined earlier, testing for cross-sectional dependency and slope homogeneity in a panel causality study is crucial for selecting the appropriate estimator. Taking into account both cross-sectional dependency and region-specific heterogeneity in empirical analysis is crucial since regions are highly integrated in economic relations. Thereby, our empirical study starts with examining the existence of cross-sectional dependency and heterogeneity across the regions in concern. To investigate the

existence of cross-section dependence, we carried out four different test (CD_{BP}, CD_{LM},

CD, **LM**_{adi}) and illustrate results in Table 3. The results strongly indicate that the null

hypothesis of no cross-section dependence is rejected at the conventional level of significance, implying that the SUR method is appropriate rather than region-by-region OLS estimation, as it is assumed in the bootstrap panel causality approach. This finding implies that a shock occurred in one region is easily transmitted to other regions.

Table 3 also reports the results from the slope homogeneity tests of Pesaran and Yamagata (2008). The tests reject the null hypothesis of the slope homogeneity hypothesis in exception of the adjusted delta test. It may be due to the problem of small panel. But in overall, direction of causal linkages between insurance activity and economic growth may differ across the selected regions.

The existence of the cross-sectional dependency and the heterogeneity across 31 regions support evidence on the suitability of the bootstrap panel causality approach. The results of the bootstrap panel Granger causality analysis are reported in Tables 4-9. It is of great interest that the results differ across areas. For the 11 regions in Eastern area, results show one-way Granger causality from insurance activity to economic growth in Jiangsu, Zhejiang, and Shandong. As regards to the direction of Granger causality running from economic growth to insurance, the null hypothesis is rejected only in the case of Beijing. For Central area, the results show one-way Granger causality from economic growth to insurance activity in most of these 8 regions, with the exception of Jiangxi and Henan. As for Western area, there is no causal link between insurance activity and economic growth in all the 12 regions.

V. Economic and Policy Implications

Even though insurance is of great significance in economic activities, its role in the development process remains difficult to assess. The insurance has been recognized since the early '60s by some authors. The insurance is so important in economic development that, as in the first session in 1964, the United Nations Conference on Trade and Development (UNCTAD) formally acknowledged that "a sound national insurance and reinsurance market is an essential characteristic of economic growth." While insurance plays an important role in the financial sector, it is often ignored in the academic literature. The purpose of this paper is to examine the relationship between insurance and economic growth of China over the period of 1997-2011.

190 .

From a theoretical point of view, the relationship between insurance and economic growth may run in either or both directions. The "supply-leading" and "demand-following" views presented by Patrick (1966) represent the two directions, respectively. Based on the "supply-leading" view, financial development enhances economic growth by transferring resources from traditional sectors to modern sectors and by promoting an entrepreneurial response in these modern sectors. In contrast, the "demand-following" view indicates that a lack of financial development or institutions is due to a lack of demand for financial services. Thus, as the growth rate of real income rises, investors' and savers' demands for various new financial services materialize, hence leading to the creation of modern financial institutions, the supply of their financial assets and liabilities, and related financial services.

The results differ in the three considered areas. For the Eastern area, we find a oneway Granger causality running from insurance activity to economic growth in Jiangsu, Zhejiang, and Shandong. As regards to the direction of Granger causality running from economic growth to insurance, the null hypothesis is rejected only in the case of Beijing. For the Central area, the results show one-way Granger causality from economic growth to insurance activity in most of the eight regions, with the exception of Jiangxi and Henan. For the Western area, there is no causal link between insurance activity and economic growth in all the regions. Our empirical evidence suggests that economic growth contributes materially to insurance activities in most of regions, especially the regions in Central area of China. Our results show that the insurancegrowth nexus varies across regions with different conditions, which is consistent with the finding of Ward and Zurbrugg (2000).

Our empirical findings have four major policy implications, as follows. First, the evidence of a one-way Granger causality running from economic growth to insurance activity in most regions in Central area with the exception of Jiangxi and Henan, implying that economic growth can increase the demand for insurance, and thus leading to the development of insurance markets. This result supports the "demand-following" hypothesis, implying that as real income increases, investors and savers will require various new financial services, thus leading to the creation of modern financial institutions, and related financial services, i.e. insurance services in these regions.

Second, in Jiangsu, Zhejiang and Shandong we find the evidence of a one-way Granger causality running from insurance activity to economic growth, implying that insurance is playing an important role in economic development. Besides, it also supports the "supply-leading" views, indicate that financial markets have a significant positive impact on economic growth, which is consistent with the finding of previous studies (see, Patrick, 1966; Ward and Zurbruegg, 2000; Kugler and Ofogah, 2005; Sumegi and Haiss, 2008).

Third, for most regions in Eastern area (except for Beijing, Jiangsu, Zhejiang, Shandong), Jiangxi and Henan in Central area, and all the regions in Western area, no causal relationship between insurance activities and GDP is found. These results suggest the neutrality hypothesis for the insurance-growth nexus, which indicates that insurance development and economic growth may not mutually influence each other. In these regions, an economic policy may not be effective to insurance market developments, while a financial policy may also have no impact on economic growth,

Romanian Journal of Economic Forecasting - XVI(3) 2013 -

191

since the results show no evidence of the relationship between all insurance activities and GDP in these regions.

Fourth, we do not find a two-way Granger causality between insurance activity and economic growth, implying that supply-leading and demand-following hypothesis cannot be both supported in all these regions.

References

- Arena,M., 2008. Does insurance market activity promote economic growth? A crosscountry study for industrialized and developing countries. Journal of Risk & Insurance ,75(4), pp.921-946.
- Beck, T. Webb, I., 2003. Economic, demographic, and institutional determinants of life insurance consumption across countries. World Bank Economic Review, 17(1), 51-88.
- Beenstock, M. Dickinson, G. and Khajuria, S., 1988. The relationship between property liability insurance premiums and income: An international analysis. Journal of Risk & Insurance, 55(2), pp.259-272.
- Breitung, J., 2005. A parametric approach to the estimation of cointegration vectors in panel data. Econometric Reviews, 24, pp.151–73.
- Breusch,T.S. Pagan, A.R., 1980. The lagrange Multiplier test and its applications to Model specification in econometrics. The Rview of Eonomic Studies, 47(1), pp.239-253.
- Browne, M.J. Chung, J. Frees, E.W., 2000. International property-liability insurance consumption. Journal of Risk & Insurance, 67(1), pp.73-90.
- Browne, M. Impavido, G. and Kim, K., 1993. An international analysis of life insurance demand. Journal of Journal of Risk & Insurance, 60(4), pp.616-634.
- Chang, TY., 2002. Financial development and economic growth in Mainland China:an note on testing demand-following or supply-leading hypothesis. Applied Economics Letters, 9, pp.869-873.
- Chang, TY. and Hsieh, WK., 2012. Does Insurance Activity Promote Output? Further Evidence Based on Bootstrap Panel Granger Causality Test. Working paper Feng Chia University.
- Chang, TY. Simo-Kengne, B.D. and Gupta R., 2013. The Causal Relationship between House Prices and Economic Growth in the Nine Provinces of South Africa: Evidence from Panel-Granger Causality Tests. Working Paper. University of Pretoria.
- Chen, P.F. Lee, C.C. and Lee, C.F., 2011. How does the development of the life insurance market affect economic growth?Some international evidence. Journal of International Development (in press).
- Esho, N. et al., R.,2004. Law and the determinants of property-casualty insurance. Journal of Risk & Insurance, 7(2), pp.265-283,
- Granger, Clive W.J., 2003. Some aspects of causal relationships. Journal of Econometrics, 112(1), pp.69-71.
- Han, L. et al., 2010. Insurance development and economic growth. The Geneva Papers on Risk and Insurance, 35(3), pp.183-199.

192 — Romanian Journal of Economic Forecasting – XVI(3) 2013

- Kar, M. Nazlloglu, S. and Aglr, H., 2011. Financial development and economic growth nexus in the MENA countries: Bootstrap panel granger causality analysis. Economic Modelling, 28(1-2), pp. 685-693.
- Kónya, L., 2006. Exports and growth: granger causality analysis on OECD countries with a panel data approach. Economic Modelling, 23, pp.978-972.
- Kugler, M., & Ofoghi, R.,2005. Does insurance promote economic growth? Evidence from the UK. Paper presented at the Money Macro and Finance (MMF) Research Group Conference 2005. Available at: <http://repec.org/mmfc05/paper8.pdf>. [Accessed on sep 2008].
- La Porta, R., et al., 1997. Legal determinants of external finance. Journal of Finance, 52(3), pp.1131-1150.
- Lee, C.-C., 2011. Does insurance matter for growth Empirical evidence from OECD countries. The B.E. Journal of Macroeconomics, 11(1), Article 18.
- Levine, R. Loayza, N. and Beck, T., 2000. Financial intermediation and growth: Causality and causes. Journal of monetary Economics, 46(1), pp.31-77.
- Outreville, J.F .,1990a. The relationship between insurance ,financial development and market structures in developing countries : An international crosssevctional study . UNCTAD Review, pp.53-69
- Outreville, J.F., 1996b. The economic significance of insurance markets in developing countries. Journal of Risk & Insurance , 57(3), pp.487-498.
- Outreville, J.F., 1996. Life insurance markets in developing countries. Journal of Risk & Insurance, 63(2), pp.263-278.
- Outreville, J.F., 2012 . The Relationship Between Insurance and Economic Development: 85 Empirical Papers for a Review of the Literature. Risk Management and Insurance Review, pp.1-52
- Patrick, H., 1966 .Financial development and economic growth in underdeveloped countries. Economic Development and Cultural Changes, 14(2), pp.174-189 .
- Pesaran, M.H. 2004. General diagnostic tests for cross section dependence in Panels . Cambridge Working Papers in Economics, No. 0435.
- Pesaran, M.H., 2006. Estimation and Inference in Large Heterogeneous Panels with Multifactor Error Structure. Econometrica, 74(4), pp.967-1012.
- Pesaran, M.H. Ullah, A. and Yamagata, T., 2008. A bias-adjusted LM test of error cross-section independenc . Econometrics Journal, 11, pp.105-127.
- Pesaran, M.H. Yamagata, T., 2008. Testing slope homogeneity in large panels. Journal of Econometrics, 142, pp.50-93
- Sumegi, K. Haiss, P., 2008. The relationship between insurance and economic growth: Review and agenda . The Icfai University Press, 5(2), pp.32-56.
- Swamy, P.A. V . B ., 1970. Efficient inference in a random coefficient regression model. Econometrica, 38, pp.311-323.
- Ward, D. and Zurbruegg, R., 2000. Does insurance promote economic growth? Evidence from OECD Economies. Journal of Risk and Insurance, 67(4), pp.489-506.

Romanian Journal of Economic Forecasting – XVI(3) 2013 – 193

Webb, I. Grace, M.F. and Skipper, H.D., 2002. The effect of banking and insurance on the growth of capital and output. Unpublished Center for Risk Management and Insurance Working Paper 02-1. Georgia State University, GA.

Table 1

		,	1	•		1	
Region	Mean	Max.	Min.	Std. Dev.	Skew.	Kurt.	JB.
Beijing	38960	63867	16554	17177	-0.03	1.54	1.33
Tianjin	33208	66647	13270	17343	0.50	2.01	1.23
Shanghai	45183	66690	23602	15785	0.01	1.44	1.52
Liaoning	19179	39701	8658	9750	0.81	2.46	1.83
Jiangsu	23446	48718	9346	12930	0.61	2.08	1.45
Zhejiang	23446	48718	9346	12930	0.61	2.08	1.45
Fujiang	18775	37055	8747	8832	0.77	2.38	1.72
Shandong	18639	37022	7441	10018	0.51	1.86	1.46
Guangdong	22927	39737	10375	10025	0.23	1.70	1.19
Hainan	11079	22602	5516	5261	0.88	2.68	2.00
Hebei	13421	26568	2994	6919	0.40	2.08	0.94
Shanxi	11721	24525	4699	6579	0.53	2.00	1.32
Jilin	13734	30080	5572	7821	0.79	2.40	1.77
Heilongjiang	13603	25669	7111	5773	0.67	2.33	1.41
Henan	10764	22416	4413	6052	0.63	2.02	1.58
Hubei	12048	26746	5875	6669	0.97	2.71	2.42*
Hunan	10592	23370	4630	6021	0.85	2.45	1.97
Jiangxi	9368	20453	3869	5200	0.78	2.46	1.72
Anhui	8955	20069	3831	4949	0.99	2.85	2.44*
Chongqing	11590	26983	4708	7223	0.80	2.42	1.82
Sichuan	9161	20439	3938	5259	0.86	2.52	1.98
Guizhou	5498	12837	2199	3317	0.93	2.73	2.23*
Yunnan	7733	15068	4016	3470	0.76	2.38	1.66
Shaanxi	10853	26173	3714	7159	0.85	2.53	1.93
Gansu	7298	15326	3133	3792	0.75	2.45	1.60
Qinghai	10342	23090	4074	5995	0.81	2.47	1.83
Inner Mongolia	17778	45343	4959	13550	0.79	2.25	1.90
Guangxi	8767	19808	4103	5011	0.95	2.73	2.28
Ningxia	10952	25844	3980	6902	0.87	2.59	2.02*
Xinjiang	12184	23532	6113	5425	0.66	2.36	1.35
Tibet	8352	15703	3104	3957	0.38	1.94	1.07
Note: 1 The comp				ι	ι	1	(

Summary Statistics of Per Capita Real GDP

Note: 1. The sample period is from 1997 to 2011.

2. ***, **, and * indicate significance at the 0.01, 0.05, and 0.1 levels, respectively.

194 -

Table 2

Region	Mean	Max.	Min.	Std. Dev.	Skew.	Kurt.	JB.
Beijing	2190.10	4184.20	747.01	1099.80	0.03	1.88	0.79
Tianjin	766.10	1262.50	274.50	373.10	-0.07	1.55	1.33
Shanghai	2349.80	4288.40	482.59	1313.60	0.19	1.75	1.07
Liaoning	433.30	882.20	110.56	270.90	0.37	1.74	1.34
Jiangsu	564.70	1217.90	117.50	370.40	0.45	2.06	1.06
Zhejiang	612.20	1217.80	157.30	350.10	0.22	1.86	0.94
Fujiang	455.10	1371.20	93.48	359.60	1.13	3.71	3.49*
Shandong	721.70	3362.20	74.79	1016.30	1.96	5.26	12.76***
Guangdong	508.10	1081.20	149.57	324.70	0.57	1.91	1.55
Hainan	205.00	479.10	78.45	131.30	0.98	2.81	2.42*
Hebei	337.60	800.30	42.04	271.30	0.62	2.00	1.60
Shanxi	360.48	822.28	57.88	274.43	0.51	1.87	1.46
Jilin	307.96	640.72	77.71	199.01	0.49	1.91	1.35
Heilongjiang	339.54	648.65	72.00	211.29	0.10	1.56	1.32
Henan	252.96	660.55	38.00	213.76	0.79	2.25	1.90
Hubei	277.52	682.54	71.40	211.98	0.89	2.31	2.28*
Hunan	220.17	525.95	49.40	166.50	0.76	2.17	1.87
Jiangxi	201.00	468.25	46.33	140.69	0.65	2.19	1.46
Anhui	234.11	566.52	47.42	175.02	0.54	1.97	1.39
Chongqing	315.27	838.23	56.41	270.05	0.85	2.17	2.23*
Sichuan	281.06	757.31	54.43	246.86	0.85	2.23	2.18*
Guizhou	117.05	297.32	29.28	86.64	0.99	2.71	2.53*
Yunnan	196.07	404.78	71.60	112.44	0.71	2.15	1.73
Shaanxi	287.82	724.11	56.66	222.28	0.78	2.29	1.85
Gansu	201.52	471.64	48.34	139.77	0.76	2.33	1.74
Qinghai	166.53	384.00	67.56	97.04	1.13	3.11	3.21*
Inner Mongolia	289.33	724.15	62.15	228.10	0.78	2.17	1.94
Guangxi	153.59	358.08	50.23	98.76	0.82	2.50	1.82
Ningxia	277.13	677.01	58.54	207.44	0.73	2.25	1.68
Xinjiang	360.29	730.19	90.35	214.71	0.33	1.85	1.08
Tibet	129.26	592.70	16.87	184.18	1.89	4.99	11.39***

Summary Statistics of Real Insurance Density

Note: 1. The sample period is from 1997 to 2011.

2. ***, **, and * indicate significance at the 0.01, 0.05, and 0.1 levels, respectively.

Table 3

Cross-sectional Dependence and Homogeneous Tests

Test	Estern area	Central area	Western area
LM	98.25***	107.697***	223.202***
CD_{LM}	4.124***	10.65***	13.77***

Romanian Journal of Economic Forecasting – XVI(3) 2013 -

- 195

Test	Estern area	Central area	Western area
CD	4.285***	8.765***	10.569**
LM _{adj}	52.0063***	50.2789***	69.2669***
$\tilde{\Delta}$	32.4131***	7.1253***	12.9780***
$ ilde{\Delta}_{adj}$	2.6044***	0.5505	1.0204
Ŝ	163.0308***	36.5011***	75.5792***

Note: 1. ***, **, and * indicate significance at the 0.01, 0.05, and 0.1 levels, respectively.

Table 4

Total Density does not Granger Cause Output in Eastern Region

Region	coefficient	Wald Statistics	Bootstrap Critical Value			
Region	coenicient		10%	5%	1%	
Beijing	1.56577	36.666	235.219	437.522	1398.541	
Tianjin	1.52649	6.613	122.254	217.783	1054.552	
Shanghai	-1.47866	2.181	86.796	144.178	384.532	
Hebei	2.25355	37.561	136.282	229.945	641.005	
Liaoning	1.34074	3.689	69.572	131.946	430.119	
Jiangsu	4.66578	432.021**	112.516	167.841	462.407	
Zhejiang	3.34922	109.154***	4.055	5.856	10.915	
Fujian	0.07414	1.058	137.972	282.966	886.403	
Shandong	0.19203	75.655***	125.764	214.786	806.616	
Guangdong	-0.20702	0.141	104.938	186.41	544.462	
Hainan	-1.50096	0.39	105.415	185.561	472.589	

Note: 1. ***, **, and * indicate significance at the 0.01, 0.05, and 0.1 levels, respectively.

2. Bootstrap critical values are obtained from 10,000 replication.

Table 5

Output does not Granger Cause Total Density in Eastern Region

Region	acofficient	Wald Statistics	Bootstrap Critical Value			
	coefficient	Wald Statistics	10%	5%	1%	
Beijing	0.063946	62.201**	35.9576	62.07577	172.1948	
Tianjin	0.0046558	1.376	44.7312	74.0693	165.6441	
Shanghai	0.038315	68.07	182.9729	257.635	606.8858	
Hebei	0.021635	43.6193	191.7269	275.7348	577.012	
Liaoning	-0.013683	12.8133	65.1532	116.6812	265.8286	
Jiangsu	0.01078	31.3691	160.3771	223.1074	441.0318	
Zhejiang	0.010509	21.4049	112.6279	167.2084	342.1262	
Fujian	0.018381	2.8387	12.4571	20.188	56.7905	

-Romanian Journal of Economic Forecasting – XVI(3) 2013

Insurance Activity and Economic Growth Nexus in 31 Regions of China

Region	a a officient	Mold Ctatistics	Bootstrap Critical Value			
	coefficient	Wald Statistics	10%	5%	1%	
Shandong	0.026953	0.723	8.3786	12.1225	58.2597	
Guangdong	0.023648	64.2006	199.4795	301.1546	711.8807	
Hainan	0.024333	54.3684	256.5976	413.8793	922.6613	

Note: 1. ***, **, and * indicate significance at the 0.01, 0.05, and 0.1 levels, respectively.

2. Bootstrap critical values are obtained from 10,000 replication.

Table 6

Region	coefficient	Wald Statistics	Bootstrap Critical Value			
	coenicient		10%	5%	1%	
Shanxi	3.303635	2.2524	37.9466	55.7141	131.5666	
Jilin	-1.97341	2.9923	13.0156	23.6689	56.72	
Heilongjiang	0.49013	0.2946	18.1808	30.323	82.6823	
Anhui	1.63866	9.8623	16.7168	29.5413	81.5399	
Jiangxi	4.58905	11.2928	24.3577	42.0611	94.35676	
Henan	-1.06335	0.61905	30.8476	43.9086	78.9715	
Hubei	1.9178	0.7403	19.6075	30.1666	81.9474	
Hunan	0.14447	0.007307	17.6946	26.44411	45.4997	
Note: 1, ***, **, and * indicate significance at the 0.01, 0.05, and 0.1 levels, respectively.						

Total Density does not Granger Cause Output in Central Region

Note: 1. ***, **, and * indicate significance at the 0.01, 0.05, and 0.1 levels, respectively.

2. critical values are obtained from 10,000 replication.

Table 7

Output does not Granger Cause Total Density in Central Region

Decion	coefficient	Wald Statistics	Bootstrap Critical Value			
Region	coenicient	Wald Statistics	10%	5%	1%	
Shanxi	0.024236	66.9869**	39.8221	56.4485	115.04156	
Jilin	0.021831	61.2694**	29.8221	43.6031	88.6491	
Heilongjiang	0.028384	29.0365**	18.5768	24.8954	54.0482	
Anhui	0.037455	76.4358**	22.0813	36.3811	77.0854	
Jiangxi	0.014183	8.8777	33.3814	48.12821	92.4786	
Henan	0.021682	35.0329	37.5552	55.4187	114.57272	
Hubei	0.021935	33.1804*	32.5273	48.326	98.99176	
Hunan	0.019322	44.3052*	43.643	60.8986	104.77615	

Note: 1. ***, **, and * indicate significance at the 0.01, 0.05, and 0.1 levels, respectively.

2. Bootstrap critical values are obtained from 10,000 replication.

Romanian Journal of Economic Forecasting - XVI(3) 2013 -- 197

Table 8

Region	coefficient	Wald Statistics	Bootstrap Critical Value			
Region	coefficient		10%	5%	1%	
Chongqing	1.5371	1.187	377.01889	690.9795	1748.9873	
Sichuan	0.1413	0.22547	625.57422	1117.942	2848.7241	
Guizhou	7.4753	58.9384	745.2319	1337.8626	2892.4411	
Yunnan	2.7748	5.8251	772.8089	1671.83813	6566.1752	
Shaanxi	0.5647	0.3333	987.2441	1764.17566	6135.2851	
Gansu	5.6968	64.3106	809.6784	1445.1173	4899.2465	
Qinghai	4.6151	9.9736	988.1901	2027.9334	8880.248	
Inner Mongolia	-20.5639	97.9508	372.8094	731.26599	3054.5026	
Guangxi	12.4546	219.1193	1030.476	1773.9771	5551.9692	
Ningxia	14.5439	58.273	1120.20166	2442.5871	12535.0752	
Xinjiang	1.1704	0.8197	1217.6108	2373.1084	15450.3632	
Tibet	-0.64112	67.26	979.0462	2078.2321	10692.5566	

Total Density does not Granger Cause Output in Western Region

Note: 1. ***, **, and * indicate significance at the 0.01, 0.05, and 0.1 levels, respectively.

2. Bootstrap critical values are obtained from 10,000 replication.

Table 9

Output does not Granger Cause Total Density in Western Region

Region	coefficient	Wald Statistics	Bootstrap Critical Value			
Region	coefficient		10%	5%	1%	
Chongqing	0.027411	134.2317	1285.286	2292.5127	7773.4292	
Sichuan	0.034253	105.6207	427.4969	729.35846	3500.8979	
Guizhou	0.018843	205.045	791.3515	1479.74805	3898.6855	
Yunnan	0.032345	120.01777	714.7622	1344.9146	3713.79	
Shaanxi	0.024511	190.90554	470.44321	904.7882	3693.3042	
Gansu	0.022381	225.85139	636.403	1295.7421	3908.8586	
Qinghai	0.006947	110.81922	1022.8671	1783.3344	6733.228	
Inner Mongolia	0.017441	385.04502	678.07727	1081.3575	4014.1999	
Guangxi	0.0092324	112.29441	457.2235	806.418	2179.6823	
Ningxia	0.021763	179.33525	533.0735	1004.5725	3550.2536	
Xinjiang	0.026892	44.465705	597.093	1099.6835	3141.2832	
Tibet	0.037157	10.080715	13.824	23.3835	46.4206	

Note: 1. ***, **, and * indicate significance at the 0.01, 0.05, and 0.1 levels, respectively.

2. Bootstrap critical values are obtained from 10,000 replication.