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Abstract 

Inference about predictive ability is usually carried-out in the form of pairwise 
comparisons between two forecasting methods. Nevertheless, some interesting 
questions are concerned with families of models and not just with a couple of 
forecasting strategies. For instance: Are time-series models more accurate than 
economic models to predict inflation? In this family wise context it is not clear if the 
methods developed to analyze two models will be useful. We address this problem by 
presenting a simple methodology to test the null hypothesis of equal predictive ability 
between two families of forecasting methods. Our approach builds on the reality check 
presented by White. We illustrate our results comparing the ability of two families of 
models to predict inflation in Chile, the US, Sweden and Mexico. 
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I. Introduction 

Forecasts of economic and financial variables are usually important inputs for policy 
makers in the decision making process. From time to time, new forecasting models 
appear in the literature with the hope of providing a better understanding of the 
evolution of key economic variables or with the simpler goal of reducing some 
measure of forecasting error. When evaluating if a novel forecasting approach is 
useful for prediction, at least three elements are necessary: a measure of accuracy or 
loss function, a good enough benchmark to compare the new predictions, and third, 
an adequate test of predictive ability. 
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The usual practice, but not the only practice, considers a statistical measure of 
forecast accuracy like Mean Squared Prediction Error (MSPE), a well known model 
available in the literature as a benchmark, and tests of equal predictive ability like 
those developed by Diebold and Mariano (1995) and West (1996). If the object of 
study are the forecasts themselves rather than the models generating those forecasts, 
the inference strategy proposed by Giacomini and White (2006) may be preferred. 
This usual practice is aimed at comparing the predictive accuracy of two competing 
forecasts. Even when more than two forecasting methods are considered, often 
inference is carried out in the form of several pairwise comparisons. In the case of the 
exchange rate literature, for instance, new models of exchange rate determination are 
usually compared to the simple random walk model in an attempt to overturn the 
seminal results in Meese and Rogoff (1983). Nevertheless, some interesting research 
questions are concerned with families of models and not just with a couple of 
forecasting strategies. For instance: 1) Are time-series models more or less accurate 
than economic models to predict a given variable?; 2) Are simple combination 
strategies more accurate than complex combination schemes to predict a given 
variable?; 3) Are forecasts that rely solely on the aggregate CPI index more adequate 
to predict inflation than methods based on disaggregate components? or 4) Are linear 
methods more accurate than non-linear methods? These are all examples of 
interesting research questions involving the comparison of two families of forecasting 
methods which may include a number of different forecasting strategies. 
In addition, when a new forecasting device is presented in the literature, there is 
typically some degree of uncertainy surrounding some aspects of this new method. 
For instance, if a new VAR model is presented, there may be some uncertainty about 
the number of lags used in each equation, or the number of cointegrating relationships 
among them. Another good example is the number of different Phillips curve 
specifications in which the measure of output gap can be calculated in a number of 
ways and the Phillips curve itself can be augmented with different regressors in 
several ways as well. Therefore, instead of a new model, the truth is that a family of 
new models is developed. This family is typically generated by some minor 
modifications of the main original model.  
On the other hand, the number of acceptable forecasting methods for traditional 
economic variables is often large. In this context, it is difficult to support the a priori 
selection of a unique benchmark. In the case of inflation, the number of well stablished 
forecasting models is huge; therefore, a more realistic inference approach would be 
one in which families of models are compared and not just a couple of competing 
models.  
Some interesting contributions dealing with forecasting comparisons including more 
than two models are the papers by White (2000) and Hansen (2005). Both authors 
work with a setup in which a number of models are compared to a single benchmark. 
But what if instead of having a natural benchmark we rather have a family of natural 
benchmarks? Should we pick our favorite benchmark model and proceed according to 
White (2000) or Hansen (2005)? 
In this paper, we address this problem by introducing a natural extension of the 
approach presented by White (2000), but allowing both families of forecasting devices, 
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the new family and the benchmark family, to be populated by a large number of 
forecasting methods.  
Different from the results in White (2000), the p-values of our new test need not to be 
higher than when comparing the best models of both families. This is produced 
because we are now allowing for specification searches in both families of models. In 
other words, we are accounting for the fact that we could draw a favorable outcome in 
both of our families just by luck.  
The rest of the paper is organized as follows: In Section 2 we introduce the inference 
approach to compare the predictive performance between two families of models. In 
section 3 we provide an empirical illustration of the use of our test when comparing the 
predictive ability of two families of inflation forecasts for the case of headline inflation 
in Chile, Mexico, Sweden and the US. Section 4 concludes and provides a brief 
summary of our results. 

II. Comparing Sets of Forecasting Methods 

In this section we consider the following sets of forecasting methods 

 
 

 
where  and  denote generic one-step-ahead prediction errors from forecasting 
method i  in  and forecasting method j  in . We call  the "alternative 
family" of forecasting methods, while is called the "benchmark family". We have 
used "hats" in our notation to make explicit the possible dependence of these 
forecasts errors from estimated parameters as in Giacomini and White (2006). 
Let us consider a measure of forecast accuracy represented by a generic loss function  

 2: →L R R  
 ,= ( ( ))p

t k tY y k+L L  

where: ( )p
ty k  is a k -step ahead predictor of t kY +  which uses information available 

up to time t . Often, this loss function can be expressed in terms of an increasing 
function of the difference between the predictor and the variable it attempts to predict 

 ( , ( )) = ( ( ))p p
t k t t k tY y k l Y y k+ + −L  

the leading example of such a loss function is a quadratic function 
2( , ( )) = ( ( )) = ( ( ))p p p

t k t t k t t k tY y k l Y y k Y y k+ + +− −L  

We assume that we are interested in a loss function that can be expressed as l  
above. 
We consider a null hypothesis according to the unconditional version of the test of 
predictive ability introduced by Giacomini and White (2006). This is a null expressed in 
terms of estimates of the parameters of interest. In our case we test  
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The alternative hypothesis could be one-sided or two-sided. The one-sided version is 

one in which there is a forecasting method  in family   for which  

 
The two-sided version of the alternative hypothesis is one in which there is a 

forecasting method  in family  or a forecasting method  in family   for 
which 

   
or 

 
that is, we are interested in the identification of a family having the best forecasting 
method in terms of the loss function, l . 
The next proposition sheds some light regarding the type of statistic we shall be using 
to test our null hypothesis against the previous suggested alternatives. 

Proposition 1 The existence of a forecasting method  in family  for which  

 
is equivalent to the following expression  

 
 

Following the same logic of Proposition 1, it is possible to show that the existence of a 

forecasting method  in family  for which  
 

  
 
is equivalent to the following expression  

 
 
It follows that  
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has a very different behavior under the null and alternative hypothesis. While (1) is 
exactly zero when the null hypothesis is true, it is strictly negative under our one-sided 
alternative hypothesis and strictly different from zero under our two-sided alternative 
hypothesis. 

III. Building an Asymptotic Test 

In this section, we construct an asymptotic test based upon the sample analog of (1). 

For a couple of forecasting methods 
A
ite$  and 

0
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where: P denotes total number of one-step-ahead forecast errors available. Notice 
that under the null, 0H , and mild assumptions, such as those in Giacomini and White 

(2006), it is possible to show that for each = 1,...,i m  
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with ( )
( )

i
J JV ×  positive semi-definite. Then, the continuous mapping theorem for 

convergence in distribution ensures that as P  goes to infinity 
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where: { }( ) ( ) ( )

1 2, ,...,i i i
Ju u u  is a J dimensional vector distributed as ( )

( )(0, ).i
J JN V ×  (see 

White, 2000). 
Let us use iF  to denote the following limiting distribution  
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it follows that under the null  
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As mentioned in White (2000), when the number of models is small, critical values of 
G  may be obtained using simple Monte Carlo simulations. This can be easily done 
once consistent estimates of each variance-covariance matrix ( )

( )
i

J JV ×  are obtained. 
Otherwise, we can work with bootstraped critical values. We propose a straightforward 
generalization of the bootstrap method in White (2000) and also clearly outlined in 
West (2006). This bootstrapped critical values can be obtained as follows: 
1.  First, a sequence of P  forecast errors for each of the m J×  models is generated 
using rolling estimation windows. 
2.  Second, generate B  bootstrap samples by sampling with replacement from each 
original sample. Therefore, you end up with a collection of B  sequences of P  
forecast errors for each of the m J×  models. To generate the pseudo-data we use 
the stationary bootstrap of Politis and Romano (1994). 
3. For every possible combination of alternative models i  =1,..., m  and null models 

= 1,...,j J  we compute the bootstrap statistic  
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5.  Bootstrap critical values are finally obtained from the quantiles of the empirical 

distribution of .bu
∗

  
In the next section, we illustrate how this procedure works in practice when comparing 
two families of inflation forecasting methods. 



Institute for Economic Forecasting 
 

 Romanian Journal of Economic Forecasting –XVI(3) 2013 32

  

IV. Empirical Illustration 

In this section, we compare the predictive ability of two different families of forecasting 
methods. We focus on headline inflation forecasts at different horizons. We consider 
monthly series of the Consumer Price Index (CPI) for Chile, Mexico, Sweden and the 
USA3. Our sample begins in January 1959 and finishes in December 2008.  
We build forecasts for the usual log approximation of year-on-year inflation. In other 
words we work with 12

tπ  defined as 

 
12

12= ln( ) ln( )t t tCPI CPIπ −−  
With this transformation, our sample reduces to January 1960-December 2008. We 
generate sequences of h -step ahead forecasts for every = 1, 2,...,12.h  All forecasts 
are built from univariate models estimated with rolling windows of 200 observations. 
Therefore, our first estimation window spans the period January 1960-August 1976, 
and our first one-step-ahead forecast is for September 1976. Similarly our first 12-
step-ahead forecast is for August 1977. 

Figure 1 
Year-on-Year Headline Inflation 
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3 We pick these four countries to illustrate our inference strategy for two main reasons. First, 

these countries currently belong to the OECD, which ensures data quality and availability. 
Second, they conform a sample of two stable inflation countries (USA and Sweden) and a 
sample of two unstable inflation countries (Chile and Mexico), which allows for exploring the 
behavior of our inference strategy in two different economic environments. We obtained our 
data from the International Financial Statistics. 



 A Bunch of Models, a Bunch of Nulls and Inference about Predictive Ability 

Romanian Journal of Economic Forecasting – XVI(3) 2013 33 

  

Figure 1 shows the evolution of year-on-year inflation for the countries in our sample. 
It shows a sharp contrast in the cross-country evolution of inflation. Chile and Mexico 
show periods of extremely high and persistent inflation. Compared to them, Sweden 
and the US showed stable inflation during all our sample period. It is interesting to 
point out that Chilean inflation reaches a maximum of 214% whereas Mexico reaches 
a maximum of 103%. We consider the same number of forecasts irrespective of the 
forecasting horizon just for simplicity. Therefore, we consider a total of P=377 
forecasts starting from August 1977 and ending in December 2008. 
In the next subsections, we give a brief description of the family of forecasting 
methods we compare in this empirical excercise. 

IV.1 Benchmark Methods 
The use of different univariate time series models to generate forecasts is fairly usual 
in the forecasting literature in general, and in the inflation literature in particular. For 
instance, Atkeson and Ohanian (2001) show that a simple random walk model for 
year-on-year inflation in the US is very competitive when predicting inflation12-months 
ahead. Giacomini and White (2006), also for the US, present an empirical application 
in which several CPI forecasts are compared to those generated by a random walk 
with drift and an autoregression in which the number of lags is selected according to 
the Bayesian Information Criteria (BIC). Another paper using simple univariate 
benchmarks for the US is Ang, Bekaert and Wei (2007). Among the many methods 
the authors use, they include an ARMA(1,1) model, a random walk and also an AR(p) 
model with automatic lag selection according to BIC. Elliot and Timmermann (2008) 
also explore the ability of several simple univariate models to predict inflation in the 
US including a simple AR(p) model and single exponential smoothing, which 
generates the same forecasts as an IMA(1,1) model in which some constraints are 
imposed over the parameters. More recently, Croushore (2010) also makes use of an 
IMA(1,1) model as a benchmark when evaluating survey-based inflation forecasts for 
the US. In addition, Stock and Watson (2008) use several different ARMA models as 
benchmarks to predict inflation in the US. They also use a version of the direct 
autoregressive model discussed in Stock and Watson (1999). This model looks as 
follow: 

                                          = ( )h h h h
t h t t t hLπ π µ α π ν+ +− + ∆ +                                (3) 

 where:  

 
= (1200 / ) ln( )h t h

t h
t

CPIh
CPI

π +
+

 

 1

= 1200ln( )t
t

t

CPI
CPI

π
−  

 1=t t tπ π π −∆ −  
and ( )h Lα  is a polynomial in the lag operator L . Finally, hµ  is just a constant. 

Outside of the US, the use of univariate time-series models has also become fairly 
usual. Groen, Kapetanios and Price (2009), for instance, evaluate the accuracy of the 
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Bank of England inflation forecasts using several univariate models, including an 
AR(p) and the random walk as benchmarks. Similarly, Andersson, Karlsson and 
Svensson (2007) make use of simple time series models to compare inflation 
forecasts from the Riksbank. Finally, Pincheira and Alvarez (2009) and Pincheira 
(2010) also consider ARMA models to construct forecasts for Chilean inflation and 
GDP growth, respectively. 
Based on this selective review of the literature and our preliminary exploration, we 
define the family  as containing the following 11 traditional univariate linear 
forecasting benchmarks: an AR(1), AR(6), AR(12), ARMA(1,1), ARMA(6,12), 
ARMA(1,1-12), IMA(1,1), Random Walk, Random Walk with drift, and two versions of 
the model in (3). The first version selects the lag of the lag polynomio automatically 
according to AIC, whereas the second version selects these lags according to BIC. 
Just for clarity of exposition, the ARMA(1,1-12) is defined as follows: 

                   1 1 1 12 12=t t t t tcπ ρπ ε θ ε θ ε− − −+ + − −  

IV.2 Alternative Methods 
For the alternative family we rely on the observation of Ghysels et al. (2006), who 
mention that the airline model of Box and Jenkins (1970) has a good forecasting 
performance when predicting seasonal time series. We also rely on early work by 
Pincheira and García (2012), who show that an extended SARIMA family of models 
performs well when forecasting Chilean headline inflation at several horizons. This 
family contains the following eight models 

 1 1 1 12 12=t t t t tπ π ε θ ε θ ε− − −− − −  (4) 

  1 1 1 1 12 1 1 13=t t t t t tπ π ε θ ε ε θ ε− − − −− − −Θ + Θ  (5) 

 1 1 2 1 1 12 12= ( )t t t t t t tπ π ρ π π ε θ ε θ ε− − − − −− − + − −  (6) 

 1 1 2 1 1 1 12 1 1 13= ( )t t t t t t t tπ π ρ π π ε θ ε ε θ ε− − − − − −− − + − −Θ + Θ  (7) 

 1 1 1 12 12=t t t t tπ π δ ε θ ε θ ε− − −− + − −  (8) 

 1 1 1 1 12 1 1 13=t t t t t tπ π δ ε θ ε ε θ ε− − − −− + − −Θ + Θ  (9) 

 1 1 2 1 1 12 12= ( )t t t t t t tπ π δ ρ π π ε θ ε θ ε− − − − −− + − + − −  (10) 

 1 1 2 1 1 1 12 1 1 13= ( )t t t t t t t tπ π δ ρ π π ε θ ε ε θ ε− − − − − −− + − + − −Θ + Θ   (11) 
Interestingly, this extended SARIMA family contains the traditional airline model which 
is the number (5) above .  
The models used by Pincheira and García (2012) display an outstanding predictive 
performance for Chile when compared to a traditional family of univariate benchmarks 
similar to that presented in the previous subsection. It is natural to use the same 
extended SARIMA family to explore its behavior when predicting inflation in other 
countries. Nevertheless, we complement this extended SARIMA family with four more 
models. These models are basically the same (5), (7), (9) and (11) models with the 
only difference that the coefficient associated to the moving average term of order 
thirteen is not restricted to be equal to 1 1θ Θ  and now is a free parameter. We do this 
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simply to explore the predictive performance of the models without the restriction 
mentioned above. In summary, we use the following six models: 

 1 1 1 12 12=t t t t tπ π ε θ ε θ ε− − −− − −    (12) 

 1 1 1 1 12 1 1 13=t t t t t tπ π ε θ ε ε θ ε− − − −− − −Θ + Θ  (13) 

 1 1 1 12 12 13 13=t t t t t tπ π ε θ ε θ ε θ ε− − − −− − − −         (14) 

 1 1 2 1 1 12 12= ( )t t t t t t tπ π ρ π π ε θ ε θ ε− − − − −− − + − −   (15) 

 1 1 2 1 1 1 12 1 1 13= ( )t t t t t t t tπ π ρ π π ε θ ε ε θ ε− − − − − −− − + − −Θ + Θ  (16) 

 1 1 2 1 1 12 12 13 13= ( )t t t t t t t tπ π ρ π π ε θ ε θ ε θ ε− − − − − −− − + − − −   (17) 
and the same six models plus a drift, which makes a total of twelve models. We label 
this alternative family of models as Extended Sarima Family (ESF). We present the 
results of our empirical exercise next. 

IV.3 Empirical Results 
Table 1 below shows the results of the MinMax statistic in (2), the traditional t-statistic 
of the Diebold-Mariano-West test4, that we call in the table "Normal Test", and the 
resulting p-values associated with both statistics for the case in which the alternative 
hypothesis is one-sided. While the MinMax statistic is comparing the alternative and 
the benchmark family of models, the "Normal Test" is nothing but the Diebold-
Mariano-West test when comparing the best performing models in each family. 
Negative values of the statistics indicate that the alternative ESF outperforms the 
traditional family of models we are considering here. Table 2 is similar to Table 1. The 
only difference is that p-values in Table 2 are calculated for the case in which the 
alternative hypothesis is two-sided. 
We use different colors to highligh qualitatively different results. In Table 1, cells in 
dark grey with figures in bold indicate that the Extended Sarima Family works better 
than the benchmark family and this improvement is statistically significant at the 10% 
level. Figures in normal writing indicate no rejection of the null hypothesis at the 10% 
level. In Table 2, cells in dark grey have the same meaning as in Table 1. Figures in 
normal writing indicate that the null hypothesis cannot be rejected at the 10% 
significance level. Finally, cells in light grey with figures in italics indicate rejection of 
the null hypothesis at the 10% significance level in favor of the traditional family of 
models.  
For clarity of exposition we also present charts displaying both the p-values 
associated to the MinMax test and the p-values associated to the Diebold-Mariano-
West test applied to the best performing models in each family. To save space we 
only present charts corresponding to the p-values in Table 2 associated with a two-
sided alternative hypothesis. We do this because the difference between our inference 

                                                           
4 This test is named after the works of Diebold and Mariano (1995) and West (1996). 
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strategy and the the traditional implementation of the Normal test is more noticeable in 
Table 25. 

Table 1  
Inference About Predictive Ability When Forecasting Inflation 

Alternative Hypothesis is One-Sided 
Forecasting Horizon 
  1 2 3 4 5 6 7 8 9 10 11 12 

MinMax -2.22 -9.99 -
21.97 

-
36.44

-5.92 75.96 164.56 288.12 449.44 608.10 777.05 959.64 

P-
Value 

0.104 0.302 0.689 0.825 0.851 0.898 0.916 0.908 0.918 0.904 0.884 0.864 

Normal 
Test 

-0.80 -1.19 -1.36 -1.38 -0.11 1.58 2.15 2.28 2.56 2.64 2.57 2.60 

Chile 

P-
Value 

0.211 0.118 0.087 0.083 0.455 0.943 0.984 0.989 0.995 0.996 0.995 0.995 

MinMax -3.80 -
16.79 

-
41.72 

-
74.85

-
119.18

-
177.82

-
244.06

-
325.93

-
454.89

-
641.39 

-
875.78 

-
722.92 

P-
Value 

0.01 0.02 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.05 0.03 0.07 

Normal 
Test 

-2.14 -1.47 -2.03 -1.90 -2.00 -1.70 -1.64 -1.56 -1.52 -1.08 -1.13 -0.98 

Mexico 

P-
Value 

0.016 0.071 0.021 0.029 0.023 0.045 0.050 0.060 0.065 0.140 0.130 0.162 

MinMax -0.32 2.46 3.75 5.38 7.54 10.04 12.76 13.96 16.09 17.58 16.40 30.97 
P-
Value 

0.043 0.783 0.804 0.808 0.850 0.921 0.939 0.915 0.932 0.916 0.865 0.995 

Normal 
Test 

-2.27 1.51 1.90 1.93 2.23 2.47 2.30 2.02 1.89 1.68 0.96 2.29 

Sweden 

P-
Value 

0.012 0.935 0.971 0.973 0.987 0.993 0.989 0.978 0.971 0.953 0.832 0.989 

MinMax -0.24 0.03 2.06 2.61 3.74 3.86 4.28 5.42 7.15 8.80 12.51 22.99 
P-
Value 

0.00 0.26 0.96 0.97 1.00 0.99 0.98 0.99 0.99 0.99 1.00 1.00 

Normal 
Test 

-3.52 0.02 1.40 1.56 1.72 1.63 1.63 1.85 2.07 2.01 2.36 3.93 

USA 

P-
Value 

0.000 0.509 0.919 0.940 0.957 0.948 0.948 0.968 0.981 0.978 0.991 1.000 

 
Figures 2-5 show in dotted line the p-values for the MinMax test when inference is 
carried out at every single horizon from 1 to 12 months ahead. These graphs also 
show in solid line the p-values associated to the Normal test for the same forecasting 
horizons. The key issue to note here is that both sequences of p-values are different, 
and sometimes fairly different. This is important, because it indicates that the ex-post 
selection of the best forecasting model in each family, might not be adequate to 
compare two families of models when there is uncertainty about the best performing 
model within each family. 
                                                           
5 Very important differences between the p-values of the two strategies under evaluation are 

achieved only for Chile and Mexico when the alternative hypothesis is one-sided (Table 1). 
When the alternative hypothesis is two-sided, important differences are achieved for all the 
countries in our sample. 
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Table 2  
Inference About Predictive Ability When Forecasting Inflation 

Alternative Hypothesis is Two-Sided 
Forecasting Horizon 
  1 2 3 4 5 6 7 8 9 10 11 12 

MinMax -2.22 -9.99 -
21.97 

-
36.44

-5.92 75.96 164.56 288.12 449.44 608.10 777.05 959.64 

P-
Value 

0.208 0.604 0.622 0.350 0.298 0.204 0.168 0.184 0.164 0.192 0.232 0.272 

Normal 
Test 

-0.80 -1.19 -1.36 -1.38 -0.11 1.58 2.15 2.28 2.56 2.64 2.57 2.60 

Chile 

P-
Value 

0.423 0.234 0.174 0.167 0.909 0.114 0.031 0.022 0.010 0.008 0.010 0.009 

MinMax -3.22 -
16.41 

-
41.72 

-
74.85

-
119.18

-
177.82

-
244.06

-
325.93

-
454.89

-
623.60 

-
820.83 

-
610.33 

P-
Value 

0.024 0.040 0.052 0.054 0.062 0.056 0.070 0.086 0.082 0.090 0.060 0.130 

Normal 
Test 

-2.41 -2.22 -2.03 -1.90 -2.00 -1.70 -1.64 -1.56 -1.52 -1.51 -1.51 -0.81 

Mexico 

P-
Value 

0.016 0.027 0.042 0.057 0.045 0.090 0.101 0.120 0.129 0.130 0.131 0.421 

MinMax -0.32 2.46 3.75 5.38 7.54 10.04 12.76 13.96 16.09 17.58 16.45 30.97 
P-
Value 

0.086 0.434 0.392 0.384 0.300 0.158 0.122 0.170 0.136 0.168 0.270 0.010 

Normal 
Test 

-2.27 1.51 1.90 1.93 2.23 2.47 2.30 2.02 1.89 1.68 0.96 2.29 

Sweden 

P-
Value 

0.023 0.130 0.058 0.053 0.026 0.014 0.021 0.044 0.059 0.093 0.337 0.022 

MinMax -0.24 0.03 2.06 2.61 3.74 3.86 4.28 5.42 7.15 8.80 12.51 22.99 
P-
Value 

0.004 0.528 0.082 0.060 0.010 0.018 0.042 0.028 0.020 0.016 0.010 0.000 

Normal 
Test 

-3.52 0.02 1.40 1.56 1.72 1.63 1.63 1.85 2.07 2.01 2.36 3.93 

USA 

P-
Value 

0.000 0.982 0.161 0.120 0.085 0.103 0.103 0.064 0.039 0.044 0.018 0.000 

 
Figure 2 presents p-values for Chile. This graph shows that both sequences of p-
values may be extremely different at some forecasting horizons. When forecasting 
seven months ahead, and at longer horizons as well, the MinMax Test indicates no 
statistically significant difference between the two families of models at the 10% level. 
The Normal test, however, indicates strong rejection of the null hypothesis of equal 
predictive ability in favor of the traditional family of models. This is consistent with the 
positive values of the Normal Test statistic that are shown in Table 2 at long horizons. 
A similar but opposite situation occurs for Mexico when forecasts are made 7 to 11 
months ahead (see Figure 3). At these forecasting horizons we cannot reject the null 
hypothesis of equal predictive ability using the Normal Test, and at the same time we 
reject the null hypothesis in favor of the Extended Sarima family when using the 
MinMax Test at the 10% level.  
For the US and Sweden we are also able to detect differences between the two sets 
of p-values. The case of Sweden is remarkable, as the Normal test rejects the null 
hypothesis for most of the horizons in favor of the traditional family of models but, at 
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the same time, the MinMax test  rejects the null hypothesis only when forecasting at 1 
and 12 months ahead (in favor of the Extended SARIMA Family and the traditional 
benchmark family, respectively). Finally, the behavior of the two sets of p-values is 
relatively similar for the US, with the important difference that the MinMax p-values  
are in general lower than the p-values from the Normal test.  
This last point is important. Different from the results in White (2000), figures 2-5 show 
that the p-values resulted from the Normal test need not to be lower than those 
resulted from the more comprehensive MinMax test. We already mentioned that this is 
the case for the US at almost every single horizon, but this also happens for the rest of 
the countries in our sample at some forecasting horizons. The cases of Sweden, Chile 
and Mexico also show that we are not supposed to expect the contrary either, as both 
curves of p-values cross each other at different points. In summary, we do not detect 
any particular dominance pattern of one set of p-values over the other. 

Figure 2 
P-Values for Chile 
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Figure 3 

P-Values for Mexico 
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Figure 4 
 P-Values for Sweden 

0%

10%

20%

30%

40%

50%

1 2 3 4 5 6 7 8 9 10 11 12

P-Values Normal Test MinMax P-Value  
 

Figure 5 
P-Values for the US 
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An in-depth understanding of the differences between the two inference strategies we 
are considering here may be achieved by taking a closer look at Figure 6. This graph 
depicts the Root Mean Squared Prediction Error (RMSPE) of the twenty three models 
under consideration when forecasting headline inflation in Sweden three-months 
ahead. The solid line shows the RMSPE of the eleven forecasting models in the 
traditional family of benchmarks. The dotted line shows the RMSPE of every single 
model in the alternative Extended Sarima Family. Remember from Table 2 and Figure 
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3 that when forecasting three months ahead, the Normal Test indicates rejection of the 
null hypothesis in favor of the traditional family of models. The MinMax statistic, 
however, indicates no rejection of the null hypothesis of equal predictive ability at the 
10% level. 
 

Figure 6 
RMSPE for Both Families of Models  
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Can we visualize why in this case these two tests provide opposite conclusions? The 
answer is yes. It turns out that the best performing models in both families display 
quite different accuracy. The best model in the traditional family displays a RMSPE of 
0.8 whereas the best performing model in the Extended Sarima Family shows a 
RMSPE of only 0.91. This difference is important and the Normal test reflects this fact 
by rejecting the null hypothesis. If we take a look at the other models in both families, 
however, differences are quite important in the opposite direction. The worst 
performing model from the benchmark family displays a RMSPE of 1.17, which is 
much higher than the RMSPE of 1.024 corresponding to the worst performing model 
in the Extended Sarima Family. Furthermore, only two models from the traditional 
family outperform all of the models in the ESF. The third best performing model in the 
traditional family only beats 4 models in the ESF, whereas the fourth best performing 
model in the traditional family only beats 2 models from the ESF. All the rest of the 7 
traditional models are outperformed by all the models in the ESF. In summary, out of 
the 132 possible pairwise comparisons between the models in both families, only 30 
comparisons favor the traditional benchmarks, whereas 102 favor the Extended 
Sarima Family. 
Our interpretation of these results are related to the uncertainty surrounding the 
identification of the best performing model. If by any chance the researcher has total 
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certainty about the best forecasting models within each family, then he/she should use 
this piece of additional information when conducting inference and the Normal test 
should be employed. On the other hand, if the researcher is not sure about which of 
the models are the best performing models whithin each family, then he/she shoud 
use the MinMax statistic. By using this statistic the econometrician is implicitly 
acknowledging ignorance about the best forecasting model. He/she is implicitly given 
positive probabilities to all the models within each family to be the best performers ex 
post. 
We thing that this acknowledgement of ignorance is relevant as in several occasions it 
is not simple to pick a best performing model in advance. 

V.  Conclusions 

In this paper, we presented an extension of the White (2000) reality check approach to 
develop a framework to compare the predictive ability of two families of forecasting 
methods. This is an important contribution because many relevant policy and research 
questions involve the direct comparison of several models and not just of two models. 
This is because tipically when a new forecasting device is presented, there is 
uncertainy surrounding some aspects of this new method. Therefore, rather than a 
new model, a new contribution generates a family of models in the neighborhood of a 
central model. A similar situation occurs with the benchmarks available in the 
literature. In the case of inflation, the number of well stablished and accepted 
forecasting models is huge. Therefore, a more realistic inference approach would be 
one in which families of models are compared and not just a couple of competing 
models. Another example relates to different research questions that directly assess 
the forecasting ability of families of models. This is the case when the researcher 
wants to know whether linear or nonlinear models predict better a given economic 
variable. Similarly, one may be interested in comparing simple and more complex 
forecasting combination schemes. In the same line of argument, one may be 
interested in comparing the predictive ability of theory-based economic models versus 
times-series based models. The list of families in this case is huge. 
By accomodating the test of White (2000) to consider a family of benchmark models 
we are able to provide a framework for the comparison of two families of models. 
We illustrate the use of our statistic comparing two families of inflation forecasting 
methods. The benchmark family consists of a number of simple univariate time-series 
linear models that traditionaly are used in the literature to predict inflation. The 
alternative family of models is an extended SARIMA set of models, which includes the 
famous airline model proposed by Box and Jenkins (1970). This family is an extension 
of a particular group of SARIMA models, all of which are characterized by modeling 
year-on-year monthly headline inflation with a unit root and with a moving average 
component of order twelve. 
We compare the p-values of our test with those resulting from comparisons of the ex-
post best performing models in both families. P-values from these two approaches are 
in general different and sometimes quite different. This indicates that when there is 
uncertainty regarding the best forecasting method within each forecasting family, 
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comparisons of the ex-post best performing strategies within each family may be 
misleading. Furthermore, and different from the results in White (2000), the p-values 
of our new test need not to be higher than when comparing the best models of both 
families. This happens because we are now allowing for specification searches in both 
families of models. In other words, we are accounting for the fact that we could draw a 
favorable outcome in both of our families just by luck. 
A natural extension for future reaserch may include the comparisons of our results 
with those of an studentized statistic, as suggested by Hansen (2005) and the 
evaluation of the robustness of our test in the presence of irrelevant alternatives. 
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