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Abstract 

The study aims to extend the GARCH type volatility models to their nonlinear TAR 
(Tong, 1990) and STAR-based (Terasvirta, 1994) counter parts where both the 
conditional mean and the conditional variance processes follow TAR and STAR 
nonlinearity. The paper further investigates the models under their fractional 
integration and asymmetric power variants. The STAR-based models are LSTAR-
LST-GARCH, LSTAR-LST-FIGARCH, LSTAR-LST-FIPGARCH and LSTAR-LST-
FIAPGARCH models, which may be easily applied to model and forecast various 
financial time series. In the empirical section, an application is provided to model the 
daily returns in WTI crude oil prices considering the regime shifts the crude oil prices 
were subject to during history. Models are evaluated in terms of their out-of-sample 
forecasting capabilities with equal forecast accuracy tests and also in terms of various 
error criteria. The results suggest that volatility clustering, asymmetry and nonlinearity 
characteristics are modeled more efficiently as compared to their single regime 
variants, such as the GARCH, FIGARCH and FIAPGARCH models. Further, the out-
of-sample results suggest that the LSTAR-LST-FIAPGARCH model provides the best 
forecasting accuracy in terms of RMSE and MSE error criteria. 
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1. Introduction 

The volatility of oil prices is discussed and evaluated in many studies. The 
determination of volatility in oil prices gains importance for the periods when the oil 
prices show rapid and unexpected changes. On the other hand, future price forecasts 
gains relevance especially for the periods of high volatilility. There is a significant 
literature aiming at improving the capabilities of econometric models to model oil 
prices.  
One point to be taken into consideration is the fact that regime changes that may 
result from economic factors decrease drastically the forecast capabilities of the 
models evaluated in the literature. Furthermore, economic factors such that those that 
led to the cyclical effects that occurred during the 1st and 2nd oil shocks in 1974 and 
1979 have significant impacts on the models focusing on the evaluation, modeling and 
forecasting of oil prices. Consequently, factors such as oil shocks created regime 
shifts that make the traditional volatility models that do not take regime switching 
characteristics into consideration obsolete in modeling volatility in oil prices. 
Accordingly, a significant amount of studies focused on the nonlinear behavior by 
using different nonlinear techniques. A part of the studies investigating the path 
followed by the oil prices focus on the GARCH models. With the GARCH models, the 
effects on both the conditional mean and conditional variance could be tested. In 
terms of investigating the impacts of intervention on price volatility through derivation 
of statistical properties to achieve gains in modeling, the FIGARCH models provide 
significant analytical superiority. FIGARCH modeling provides, in addition to the 
aspects of intervention on oil prices, an important tool to analyze the finite persistence 
in oil prices.  
The contribution of this paper is to merge regime switching with the GARCH model. 
LSTAR-LST-GARCH models will be extended to two different versions to introduce 
fractional integration and asymmetric power properties. These models are LSTAR-
LST-PGARCH LSTAR-LST-APGARCH, LSTAR-LST-FIGARCH, LSTAR-LST-
FIPGARCH and LSTAR-LST-FIAPGARCH. In the frame of these models, the paper 
models the oil prices by improving both the conditional mean and the conditional 
variance with nonlinear time series to achieve improved forecasting and modeling 
capabilities. The reason behind the usage of LSTAR structure is that the business 
cycles in the economies reveal different dynamics under different regimes, so that a 
traditional GARCH model becomes insufficient once the volatility encountered is 
aimed to be modeled and forecasted for policy purposes. In addition is expected that 
by augmenting the GARCH models with LSTAR models it would likely bring increase 
in the forecasting capabilities.  
The remainder of the paper is organized as follows. Literature review is given in Part 
II. Econometric methodology is given in Part III, where both the newly proposed 
LSTAR-LST-GARCH family models and their fractionally integrated and fractionally 
integrated asymmetric power versions, LSTAR-LST-FIGARCH and LSTAR-LST-
FIAPGARCH models are introduced. Emprical application to oil prices is given in Part 
IV, while Part V concludes.  
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2. Literature Review 

Among the studies focusing on modeling nonlinarity in oil prices, Raymond and Rich 
(1997), Clements and Krolzig (2002) and Holmes and Wang (2003) evaluated the oil 
prices by discussing the impacts of oil shocks on the U.S. and the U.K. in the 
perspective of business cycles by using the Markov Switching (MS) model. Huang et 
al. (2005) utilized a threshold model to investigate the impacts of oil price changes and 
their volatility on economic activity.  
Adrangi et al. (2001) tested the presence of low-dimensional chaotic structure in crude 
oil, heating oil, and unleaded gasoline futures prices, with their sample starting by the 
early 1980s. According to the results, chaotic structure is highly persistent and, 
therefore, it would have strong implications for regulators and short-term trading 
strategies.  
Alvarez and Rodriguez (2008) found that the random walk type behavior in energy 
futures prices are still an unresolved matter of research; whereas, Alvarez-Ramirez et 
al. (2002) showed that autocorrelation in oil prices diminished over time.      
Röthig and Chiarella (2007) used smooth transition regression models to explore 
nonlinearities in the response of speculators’ trading activity to price changes using 
weekly data sets of the live cattle, corn, and lean hog futures. The authors rejected 
linearity in all of these markets. Noise traders are commonly divided into two 
categories: some investors subject to cognitive biases may follow heuristic rules of 
thumb, exhibit overconfidence and be subject to representativeness bias (Barberis et 
al., 1998; Daniel et al., 1998; Hong and Stein, 1999; Gervais and Odean, 2002), 
whereas other investors may exhibit the disposition effect, which relates to the 
tendency of investors to sell shares whose price is increasing, while keeping assets 
that have dropped in value (Oehler et al., 2003). McMillan and Speight (2006) found 
that noise traders typically engage in momentum trading and tend to this behavior 
when the underlying market is rising, and fundamental traders or arbitrageurs are 
characterized by heterogeneity, such that movement between different behavior 
regimes is slow. 

3. Econometric Methodology  

The ARCH specification of conditional volatility derived by Engle (1982) and further 
extended to Generalized ARCH (GARCH) model in Bollersev (1986) has found many 
significant applications in light of modeling the distributional aspects, such as volatility 
clustering, heavy tails, non-normal distribution in financial markets. Zakoian (1991) 
proposed the Threshold GARCH (TGARCH) model that aims to capture asymmetric 
effects of negative and positive shocks with the intuition of capturing different aspects 
below and above a certain threshold. In terms of smooth transition regressions, 
several models are developed, which include the commonly applied ST-GARCH 
model (Franses and van Dijk (2000). Hagerud (1997), Gonzalez-Rivera (1998), 
Lundbergh and Teräsvirta (1998), Anderson et al. (1999), Dufrénot et al. (2002) 
developed and applied the ST-GARCH model. Anè and Rangau (2006) combined the 
PGARCH model of Ding et al. (1993), an extension of the GARCH family models, with 
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the RS-GARCH model and thus developed the RS-APGARCH model. Tse and Tsui 
(1997) determined the APGARCH model. Brooks et al. (2000) showed the leverage 
effect and the usefulness of including a free power term. Lundbergh and Terasvirta 
(1998) developed the STAR-STGARCH model that allows nonlinearity in both 
conditional mean and the conditional variance. Chan and McAleer (2002, 2003) have 
determined statistical properties in the context of estimation of the STAR-STGARCH 
family models. Busetti and Manera (2003) used STAR-GARCH models to examine the 
market interactions in the Pacific Basin Region. Ostermark et al. (2004) used STAR 
type models for modeling Finnish Banking and Finance branch index.  

3.1. The LSTAR Models 
The STAR models (Luukkonen et al., 1988) have very interesting features that allow 
smooth transition nonlinearity between two or more regimes, where the transition is 
defined with a continuous, twice-differentiable function defined as the exponential and 
logistic function following Terasvirta (1994), which further developed the specification, 
estimation and evaluation methodology based on the LM type tests. The STAR model 
nests several nonlinear models including the SETAR and TAR models modeled with 
identity functions. Following Tong (1990), a threshold autoregressive process in the 
conditional mean is stated as, 

 ( )t t ty I s ε′ ′= + +t tα x β x% %  (1) 

where: ( )1 2, ,...,t t t t py y y− − −
′′ =x  and [ ] ( )1 21, 1, , ,...,t t t t py y y− − −

′′′= =tx x%  are the 

input vectors and the parameter vector I stated as ( ),1 ,2 ,, ,...,i i i i pφ φ φ φ ′′ =  with i=1,2 in 

a two regime TAR model and the ( )20,t iid εε σ .  

The ( )tI s  identity function is a discontinuous function,  

 
0

( )
1

t
t

t

if s c
I s

if s c

⎧ ≤⎪= ⎨
>⎪⎩

 (2) 

Chan and Tong (1986) extended the TAR model to STAR model by allowing a 
continuous nonlinear function, 

 ( ); ,t i t ty F s cγ ε′ ′= + +t tα x β x% %
 

(3)
 

Following Luukkonnen et al. (1988), Terasvirta (1994) and Granger and Teräsvirta 
(1993), the STAR models are generalized to allow logistic and exponential functions. 
The Smooth Transition Autoregressive (STAR) model further developed by Luukkonen 
et al. (1988), Granger and Teräsvirta (1993) and Teräsvirta (1994) aim at nonlinear 
modeling of the conditional mean by introducing smooth transition between regimes of 
autoregressive processes based on logistic and exponential functions belonging to 
squashing functions of neural network models (Bildirici and Ersin, 2013). In the STAR 
methodology (Teräsvirta, 1994), by taking logistic and exponential functions as 
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transition functions, the LSTAR and ESTAR models are obtained. For a two regime 
model, the logistic transition function is defined as 

 ( ) ( ){ }( ) 1
; , 1 expt tF s c s cγ γ

−

= + − −  (4) 

where: the input and parameter vectors are defined as in Equation (1).  

In the STAR models (Teräsvirta, 1994), the transition variable ts  is selected by LM 

nonlinearity tests by selecting the optimum lag of the dependent variable, t dy − , which 
maximizes the explanatory power by choosing the lag that captures the nonlinearity 
most effectively. Therefore, Equation (5) could be replaced by   

 
( ) ( )( ) 1

; , 1 expt d t dF y c y cγ γ
−

− −= + − −⎡ ⎤⎣ ⎦  (5) 

to obtain the following Logistic STAR (LSTAR) representation:  

 ( )( ) ( )( ); , ; ,t L t d L t d ty F y c F y cγ γ ε− −′ ′= 1− + +t tα x β x% % . (6) 

where: 2. . .(0, )t i i dε δ  is a white noise process with normal distribution. A univariate 
representation of the LSTAR(p) model with two regimes is  

 
( ) ( )( )( )1

1,0 1,1 1 1,2 2 1,, ,..., 1 1 expt t t p t p t dy y y y y cφ φ φ φ γ
−

− − − −⎡ ⎤= + + + − + − − +⎣ ⎦
 

 ( ) ( )( ) 1

2,0 2,1 1 2,2 2 2,, ,..., 1 expt t p t p t d ty y y y cφ φ φ φ γ ε
−

− − − −⎡ ⎤+ + + + − − +⎣ ⎦  (7) 

where: t dy −  is the transition function, c is the threshold and γ  is the transition 

parameter that defines the rate of transition which is strictly positive, 0γ > .  

For low values of γ , the process has a smooth transition, whereas as γ → ∞ the 
LSTAR model reduces to the TAR(p) process given in Equation (1). The logistic 
function F  is restricted to values within the interval [0,1]. Further, for t dy − = c , the 

function F =0.5 and as for t dy − > c  and t dy −  → ∞ , the logistic function reaches 

F =1. Hence, the the LSTAR representation of the dependent variable moves from its 

first regime representation, 1t ty φ ε′= +tx%  towards the second regime, 

( )1 2t ty φ φ ε′ ′= + +tx% . Similarly, for t dy − < c  and for small values of the transition 

variable, such that t dy −  → −∞ , the process moves smoothly from regime 2 to 
regime 1. Lastly, for γ = ∞ , the logistic function approaches the identity function, 

F = ( )t dI y −  and the two regime LSTAR model reduces to the Self-exciting threshold 
autoregressive model, (SE)TAR, (Dick Van Dijk et al., 2002). The models to be 
analyzed in the study are restricted to the logistic type transition functions and the 
exponential STAR; the ESTAR representation is not evaluated. Further, the ESTAR 
model does not nest the TAR representation of the processes. The exponentional 
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function, ( ) ( )( )2; , 1 expE t d t dF y c y cγ γ− −
⎡ ⎤= − − −⎣ ⎦ could be replaced with Equation 

(5) and substituted into Equation (9) to obtain the ESTAR(p) process as follows: 

 
( ) ( )( )( )2

1,0 1,1 1 1,2 2 1,, ,..., 1 1 expt t t p t p t dy y y y y cφ φ φ φ γ− − − −
⎡ ⎤= + + + − − − − +⎣ ⎦  

 ( ) ( )( )2
2,0 2,1 1 2,2 2 2,, ,..., 1 expt t p t p t d ty y y y cφ φ φ φ γ ε− − − −

⎡ ⎤+ + + − − − +⎣ ⎦  
(8) 

The exponential function ( ); ,E t dF y cγ−  is symmetric around the threshold c and for 

values t dy − → ±∞ , ( ); , 1E t dF y cγ− →  approaches unity in both directions. 
Therefore, the ESTAR model possesses a middle regime and two outer regimes that 
are symmetric.  
The TAR, LSTAR and ESTAR models given in Equations (1), (8) and (9) allow 
nonlinearity in the conditional mean processes. Following Hegerud (1997), Gonzales-
Rivera (1998) and Lee and Degennaro (2000) the ST-GARCH models allow nonlinear 
architectures in the conditional variance of a time series. The study aims at introducing 
fractional integration, symmetric power term and, additionally, asymmetric power 
terms to obtain LSTAR type nonlinearity in the single regime GARCH models, namely, 
GARCH, PGARCH, FIGARCH, FIPGARCH, APGARCH and FIAPGARCH volatility 
models to introduce LSTAR type nonlinearity both in the conditional mean and 
conditional variance processes. The obtained models to be analyzed in the study are 
LSTAR-LST-GARCH, LSTAR-LST-PGARCH, LSTAR-LST-APGARCH, LSTAR-LST-
FIGARCH, LSTAR-LST-FIPGARCH, LSTAR-LST-APGARCH and LSTAR-LST-
FIAPGARCH models, respectively. Therefore, the paper aims at evaluating the 
nonlinear GARCH models of the ST-GARCH form to introduce their power term, 
asymmetric power term and fractionally integraged augmentations. The models are 
evaluated for a long span of data of crude oil prices in the 4th section.  

3.2. The LST-GARCH  Models  

The LST-GARCH Model 
The GJR-GARCH model, developed by Glosten et al. (1993), is based on the 
modeling of conditional variance with varying responses to negative and positive 
lagged innovations with respect to an indicator function. The GJR-GARCH model is 
represented as 

 ( )2 2 2 2
1 1t t t t tw Iσ αε ε γε βσ− −= + + +  (9) 

where: ( )1tI ε − is an indicator function that is ( )1tI ε − =0 if 1 0tε − ≥  and ( )1tI ε − =1 
otherwise. 
 The asymmetry introduced with the γ  and the indicator function I(.) is called as “the 
leverage effect”; hence, γ  is typically estimated to be positive so that the volatility is 
increasing proportionately more after negative shocks as compared to the impact of 
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the positive shocks. The identity function will be augmented with the logistic function 
and the GJR structure will provide a basis for the ST-GARCH models.  
Hagerud (1997) and Gonzalez-Rivera (1998) proposed the ST-GARCH model that 
allows smooth transition between the α  and ϒ , coefficients of lagged squared error 
terms of the GJR-GARCH model. A convenient way to formulate the GJR is 

 2 2 2 2
1 1 1 1 1 11 0 0t t t t t t t tw I Iσ ε α ε ε ε β σ− − − − −= + − > + > ϒ +( ) ( [ ])  (10) 

If the I(.) indicator function is replaced with the F(.) logistic transition function, the 
Logistic Smooth Transition GARCH (LSTGARCH(1,1)) model is obtained as 

 ( )( ) ( )2 2 2 2
1 1 1 1 1 1 1 11t t t t t tw F Fσ ε α ε ε ε β σ− − − − −= + − + ϒ +  (11) 

where: the transformation function F is defined as 

  ( )1
1

1

1 t
tF

e θε
ε

−
− −

=
+

( ) . (12) 

The logistic function is bounded within the interval [0, 1] and the transition between the 
regimes occurs from negative to positive values, 0θ >  has non-negativity constraint 
and the logistic transition function F is a monotonic and increasing function of 1tε − . 

As 1tε −  increases from negative values to positive values the impact of 2
1tε −  moves 

proportionately from 1α  to 1ϒ . If θ  is positive and large enough, the LSTGARCH 
model transforms into the GJRGARCH model.  
By replacing the logistic transformation function with the exponential function, Hagerud 
(1997) proposed the Exponential Smooth Transformation GARCH (ESTGARCH) 
model. ESTGARCH(1,1), is differentiated from the LST-GARCH model with the 
exponential function 

 ( ) ( )2
1

1 1 t
tF e θε

ε −
−

−
⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (13) 

As a result of formulating the model with the exponential function given in Equation 
(13), the dynamics of the conditional variance is modeled depending on the size of 
shocks. This type of nonlinear GARCH formulation is symmetric in terms of the sign of 
the shocks. The most significant reason for using the exponential function instead of 
the logistic function is that it allows 1( )tF ε −  to vary between the boundaries of [0, 1] 

as 2
1tε −  varies between the extreme values.  

It is noted that in the ST-GARCH models presented above following the models of 
Hegerud (1997), Gonzales-Rivera (1998) and Lee and Degennaro (2000), the smooth 
transition is introduced in the ARCH parameters. Following Anderson et al. (1999) and 
Lundbergh and Terasvirta (2002), the ST-GARCH model may be modeled by allowing 
the intercept, ARCH and GARCH terms to follow smooth transition between regimes 
as 
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  ( )( ) ( ) ( )2 2 2
1 1 1 11t t t t tF , w F ,σ ε θ β σ α ε ε θ− − − −= − + + +* *  (14) 

where the parameters of the second regime are denoted by an asterisk.  

The conditional volatility may depend on both the size and sign of the shocks on 1tε − . 
Relative effects of negative and positive shocks of equal magnitudes depend on the 
amplitude of the conditional volatility of shocks, so that a negative shock may produce 
a larger shock as compared to the one that a positive shock of similar size could have 
produced. Negative surprises with large amplitudes may show leverage effects and 
may lead to volatility with comparatively larger size as compared to the positive 
surprises (Taylor J.W., 2004). 

The LST-FIGARCH Model 
The ARCH and GARCH models, developed by Engle (1982) and Bollerslev (1986) 
respectively, are short memory processes resulting from the fact that the response of 
a shock to the conditional variance decreases at an exponential rate. On the other 
hand, the conditional volatility of financial market returns may change slowly over time 
as a result of long memory characteristics of the financial series. Consequently, the 
autocorrelation functions may decay at a hyperbolic rate3.  
The Fractionally Integrated GARCH (FIGARCH(1, d, 1)) model was developed under 
these findings by Bollersev and Mikkelsen(1996) and Baillie et al. (1996) as an 
extension of the GARCH model to account for long memory. In this section, we first 
evaluate fractional integration in a GARCH setting to evaluate long memory in 
conditional variance. Afterwards, smooth transition type nonlinearity setting will be 
introduced to the evaluated FIGARCH and FIAPGARCH models.  
Assume that a time series following a random walk process in its conditional mean 

and its conditional variance, 2
tσ =Var ( )1t tε −Ω , where the information set up to time 

t-1 is denoted by 1t−Ω , follows a FIGARCH(1,d,1) process 

 ( ) ( ) ( )( )( )( )22
1 11 1 1 1 d

t t tL L L Lβ σ α β φ ε γε− −− = + − − − − −  (15) 

or alternatively, 

 ( ) ( )( )( )( )22 2
1 1 11 1 1 d

t t t tL L Lσ α βσ β φ ε γε− − −= + + − − − − −
   

(16) 

where: tz is assumed to be normally distributed N(0,1) white noise process,  
                                                           
3 Bollerslev and Mikkelsen (1996) develop the necessary conditions for FIGARCH model and 

note that for a well defined FIGARCH model, all the coefficients in the infinite ARCH 
representation must be non-negative (see: Bollerslev and Mikkelsen, 1996, p. 159). FIGARCH 
models are further discussed in Nelson and Cao (1992) and Conrad and Haag (2006), 
following these studies, nonnegativity constraints on parameters of FIGARCH processes are 
relaxed and shown that for p=2 the second lag of conditional variance can become negative. 
Futher, Conrad and Haag (2006) allow conditions so that even if all parameters are negative 
(apart from d), the conditional variance can be nonnegative for FIGARCH models following 
the inequality constraints of Conrad and Haag (2006). 
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 tz ~ ( )
210,1 exp

22
tzN

π
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (17) 

The FIGARCH(1, d, 1) model nests the GARCH model if d = 0 and the IGARCH model 
of Engle and Bollerslev (1986) if d = 1, the estimated fractional integration parameter. 
The fractional integration parameter d is 0<d<1 and as 0d →  ( )1d →

 
the model 

has short memory (long memory) characteristics. For alternative specifications of the 
FIGARCH model, readers are referred to Karanasos et al. (2004), Giraitis et al. (2004) 
and Zaffaroni (2004). 
The ST-FIGARCH model, which generalizes the ST-GARCH type nonlinearity to 
account for fractional integration, is represented as follows  

 
( )( ) ( )2 2 2

1 11t t s t t s tF , F ,σ ω ε γ ασ β ε γ σ− − − −= + − +
  

 ( )( ) ( ) ( )( ) 21 1 1 1 d
t s t s tL F , LF , L L uα ε γ β ε γ φ φ− −

⎡ ⎤⎡ ⎤+ − − − − − −⎣ ⎦⎣ ⎦  (18) 

for 0γ ≠  the width of the volatility clusters and α and β  characterizes the dynamics 
of the conditional volatility. The range of the cluster of volatility changes between 

( ) 0F =.  and ( ) 1F =. . The constant term takes on values between ( )1ϕ ω α= −  

and ( )1ϕ ω β= −  based upon whether the conditional volatility is regime dictated by 

( ) 0F =.  and ( ) 1F =. .  

Accordingly, since in the ST-GARCH model the constant term ranges between the 
extreme regimes, the level of conditional volatility changes in different regimes (Kılıç, 
2010). If the transition function ( )F .  is the logistic function of the following form  

 ( )1
1

1

1 t
tF

e θε
ε

−
− −

=
+

( )  (19)  

the model becomes the logistic smooth transition FIGARCH (LST-FIGARCH) model. 

The LST-FIAPGARCH Model 
Tse (1998) introduced the FIAPGARCH model, which combines long memory property 
of Baillie, Bollerslev, and Mikkelsen (1996) FIGARCH model with Asymmetric Power 
GARCH (APGARCH) model of Ding et al. (1993) by extending the FIGARCH model to 
account for different asymmetric dynamics. Accordingly, the fractionally integrated 
APGARCH model is represented as 

 ( ) ( ) ( )( )( )( )1 11 1 1 1 d
n n nL L L L

δδβ σ ω β φ ε γε− −− = + − − − − −  (20) 

where: L denotes the lag operator, d is the 0 1d≤ ≤  functional differencing 
parameter, β  denotes the autoregressive parameters, φ  represents the moving 
average parameters of the conditional variance equation, δ  represents the optimal 
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power transformation, γ  represents the asymmetry parameter and γ < 1 ensures 
that positive and negative innovations of the same size can have asymmetric effects 
on the conditional variance (Conrad, Rittler and Rotfuss; 2010).  
Further, after imposing the restrictions δ =2 and d=0, the FIAPGARCH model reduces 
to the AGARCH model; whereas, if the restriction δ =2 is applied, the model reduces 
to FIAGARCH, and if d=0 the model reduces to APGARCH model.  
The ST-ARCH modeling methodology developed by Hegerud (1997), Gonzales-
Rivera (1998), Lee and Degennaro (2000) allows smooth transition type nonlinearity in 
ARCH parameters and the ST-GARCH models of Anderson et al. (1999) and 
Lundbergh and Terasvirta (2002) accept a modeling structure that in addition to the 
ARCH terms the intercept and the GARCH terms are extended to be modeled with 
smooth transition type nonlinearity in different regimes.  
Accordingly, following the ST-FIGARCH model structure, the smooth transition 
fractionally integrated asymmetric power GARCH model denoted by ST-FIAPGARCH 
is obtained by allowing the smooth transition type nonlinearity between two 
FIAPGARCH models in two different regimes defined as 

 
( )( ) ( )1 11t t s t t s tF , F ,δ δ δσ ω ε γ ασ β ε γ σ− − − −= + − +

  
( )( ) ( ) ( )( ) ( )1 11 1 1 1 d

t s t s n nL F , LF , L L
δ

α ε γ β ε γ φ φ ε γε− − − −
⎡ ⎤⎡ ⎤+ − − − − − − −⎣ ⎦⎣ ⎦  (21) 

If the transition function ( )F .  is defined as a logistic function bounded between 0 
and 1, 

 
( )1

1
1

1
t

tF ε
γε

−

− =
+ −

( )
exp

  (22) 

the obtained model becomes the LST-FIAPGARCH model. 

3.3. The LSTAR-GARCH Models 
The STAR-GARCH models, evaluated by Lundberg and Terasvirta (1999, 2000) and 
Franses Neele and van Dijk (1998) and further examined by Chan and McAleer (2001) 
are time series models with STAR type nonlinear processes in the conditional mean 
with heteroskedasticy given as GARCH errors. Consider the following STAR model 
(Terasvirta, 1994) with two regimes: 

 ( )( ) ( )1 1 2 2
1 1

1
r r

t i t i t i t i t t
i i

y y F s c y F s cφ φ γ φ φ γ ε− −
= =

⎛ ⎞ ⎛ ⎞
= + − + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑; , ; ,   (23) 

where 

 ( ) ( )
1

1 tt s cF s c
e γγ

− −
=

+
; ,   (24) 

defined with the logistic function. By allowing GARCH errors  
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 2 2 2
1 1

1 1

p r

t i t i t
i i

σ ω α ε β σ− −
= =

= + +∑ ∑
 

(25) 

the model is called Logistic Smooth Transition Autoregressive GARCH (LSTAR-
GARCH) model. As the information matrix of the log-likelihood function of STAR-
GARCH is block diagonal, the parameters in the conditional mean and conditional 
variance equations can be estimated separately, as in the case of ARMA-GARCH. 
The general GARCH properties are expected to hold (Chan and McAleer, 1999). 

The LSTAR-LST-GARCH Model  
The Smooth Transition Autoregressive (STAR) model further developed by Luukkonen 
et al. (1988), Granger and Terasvirta (1993) and Terasvirta (1994) aims at nonlinear 
modeling of the conditional mean by introducing smooth transition between regimes of 
autoregressive processes based on logistic and exponential functions belonging to 
squashing functions. The link between the LSTAR-LST-GARCH and their neural 
network augmentations are discussed in Bildirici and Ersin (2013). In the STAR 
models, commonly applied transition functions are logistic and exponential functions 
and the relevant models are called LSTAR and ESTAR models. The LSTAR–
LSTGARCH model is a model that allows STAR type nonlinearity in both the 
conditional mean and the conditional variance and is developed on the basis of the 
following STAR model. The error terms follow smooth transition in the GARCH 
process 

( )( ) ( )2 2 2 2 2
1 1 1 1 2 2 1 2

1 1 1 1
1

p pr r

t i t i t i t i t i t i t
i i i i

w F s c w F s cσ α ε β σ ς α ε β σ ς− − −
= = = =

⎛ ⎞ ⎛ ⎞
= + + + + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ ∑-- ; , ; ,

 
(26) 

with the transition function 

 
( ) ( )

1
1 tt s cF s c

e ςς
− −

=
+

; ,      (27) 

where: ς   is the parameter defining the speed of transition and c is the threshold 
coefficient. The model will be extended to LSTAR-LST-FIGARCH model.  

The LSTAR-LST-FIGARCH Model 
Assume that a time series following a random walk process in its conditional mean 

and its conditional variance, ( )1vart t th ε −= Ω , where the information set up to time 

t-1 is denoted as 1t−Ω , follows a FIGARCH(1,d,1) process 

 
( ) ( ) ( )( )( )( )22

1 11 1 1 1 d
t t tL L L Lβ σ ω α β φ ε γε− −− = + − − − − −  (28) 

or alternatively 

 
( ) ( )( )( )( )22

1 11 1 1 d
t t t th L L Lσ ω β α β φ ε γε− −= + + − − − − −

 
(29) 

where: tz is assumed to be normally distributed N(0,1) white noise process  
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21~ 0,1 exp
22
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zz N

π
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 (30) 

The LSTAR-LST-FIGARCH model, on the other hand, allows the conditional mean 
process to follow a LSTAR representation and assumes that long memory in two 
different regimes is also governed by a logistic smooth transition type process as 
given in Equation (27). The model is represented as  

( ) ( )( )( )( )( ) ( )( )

( ) ( )( )( )( )( ) ( )( )

2,12
0,1 1 ,1 1 1 1 1 1 1

2,2
0,2 2 ,2 2 2 2 1 2 1

1 1 1 1 ; ,

1 1 1 ; ,

d
t t t t t

d
t t t t

h L L L F s c

h L L L F s c

σ ω β α β φ ε γ ε ς

ω β α β φ ε γ ε ς

− −

− −

= + + − − − − − × −

+ + − − − − − ×   
(31) 

where: 0γ ≠  is non-zero and defines the width of the volatility clusters and similarly, 
α and β  characterizes the dynamics of the conditional volatility.  

The range of the cluster of volatility changes between ( ) 0tF s cς =; ,  and 

( ) 1tF s cς =; , . The constant term takes on values between ( )1ϕ ω α= −  and 

( )1ϕ ω β= −  based upon whether the conditional volatility in each regime is dictated 

by the transition function as ( ) 0tF s cς →; ,  and/or ( ) 1tF s cς →; , . Accordingly, 
since in the ST-GARCH model the constant term ranges between the extreme 
regimes, the level of conditional volatility changes in different regimes (Kılıç, 2010). If 
the transition function ( )tF s cς; ,  is logistic function 

 

 
( ) ( )

1
1 tt s cF s c

e ςς
− −

=
+

; ,  (32) 

the model becomes the logistic smooth transition FIGARCH (LST-FIGARCH) model. 

The LSTAR-LST-FIAPGARCH Model 
The FIAPGARCH model introduced by Tse (1998) combines the long memory 
property of Baillie, Bollerslev, and Mikkelsen (1996) FIGARCH model with the 
Asymmetric Power GARCH (APGARCH) model of Ding et al. (1993) by extending the 
FIGARCH model to account for different asymmetric dynamics. Accordingly, the 
fractionally integrated APGARCH model is represented as 

 
( ) ( ) ( )( )( )( )1 11 1 1 1 d

t t tL w L L L
δδβ σ α β φ ε γε− −− = + − − − − −  (33) 

where the conditional mean follows a random walk process, L denotes the lag 
operator, d is the 0 1d≤ ≤  functional differencing parameter, β  denotes the 
autoregressive parameters, φ  represents the moving average parameters of the 
conditional variance equation, δ  represents the optimal power transformation, γ  

represents the asymmetry parameter and γ < 1 ensures that positive and negative 
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innovations of the same size can have asymmetric effects on the conditional variance 
(Conrad et al. 2010).  
Further, after imposing the restrictions δ =2 and d=0, the FIAPGARCH model reduces 
to AGARCH model; whereas, if the restriction δ =2 is applied, the model reduces to 
FIAGARCH, and if d=0 the model reduces to APGARCH model. Moreover, the 
APGARCH model also nests the Power GARCH model. By restricting the γ  
parameter to zero, the FIAPGARCH model reduces to the FIPGARCH model as 

 
( ) ( ) ( )( )( )( )11 1 1 1 d

t tL w L L L
δδβ σ α β φ ε −− = + − − − −  (34) 

By imposing δ =2 and d=0 restrictions, the FIPGARCH model reduces to AGARCH 
model and similarly, if the restriction δ =2 is applied, the model reduces to 
FIAGARCH. If a restriction on the fractional differention parameter is applied as d=0, 
the model reduces to the power GARCH model. It should be noted that the obtained 
power GARCH model is also referred to as the Nonlinear GARCH model, or the 
NGARCH model introduced by Higgins and Bera (1992), where the conditional 
standard deviation is raised to the power as a function of lagged conditional standard 
deviations and the lagged absolute innovations to the same power (Bollerslev, 2010). 
Therefore, a PGARCH(1,1) process could be defined as  

 1 1t t twδ δ δσ αε βσ− −= + +  (35) 
which reduces to the standard GARCH(1,1) process for δ =2. The FIAPGARCH and 
FIGARCH models could be easily extended to STAR type nonlinearity. The ST-ARCH 
modeling methodology developed by Hegerud (1997), Gonzales-Rivera (1998), Lee 
and Degennaro (2000) allows smooth transition type nonlinearity in ARCH parameters 
and the ST-GARCH models of Anderson (1999) and Lundbergh and Terasvirta (2002) 
accept a modeling structure, which allows the intercept and the GARCH terms to be 
extended with smooth transition type nonlinearity in addition to the ARCH terms.  
The LSTAR-LST-FIAPGARCH model is a process with nonlinear STAR type dynamics 
both in the conditional mean and conditional variance processes. By assuming that 
the conditional mean process could be modeled with a well-defined LSTAR process, 
the nonlinearity in the conditional variance is obtained by allowing smooth transition 
based LST-FIAPGARCH process that allows smooth transition between two 
FIAPGARCH processes in two different regimes as 

( ) ( ) ( )( )( )( )( ) ( )( )( )
( ) ( )( )( )( )( ) ( )( )

,1,1,
0,1 1 1 1 1 1 1

,2,2
0,2 2 2 2 1 2 1

1 1 1 1 1 ; ,

1 1 1 ; ,

di
t t t t

d
t t t

L L L L F s c

L L L F s c

δδ

δ

β σ ω α β φ ε γ ε ς

ω α β φ ε γ ε ς

− −

− −

− = + − − − − − × −

+ + − − − − − ×
(36) 

In the model, the transition function ( )tF s cς; ,  is defined as a logistic function 
bounded between 0 and 1 similar to the model in Equation (33), which governs the 
transitions between two regimes both in the conditional mean and conditional variance 
processes 
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(37) 
It should be noted that the LSTAR-LST-FIAPGARCH model nests the models 
discussed above. By restricting the γ =0 in Equation (36), the LST-FIAPGARCH 
process reduces to the LST-FIPGARCH process, as 

( ) ( ) ( ) ( )( ) ( )( ) ( )( )( )
( ) ( ) ( )( )( )( ) ( )( )

,1,1,
0,1 1 1 1 1

,2,2
0,2 2 2 2 1

1 1 1 1 1 ; ,

1 1 1 ; ,

di
t t t

d
t t

L L L L F s c

L L L F s c

δδ

δ

β σ ω α β φ ε ς

ω α β φ ε ς

−

−

− = + − − − − × −

+ + − − − − ×  
(38) 

Similarly, by applying certain restrictions, the following models could be easily 
obtained. By applying the d=0 restriction, the LST-FIAPGARCH model given in 
Equation (36) reduces to the LST-APGARCH, and the LST-FIPGARCH model given in 
Equation (38) reduces to the LST-PGARCH. The asymmetric power GARCH based 
and the symmetric power GARCH based LSTAR-LST-APGARCH, LSTAR-LST-
PGARCH, LSTAR-LST-FIAPGARCH and LSTAR-LST-FIPGARCH models have 
interesting properties, since they allow power terms to be estimated differently for two 
regimes. In addition to allowing different ARCH and GARCH parameter estimates in 
two regimes, the proposed models allow different degrees of fractional integration and 
long memory characteristics. The power terms are allowed to take different values to 
be estimated for each regime in Equation (38) and different asymmetric power 
structures in the LSTAR-LST-FIAPGARCH model given in Equation (36). It should be 
noted that the smooth transition between two regimes in the proposed models are 
defined by taking the transition parameter ts  as 1t ts y −=  to allow the conditional 
mean process to be modelled simultaneously with the conditional variance processes 
by allowing the nonlinearity to be governed with the logistic function given in Equation 
(37).    

4. Econometric Results 

4.1. Data  
The data set evaluated in the study aims at evaluating the above-mentioned nonlinear 
volatility models to achieve, if possible, improvement in in-sample and out-of-sample 
forecasting. In order to test the forecasting performances of the above-mentioned 
models, oil price volatility is calculated by using the daily closing prices of oil price 
covering the interval January 2nd,1986 - May, 13th, 2014, covering a sample of n=7254 
observations. The crude oil prices are the spot prices for crude oil downloaded from 
the database of U.S. Energy Information Administration (EIA) and are availabile at: 
http://www.eia.gov/dnav/pet/pet_pri_spt_s1_d.htm. Data is first transformed into 
natural logarithms, and to obtain the daily returns the data is first-differenced as 
y=ln(Pt)-ln(Pt-1), where Pt  represents the crude oil prices. In the process of estimating 
the models, the last ten observations are left for out-of-sample forecasts.  
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4.2. Econometric Results: Model Evaluation 
In the first stage, from among the GARCH family models, we selected basic GARCH 
models (GARCH, PGARCH and APGARCH) and basic Fractionally Integrated 
GARCH models (FIGARCH, FIPGARCH and FIAPGARCH), taken as baseline models 
estimated for evaluation purposes. The results are given in Table 1. The included 
models have different characteristics to be evaluated; namely, fractional integration, 
asymmetric power and fractionally integrated asymmetric power models, namely, 
GARCH, APGARCH, FIGARCH and FIAPGARCH models.  
It is noticed that all volatility models perform better than the FIGARCH model in light of 
Log Likelihood criteria. If AIC and SIC criteria are evaluated, the lowest AIC and SIC 
are calculated as -4.926904 and -4.921206 and are obtained for the FIGARCH model. 
The sum of ARCH and GARCH parameters is lower than 1 for the APGARCH, 
FIGARCH and FIAPGARCH model. Further, we noted that the stability condition is not 
obtained for the PGARCH and APGARCH models, since the sum of ARCH and 
GARCH parameters is equal to or more than 1. 

Table 1  
The Single Regime GARCH Models 

 Baseline 
GARCH  Models 

Baseline 
Fractionally Integrated GARCH Models 

 GARCH PGARCH APGARCH FIGARCH FIPGARCH FIAPGARCH
Cst(M) 0.000571*** 

(2.75) 
0.0000895 

(1.62) 
0.00049** 

(2.35) 
0.000599***

(2.83) 
0.000601*** 

(2.85) 
0.000568*** 

(2.689) 
Cst(V) 0.00000048*** 

(4.45) 
0.0000131***

(3.03) 
0.0000089**

(1.98) 
0.0000467*

(1.82) 
0.000112 

(1.51) 
0.0001172***

(1.51) 
d-Figarch  -  0.461*** 

(7.78) 
0.452251*** 

(8.90) 
0.445489*** 

(8.38) 
ARCH 0.0642*** 

(7.61) 
0.0759***† 

(11.85) 
0.0743***† 

(8.64) 
0.2716*** 

(3.49) 
0.2751*** 

(3.68) 
0.2929*** 

(3.50) 
GARCH 0.9282*** 

(106.1) 
0.9320*** 
(162.61) 

0.9330*** 
(116.9) 

0.6178*** 
(5.67) 

0.6155*** 
(6.166) 

0.6231*** 
(5.71) 

APACH 
(Gamma1) 

 - 0.148973***
(2.649) 

 - 0.100840* 
(1.89) 

APACH 
(Delta) 

 1.2282*** 
(8.07) 

1.2273*** 
(10.46) 

 1.8825*** 
(24.73) 

1.8493*** 
(23.27) 

       
LogL 17890.302 17903.15 17906.287 17875.881 17877.364 17880.239 
AIC -4.931 -4.93 -4.935 -4.926904 -4.926761 -4.927554 
SIC -4.926 -4.92 -4.928 -4.921206 -4.919164 -4.919956 

Note: The significant parameters at 1%, 5% and 10% significance levels are denoted by ***, ** and *, 
respectively. LogL is the log-likelihood, AIC and SIC are the Akaike and Bayesian information criteria, 
ARCH(1-2) is the second order ARCH-LM test and SB is the sign bias test statistics. For the ARCH-LM and 
SB tests, the probabilities are reported in brackets. The t statistics are given in parantheses. † denotes that 
the stability condition is not satisfied since the sum of ARCH and GARCH parameters are equal to or larger 
than 1.  
 
Once the models are introduced with fractional integration, the condition is satisfied for 
the last three models, the FIGARCH, FIPGARCH and FIAPGARCH models in addition 
to the baseline GARCH models. For the fractionally integrated models, the 
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differentiation parameters are estimated at 0.461 for the FIGARCH model, 0.452251 
for the FIPGARCH model and 0.445489 for the FIAPGARCH model. Further, the 
power parameters are estimated ats 1.228 for the PGARCH, 1.227383 for APGARCH; 
whereas, the power terms are comparatively larger and are calculated at 1.882553 
and 1.84931 for the FIPGARCH and FIAPGARCH models, respectively. The obtained 
results are largely affected by the fact that the oil prices are subject to significant 
increases due to oil shocks and economic crises. Since the power parameter 
estimates are not larger than 2, we accepted the results and took the baseline models 
to be evaluated in comparison to the LSTAR-based nonlinear volatility models. 
Furthermore, oil prices are determined to reflect other decisions, both political and 
economic. Certain evaluations could be easily derived considering the long memory 
characteristics that show the persistence of shocks. Considering the results obtained 
for the models estimated for the whole period, the fractional difference parameter 
estimations show that the effects of the shocks could be eliminated at a slow rate, 
although they satisfy the persistence condition that is the d-FIGARCH parameter 
being equal to or larger than 0.5. Although the results suggested that no strong 
persistence existed in oil prices, once the volatility is modeled with nonlinear models, 
the regime specific results migh show different results in addition to regime specific 
asymmetric power structures in the conditional volatility.  
In this section, the results of LSTAR-LST-GARCH models will be evaluated. In the 
study, the LSTAR-GARCH models are estimated by the BFGS algorithm by assuming 
that the error terms follow Gaussian distribution. Statistical inference regarding the 
empirical validity of two-regime switching process was carried out by using 
nonstandard LR tests (Davies, 1987). The non-standard LR test is statistically 
significant and this suggests that linearity is strongly rejected. Further, Lukkonnen et 
al. (1988) LM nonlinearity tests are conducted. It is concluded that remaining 
nonlinearity in the error terms is rejected. During modelling, the first 5 lags of daily 
change in oil prices are evaluated with Luukkonnen et al. (1988) and Terasvirta (1994) 
F type linearity tests against STAR type nonlinearity. Accordingly, to avoid the 
nuisance parameter problem as evaluated in Davies (1988), 3rd order Taylor 
expension method is applied following Terasvirta (1994). For details, readers are 
referred to Terasvirta (1994)4.  
The estimation results for the LSTAR-LST-GARCH models with no fractional 
integration are reported in Table 2. The transition parameters are estimated at 4.24, 
4.58 and 2.26 for the models with LSTAR-LST-GARCH, LSTAR-LST-PGARCH and 
LSTAR-LST-APGARCH models, respectively. The stability condition is noted to be 
larger than 1 for the first regimes of the LSTAR-LST-GARCH and LSTAR-LST-
APGARCH model; whereas, the condition holds for both regimes in LSTAR-LST-
PGARCH model which also possess a very large ARCH+GARCH value for the first 
regime.  

                                                           
4 The threshold variable is the one that maximized the F statistic following the Terasvirta (1994) 

STAR type nonlinearity F test sequence. The threshold variable selected is given in Table 2. 
The results are not given in the paper to save space. The additional tables are available from 
the authors upon request. 
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Table 2  
The LSTAR-LST-GARCH Type Nonlinear Model Estimates 

 LSTAR-LST-GARCH LSTAR-LST-PGARCH LSTAR-LST-APGARCH 
Cst(M) -0.003339*** 

(-7.427) 
0.0289*** 
(53.65) 

-0.002650**
(-6.48) 

0.025083***
(55.42) 

-0.006201*** 
(18.16) 

0.11853*** 
(34.44) 

Cst(V) 0.0000021 
(1.19) 

0.00000117*
(1.79) 

0.0000036 
(0.56) 

0.000134 
(1.38) 

0.000352 
(1.133) 

0.0002245 
(0.895) 

d-Figarch - - - - - - 
ARCH 0.0802***† 

(3.656) 
0.1186** 

(2.29) 
0.0769*** 

(3.80) 
0.1668***† 

(3.14) 
0.3154***† 

(6.442) 
0.11532** 
(2.0753) 

GARCH 0.9211*** 
(45.36) 

0.8579*** 
(15.94) 

0.9163*** 
(54.29) 

0.8586*** 
(31.57) 

0.7101*** 
(8.945) 

0.84451** 
(1.9758) 

APACH 
(Gamma1) 

   - 0.47936* 
(1.735) 

0.4901* 
(1.8079) 

APACH 
(Delta) 

  1.578515***
(3.98) 

0.958722***
(4.88) 

1.1189*** 
(5.0725) 

1.0603*** 
(3.996) 

Transition 
speed  

4.23772** 
(2.40) 

4.58435** 
(2.01) 

2.26435*** 
(4.00) 

Threshold 0.04769*** 
(10.85) 

-0.05229*** 
(-10.39) 

-0.03904*** 
(-13.20) 

Threshold 
variable  

Pt-4 Pt-4 Pt-2 

LogL 3801.5 3861.233 3864.69 
AIC -5.384 -5.390 -5.392 
SIC -5.369 -5.365 -5.368 
ARCH(1-2) 0.403[0.67] 0.225[0.80] 0.41249 [0.6621] 
SB test 1.24[0.21] 0.176[0.86] 1.16[0.2001] 

Note: The significant parameters at 1%, 5% and 10% significance levels are denoted by ***, ** 
and *, respectively. LogL is the log-likelihood, AIC and SIC are the Akaike and Bayesian 
information criteria, ARCH(1-2) is the second order ARCH-LM test and SB is the sign bias test 
statistic. For the ARCH-LM and SB tests, the probabilities are reported in brackets. The t 
statistics are given in parantheses. † denotes that the stability condition is not satisfied since the 
sum of ARCH and GARCH parameters is equal to or larger than 1.Th threshold variable is 
selected among the lags 1-5 of the dependent variable (based on the AIC information criterium) 
that maximized the rejection of linearity as suggested by Luukkonen et al. (1988) and Terasvirta 
(1994) STAR model selection methodology based on F tests.  
    
If an overlook is provided without discussing the further results given in Tables 3 and 
4, the results show that once the fractional integration structure is applied, and after 
the incorporation of long memory characteristics, for the FIGARCH, FIPGARCH and 
FIAPGARCH type of nonlinear GARCH models proposed in the study, the explanatory 
power of the models are largely increased. In addition, the fractional integration based 
models in Table 3 satisfy the stability conditions. Further, to model oil prices and the 
inherited long memory, fractional integration deserves special attention. However, if 
the researcher requested not to apply fractional integration to LSTAR-GARCH type 
models, following Bildirici and Ersin (2013), the neural network augmented versions of 
the LSTAR-LST-GARCH type models without fractional integration provide another 
method to improve forecasting accuracy. Hence, the results suggest that the oil prices 
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are subject to long memory charateristics and without applying it into modeling, the 
forecasting power also diminishes drastically.  
In Table 2, the threshold parameter estimates are statistically significant and are 
estimated at 0.04769, -0.05229 and -0.03904 for the three evaluated models. The 
power parameter estimates for the first and second regimes of the LSTAR-LST-
APGARCH model are statistically significant and are estimated at 1.18 and 1.06 for 
the first and second regimes. This result shows that asymmetry is statistically higher 
for the first regime as compared to the second regime that holds once the threshold 
variable passes the threshold coefficient of -0.04. A similar conclusion holds for the 
symmetric power model, the LSTAR-LST-PGARCH model, for which the power terms 
are estimated at 1.58 and 0.96. The results point towards a striking feature of the 
nonlinear models in Table 2, vis-à-vis their linear counterparts, the single regime 
PGARCH and APGARCH models for which the power parameter estimates are 1.228 
and 1.227, respectively. Further, as compared to the baseline GARCH models 
reported in Table 1, the lower AIC and SIC statistics reported for their nonlinear 
counterparts suggest that LSTAR-LST-GARCH type nonlinear models in Table 2 
provide better in-sample modeling performances, which could be considered as a sign 
of better goodness-of-fit. For further conclusions, the out-of-sample results will provide 
important insights in comparing the modeling performances of the analyzed models. If 
the nonlinear models are compared among themselves, the asymmetric power type 
LSTAR-LST-APGARCH model provides the best in-sample forecasting results (AIC=-
5.392, SIC=-5.368). The sign bias tests suggest that at 5% significance tests, no sign-
bias exists in both three nonlinear models. The ARCH-LM tests suggest that no ARCH 
effect exists in the residuals, suggesting that the models are successful in filtering the 
ARCH type heteroskedasticity in the crude oil prices.   
After introducing fractional integration to the models represented above, the results 
obtained for the nonlinear LSTAR-LST-FIGARCH type models are reported in Table 3, 
which are the FIGARCH type augmentations of the models in Table 2. One overlook 
could reveal the fact that the differentiation parameter estimates in both regimes of the 
LSTAR-LST-FIGARCH is larger than 0.50, suggesting a sign of long-memory in crude 
oil prices. A similar result holds only for the first regime of the LSTAR-LST-
FIPGARCH, the model obtained after introducing the power term to the LSTAR-LST-
FIGARCH model. Further, after introducing the asymmetric power transformation, the 
fractional integration parameter estimates become lower than 0.50 for both regimes in 
the model given in column 3. If the results are compared with the results obtained for 
the baseline FIGARCH, FIPGARCH and FIAPGARCH models for which the 
differentiation parameters were estimated between 0.44 and 0.46, the results of the 
nonlinear models represent a different structure, since the dynamics in regimes 1 and 
2 which occur below and above the threshold estimates suggest lower estimates for 
the differentiation parameters5. As a result of obtaining different ARCH and GARCH 

                                                           
5 After the introduction of the asymmetric power terms, similar to the result with single regime 

models, the fractional difference parameter estimates are calculated with large positive 
values. For the 1st and 2st regime of LSTAR-LST-FIGARCH model, fractional difference 
parameter is calculated at 0.515 and 0.60, suggesting strong persistence whereas, in LSTAR-
LSTFIAPGARCH, for the both regimes, the parameters are estimated at 0.198 and 0.374 and 
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parameters in two regimes, the stability condition is also affected. The condition is 
satisfied for both regimes of the LSTAR-LST-FIGARCH model; however, the sum of 
ARCH and GARCH parameters is closer to 1 than the sum of parameter estimates in 
regime 2. The stability condition is satisfied for both regimes of LSTAR-LST-
FIPGARCH. After the introduction of both fractional integration and asymmetric power 
terms in two regimes, the stability condition is close to 1 but not larger than 1 in both 
regimes of the LSTAR-LST-FIAPGARCH model. 

Table 3  
The LSTAR-LST-FIGARCH Models, Models with Fractional Integration 

 LSTAR-LSTFIGARCH LSTAR-LSTFIPGARCH LSTAR-LSTFIAPGARCH 
Cst(M) -0.00654*** 

(16.93) 
0.01536***

(42.75) 
-0.002371***

(5.261) 
0.023815***

(117.4) 
-0.003648*** 

(16.08) 
0.029183*** 

(54.32) 
Cst(V) 0.000061 

(1.502) 
0.000052**

(2.322) 
0.0000417 
(0.6595) 

0.001** 
(2.073) 

0.001342*** 
(1.771) 

0.001349 
(1.098) 

d-Figarch 0.5154*** 
(9.180) 

0.5985*** 
(4.0123) 

0.5001*** 
(5.612) 

0.4150*** 
(3.487) 

0.1981*** 
(4.088) 

0.3704** 
(2.286) 

ARCH 0.1172* 
(1.708) 

0.3412** 
(1.96) 

0.3091*** 
(3.040) 

0.3831*** 
(2.708) 

0.3966*** 
(7.509) 

0.2422*** 
(3.119) 

GARCH 0.8701*** 
(4.165) 

0.6411*** 
(10.63) 

0.6809*** 
(7.246) 

0.6127*** 
(3.318) 

0.6032*** 
(8.478) 

0.7222*** 
(106.638) 

APACH 
(Gamma1) 

  - - 0.603595*** 
(2.844) 

0.3941** 
(1.986) 

APACH 
(Delta) 

  1.637593***
(7.14) 

1.441863***
(6.22) 

1.101373*** 
(9.053) 

1.0879*** 
(3.973) 

Transition 
speed 

11.10264 
(1.0546) 

43.13430 
(0.5813) 

4.42996 
(1.53) 

Threshold 0.03540*** 
(12.51) 

0.02316*** 
(19.04) 

0.03973*** 
(6.29) 

Transition 
variable 

Pt-2 Pt-3 Pt-2 

LogL 3860.65 3801.31 3846.58 
AIC -5.49256 -5.721247 -5.402227 
SIC -5.47856 -5.691622 -5.380009 
ARCH(1-2) 0.18110 [0.8342] 0.050078 [0.9512] 0.24079 [0.7860] 
SB test 1.55024 0.05920 0.04968 
Note: The significant parameters at 1%, 5% and 10% significance levels are denoted by ***, ** 
and *, respectively. LogL is the log-likelihood, AIC and SIC are the Akaike and Bayesian 
information criteria, ARCH(1-2) is the second order ARCH-LM test and SB is the sign bias test 
statistic. For the ARCH-LM and SB tests, the probabilities are reported in brackets. The t 
statistics are given in parantheses. † All fractionally integrated nonlinear models satisfied the 
stability condition.  ˠ The threshold variable is selected among the lags 1-5 of the dependent 
variable (based on the AIC information criterium) that maximized the rejection of linearity as 
suggested by Luukkonen et al. (1988) and Terasvirta (1994) STAR model selection 
methodology. 

                                                                                                                                                         
are less than 0.50. Further, for the LSTAR-LSTFIPGARCH model, in the first regime the 
parameter is estimated at 0.500, but at 0.415 in regime 2. For the models that do not have 
fractional integration structure, stability condition is satisfied for the 1st regimes only. 



 Nonlinearity, Volatility and Fractional Integration in Daily Oil Prices 

Romanian Journal of Economic Forecasting – XVII  (3) 2014 127 

  

 
Compared to the baseline GARCH models and LSTAR-LST-GARCH type models 
reported in Table 1 and 2, the lowest AIC and SIC statistics are reported for the 
nonlinear models in Table 3, which also take fractional integration into consideration. 
The lowest AIC and SIC statistics were reported for the LSTAR-LST-APGARCH 
model suggesting the best in-sample forecasting results (AIC=-5.392, SIC=-5.368). 
After the introduction of fractional integration, the AIC and SIC statistics becomes 
significantly lower for the LSTAR-LST-FIAPGARCH model (AIC=-5.402227, SIC=-
5.380009), followed by the LSTAR-LST-FIGARCH model (AIC=-5.49256, SIC=-
5.47856) compared to the baseline GARCH models in addition to the improved 
performance of the LSTAR-LST-GARCH models. The lowest AIC and SIC values are 
reported for the LSTAR-LST-FIPGARCH model (AIC=-5.49256, SIC=-5.47856). 
According to the results, the best in-sample modeling performances are achieved for 
the nonlinear models with fractional integration. The sign bias tests suggest that no 
sign-bias exists in all the models in Table 3. Further, the ARCH-LM tests suggest that 
the fractionally integrated models are successful in capturing the ARCH type 
heteroskedasticity in the modeled crude oil price data. It should be noted that, in 
addition to the in-sample performances of the models, the out-of-sample results will 
provide important information in terms of generalization capabilities of the analyzed 
models6.  
Compared to the results obtained in Tables 1 and 2, after the incorporation of long 
memory characteristics, the models given in Table 3 provided the stability condition in 
terms of the sum of ARCH and GARCH parameters.  As discussed before, the 
explanatory power of the models is largely following the fractional integration 
specification. Further, the explanatory power of the models with fractional integration 
provided a drastic increase in terms of more negative AIC and SIC statistics. The 
results are under the influence of the fact that the oil prices are better modeled once 
long memory and fractional integration is taken into consideration. It should be noted 
that out-of-sample performances will show additional measures in terms of modeling 
oil prices and forecasting accuracy.  
In terms of evaluating the results with an economic policy perspective, the LSTAR-
LST-FIGARCH model shows that the impacts of shocks are likely to last longer since 
there is strong level of persistence, especially for the 2nd regime. Since large positive 
values are estimated for both regimes, the results suggest a certain amount of 
persistence in both regimes. For the LSTAR-LST-FIPGARCH model, the persistence 
effect is comparatively lower only in the second regime; whereas, for the LSTAR-LST-
FIAPGARCH model that showed the lowest performance among the fractional 
integration model group in Table 3 persistence effect is quite low. With a political 
perspective, by considering the best two models analyzed, these findings show that 

                                                           
6 Further, linearity is tested with Luukkonnen et al. (1988) tests against the STAR type 

nonlinearity in the residuals. The results suggest no remaining nonlinearity. Accordingly, 
LSTAR-GARCH and LSTAR-LST-GARCH family models provided significant achievements in 
terms of modeling oil prices as compared to the basic GARCH family models given in Table 1. 
The results are not reported to save space; however, they may be obtained from the authors 
upon request.  
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the policy makers should keep the interventions at modest levels to avoid large 
fluctuations in oil prices, an important commodity also in production, considering the 
high persistence in oil prices. The long memory results also coincide with these results 
that show the temporary effects of these shocks and their dependence on relative 
levels of oil prices to the threshold values. Therefore, since the impacts of the oil 
shocks could be permanent, the interventions on oil prices should be kept at 
restrained levels.  
One point that cannot be overlooked is that the out-of-sample forecasting capabilities 
provide significant findings in terms of generalization and modeling capabilities of the 
models analyzed. The models are evaluated for their generalization capabilities in the 
out-of-sample with RMSE error criteria for 2, 5 and 10 days ahead. The results are 
given in Table 4, which constitutes of 6 nonlinear models to be compared with the 
baseline single regime models. First group is the GARCH family models; namely, the 
GARCH, PGARCH, APGARCH, FIGARCH, FIPGARCH and FIAPGARCH models, 
respectively. The second group is the nonlinear counterparts of the models, namely, 
the LSTAR-LST-GARCH family that with both LSTAR type nonlinearity in the 
conditional mean and in the conditional variance and lastly, the LSTAR-LST-
FIGARCH family with STAR type nonlinearity and fractional integration characteristics. 
The number of models to be analyzed totals to 12 models, respectively.   

Table 4  
Out-of-Sample Forecasting Results of the Models 

GARCH Family of Models (2 Days Ahead) 
  GARCH PGARCH APGARCH FIGARCH FIPGARCH FIAPGARCH 
RMSE 0.01105 0.01131 0.01097 0.01133 0.01135 0.01113 

LSTAR-LST-GARCH Family of Models (2 Days Ahead) 
  LSTAR-

LST- 
GARCH 

LSTAR-
LST- 
PGARCH 

LSTAR- 
LST- 
APGARCH 

LSTAR-
LST- 
FIGARCH 

LSTAR- 
LST- 
FIPGARCH 

LSTAR- 
LST- 
FIAPGARCH 

RMSE 0.003339 0.00265 0.00258 0.002689 0.001795 0.001794 
Relative % 
change: 

-69.78 -76.57 -76.48 -76.27 -84.19 -83.88 

GARCH Family of Models (5 Days Ahead) 
  GARCH PGARCH APGARCH FIGARCH FIPGARCH FIAPGARCH 
RMSE 0.007381 0.007542 0.007334 0.007554 0.007564 0.007428 

LSTAR-LST-GARCH Family Models (5 Days Ahead) 
  LSTAR-

LST- 
GARCH 

LSTAR-
LST- 
PGARCH 

LSTAR- 
LST- 
APGARCH 

LSTAR-LST- 
FIGARCH 

LSTAR- 
LST- 
FIPGARCH 

LSTAR- 
LST- 
FIAPGARCH 

RMSE 0.01007 0.01048 0.01041 0.01043 0.004673 0.004673 
Relative % 
change: 

36.43 38.96 41.94 38.07 -38.22 -37.09 

GARCH Family Models (10 Days Ahead) 
  GARCH PGARCH APGARCH FIGARCH FIPGARCH FIAPGARCH 
RMSE 0.007756 0.007756 0.007758 0.007757 0.007757 0.007755 
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LSTAR-LST-GARCH Family Models (10 Days Ahead) 
  LSTAR-

LST- 
GARCH 

LSTAR-
LST- 
PGARCH 

LSTAR- 
LST- 
APGARCH 

LSTAR-LST- 
FIGARCH 

LSTAR- 
LST- 
FIPGARCH 

LSTAR- 
LST- 
FIAPGARCH 

RMSE 0.01237 0.0126 0.0112 0.012 0.004201 0.004201 
Relative % 
change: 

59.49 62.45 44.37 54.70 -45.84 -45.83 

Note: RMSE is the root mean squared error. The relative percentage change shows the 
percentage decrease (if negative) in RMSE as compared to its baseline counterpart model.   
 
The first group consists of the baseline models; the GARCH, PGARCH, APGARCH, 
FIGARCH, FIPGARCH and FIAPGARCH models, respectively. In the first group, for 2 
days ahead, the lowest RMSE is achieved for the APGARCH model 
(RMSE=0.01097); followed by the GARCH and FIAPGARCH models (RMSE= 
0.01105 and 0.01113, respectively). The second group corresponds to the LSTAR-
LST-GARCH family models; the nonlinear counterparts of the first group. For 2 days 
ahead, the LSTAR-LST-GARCH family showed significant improvement over the 
baseline GARCH family. The lowest RMSE is achieved by the LSTAR-LST-
FIAPGARCH model with RMSE=0.001794, and is closely followed by the LSTAR-
LST-FIPGARCH model with RMSE=0.001795. The obtained RMSE statistics 
corresponded to a -83.88% decrease in terms of RMSE and to a -84.19% decrease in 
RMSE for the LSTAR-LST-FIAPGARCH and LSTAR-LST-FIPGARCH models, as 
compared to their baseline FIAPGARCH and FIPGARCH counterparts. Further, the 
RMSE statistics for the LSTAR-LST-GARCH, LSTAR-LST-PGARCH, LSTAR-LST-
APGARCH and LSTAR-LST-FIPGARCH models were calculated at 0.003339, 
0.00265, 0.00258 and 0.002689, which represented a relative percentage change of -
69.78, -76.57, -76.48 and -76.27over their single regime baseline models.  
The results showed that the lowest RMSE values were calculated for the LSTAR-LST- 
FIAPGARCH and LSTAR-LST- FIPGARCH for two days ahead forecasts. For 5 days 
ahead, the lowest RMSE statistics were obtained again by the LSTAR-LST- 
FIPGARCH and LSTAR-LST-FIAPGARCH models (RMSE=0.004673 for both 
models), which showed -38.22 and -37.09% relative change (decrease) in RMSE over 
their baseline single regime versions. On the other hand, the RMSE values for the 
LSTAR-LST-GARCH, LSTAR-LST- PGARCH and LSTAR-LST-APGARCH were 
calculated at 0.01007, 0.01048, 0.01041 and 0.01041; which are relatively by 40% on 
the average larger than the baseline single regime versions. The results show that 
although for short periods (2 days ahead) the LSTAR-LST-GARCH modeling showed 
drastic improvement over the baseline models for forecasting oil prices, for a longer 
span (5 days ahead) the modeling of these models with fractional integration and 
power terms benefited them in terms of forecasting. Ten days ahead analysis 
corresponded to the largest span of forecasting practice. According to the results, the 
nonlinear models with fractional integration and power terms, namely, the LSTAR-
LST-FIPGARCH and LSTAR-LST-FIAPGARCH provided the best out-of-sample 
performances (RMSE=0.004201 for both models), which represented a relative 
percentage decrease by -45.84 and -45.83 over their baseline single regime 
counterparts. The results coincided with those obtained with the 5 days ahead 
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analysis, where the single regime models of GARCH, PGARCH and APGARCH 
showed improvement over their nonlinear counterparts. Further, the nonlinear models 
with fractional integration and power terms provided significant improvement over the 
single regime and LSTAR type models without fractional integration.  

5. Policy Implications and Evaluation of the Results 
Obtained by the Nonlinear Analyzed Models  

The  oil price  in macroeconomic perspective, which is an important variable for 
explaining business cycles and economic growth, exhibits a large volatility. Increases 
in oil prices affects the industrial production, business cycles, current account deficits 
and financial markets through various channels. Although the  volatility of oil 
price  could certainly  affect the values of financial  oil-based derivatives, it should be 
emphasized that   volatility of oil  price  should not have generally any significant 
impact on the values of most real options and the related investment decisions. Oil 
prices may not always adjust instantaneously to new information; on the other hand, 
low liquidity and infrequent trading in imperfect markets could cause a delay in 
response to new information ( see for similar suggestion; McMillan and Speight, 2006; 
Monoyios and Sarno, 2002; Lee, Liu and Chiu; 2008). The results obtained by the 
models   suggest that   the increases in volatility   are generally short-lived but its 
effect is relatively long-lived. The results under influence of  large positive values that 
are estimated for both regimes suggest persistence in both the regimes. On the other 
hand, according to our results,  the positive  fractional coefficients  determined  that 
the impacts of shocks are persistent.  The government and/or policy makers should 
keep the interventions at modest levels to avoid large fluctuations and persistence in 
oil prices. Although the long memory results emphasized  the temporary effects of 
these shocks, the impacts of the oil shocks could be permanent, so that the 
interventions to oil prices by the government  should be limited.  
According to the results obtained in this study, the oil prices possess important 
characteristics, such as nonlinearity, asymmetry, threshold effects and persistence 
effects that should lead the policy makers and the researchers to evaluate the policies 
to be applied with great care; hence, the nonlinear volatility models that incorporate 
fractional integration and power terms capture the data generating process more 
effectively, therefore providing important tools for policies. Firstly, with a political 
perspective, since nonlinearity, asymmetry and long memory characteristics play 
crucial role in oil prices, the policies aimed at stabilizing the volatility of this crucial 
commodity may have destabilizing effects on the production and on financial markets 
through various channels. This result translates itself to different derivatives and the 
economy, and this destabilization effect is largely under the influence of persistence in 
oil prices and also in the external shocks that oil prices are subject to. Thus, policies 
might have destabilizing effects if persistence is not taken into consideration. 
Secondly, the estimation sample in the study corresponded to a period with large oil 
shocks and economic crises periods; whereas, the out-of-sample subsample (the last 
10 observations) consists of a stabilized period, since it is a general approach lo leave 
the last observations for out-of-sample analyses in the literature. However, though 
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significant improvement in terms of forecasting is achieved for the nonlinear models, 
the performance of these models would improve drastically once the forecasts would 
have been obtained for a period of unexpected changes in oil prices, since the 
nonlinear models benefit the policy makers especially once large fluctuations of oil 
occurred, by passing the estimated thresholds of these models. Therefore, the results 
should be taken as follows. The nonlinear models provided in the study would improve 
the forecasting capabilities or the toolbox of the policy maker and the researchers, 
however, the results should always be evauated with care considering the fluctuations 
caused by the drastic changes in oil prices and, also, by keeping in mind that oil prices 
are subject to regime changes and threshold effects that lead to different dynamics.  

6. Conclusion 

The study aimed at investigating oil prices by focusing nonlinearity and asymmetry in 
addition to fractional integration that causes interesting characteristics in oil prices. 
Considering the nonlinear data generating process in addition to regime-specific 
volatility, the study focused on introducing fractionally integrated models in addition to 
models with no fractional integration. Further, the STAR-GARCH and ST-GARCH 
models are extended to LSTAR-LST-GARCH and LSTAR-LST-FIGARCH processes 
which also include their power term and asymmetric power term augmentations; 
namely, the LSTAR-LST-FIPGARCH and LSTAR-LST-FIAPGARCH models. The 
models constituted a family of 6 nonlinear models which are evaluated vis-à-vis their 
baseline GARCH counterparts that are single regime models in nature. The models 
suggested in the study showed that the impacts of shocks possess significant 
persistence and nonlinearity characteristics in oil prices. Therefore, in terms of 
economic policy perspective, policy makers should avoid interventions on oil prices 
and the interventions should be kept limited, if possible, to avoid the persistent 
characteristics of shocks in oil prices. However, the nonlinear models provided in the 
study should be considered as important tools for the policy makers, under the 
condition that the threshold effects and nonlinearity that lead to regime changes 
should be evaluated with great care.   
The conclusions in the empirical section are derived as follows. The models with 
fractional integration and power terms provided significant gains as compared to 
simple GARCH models. Once the LSTAR nonlinearity is introduced in the conditional 
mean and conditional volatility processes of oil price series, the LSTAR-LST-GARCH 
family of models augmented the forecasting capabilities, especially after considering 
the long memory and persistence characteristics by introducing fractional integration 
to the LSTAR nonlinear architecture of the analyzed models. Further, the LSTAR-LST-
GARCH models failed to satisfy the stability condition for certain regimes. The results 
showed that after applying fractional integration structures to the proposed nonlinear 
models, the incorporation of long memory characteristics, the explanatory powers of 
the models are largely increased in addition to achieving the stability condition for all 
the models with fractional integration. Accordingly, oil prices inherited strong 
persistence, and fractional integration deserves special attention. It should be noted 
that if the researchers requested not to apply fractional integration to LSTAR-LST-
GARCH models to model oil prices, following Bildirici and Ersin (2013), the neural 
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network augmented versions of the LSTAR-LST-GARCH models without fractional 
integration provide another methodology to achieve improvement in terms of 
forecasting accuracy.  
According to the results, to avoid large fluctuations and destabilizing policies, the 
policies that aim at oil markets should take nonlinearity and asymmetry into 
consideration, in addition to long memory and persistence characteristics of oil prices 
by also considering the external shocks that oil prices had been subject to in the 
history, and possibly, in the future. 
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