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Abstract 
The accurate modeling of the term structure of interest rates is of vital importance in 
macroeconomics and finance in general and in the context of monetary policy in particular, 
as its factors are important in predicting future growth and inflation. This paper investigates 
the extent to which the so called Nelson-Siegel model (DNS) and its extended version that 
accounts for time varying volatility (DNS-GARCH and DNS-EGARCH) can optimally fit the 
yield curve and predict its future path in the context of an emerging economy. The study 
expands the earlier work (Koopman, et al. 2010) by looking at more elaborate 
specifications for volatility modeling such as E-GARCH and also evaluates the predictive 
role of considering the time-varying volatility in the model in terms of out-of-sample 
forecasting. For the in-sample fit, all three models fit the curve remarkably well even in the 
emerging markets. However, the DNS-EGARCH model fits the curve slightly better than 
the other two models. Moreover, all three specifications of the yield curve that are based 
on the Nelson-Siegel functional form, outperform the benchmark AR(1) forecasts at all 
three specified forecast horizons. The DNS comes with more precise forecasts than the 
volatility based extended models for the 1-month ahead forecasts, while the other two 
outperform the standard DNS for 6- and 12-month horizons.  
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1. Introduction 
The yield curve describes the relationship between yields and maturity on zero-coupon 
bonds that are homogeneous in every aspect except time to maturity. These yields are the 
set of interest rates derived from equating the  current market price of government bonds 
to the discounted stream of future cash flows of the bond. Since, the term structure can be 
formed by using the prices of zero coupon bonds. However, because of the limited maturity 
spectrum and lack of market liquidity of the zero-coupon bonds, it is essential to estimate 
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the yield based on observed coupon bond prices. Furthermore, the yield curve holds 
information about the market’s expectations of future events. Therefore, interest rate 
forecasts can be used to predict this information for identiying profitable investment 
opportunities and as a general guideline for economic policy. 
The literature on term structure goes back to Hicks (1939) and Lutz (1940) discussion of 
expectation hypothesis, implying that the current yield curve contains information about the 
future path of interest rates. According to the expectation hypothesis, the current forward 
rates will act in such way that exactly follows the path of future short-term zero-coupon 
rates. A model that forms the basis of many other term structure models considering 
uncertainty in the market is the Vasicek (1977) model. Other famous models of this nature 
include Brennan and Schwartz (1979) and Cox et al. (1985) that rely on continuous-time 
finance theory and no arbitrage restriction to estimate and forecast the term structure, while 
allowing for multiple sources of uncertainty. Among others, Ang and Piazzesi (2003), 
Favero et al. (2012) and Mönch (2008) applied no-arbitrage restrictions to VAR models, 
Diebold and Li (2006), de Pooter (2007) and Christensen et al. (2011) examine dynamic 
versions (with and without no-arbitrage restrictions) of the Nelson–Siegel model of the 
cross section of yields.  
Other recent comparative forecasting exercises include Almeida and Vincente (2008), 
Carriero (2011), Duffee (2011), Carriero and Giacomini (2011), Yu and Zivot (2011) and 
Ullah et al. (2013). The studies are mixed in their conclusions and also in whether adding 
no-arbitrage restrictions to dynamic models of yields adds value to forecasts. Despite these 
controversies, more positive results have been obtained by employing the Nelson and 
Siegel (1987) framework that imposes a parsimonious three-factor structure to link the 
yields of different maturities, where the factors can be interpreted as level, slope and 
curvature. Although the model is not based on any underlying economic theory and is of 
statistical nature, it is still widely used due to its good fit of the observed term structure and 
generation of forecasts that outperform the random walk and various alternative 
forecasting approaches.  
Despite recent advances in forecasting literature, there has been little evidence supporting 
the usefulness of these models to forecast yields in emerging markets. The reasons are (i) 
the lack of good quality data, and (ii) limited time span data, which makes it very difficult to 
reach sound conclusions. A salient trait of this strand of literature is the strong emphasis it 
places on the US economy and international evidence has remained scarce and limited. 
Furthermore, most of the evidences regarding the Nelson-Siegel family of models are 
based on pricing data obtained from developed economies bond markets such as USA 
(Diebold and Li, 2006; Christensen et al. 2011 and many others), Euro area (Silvana and 
D’Ecclesiab, 2008; Steeley, 2014) and Japan (Kim and Singleton, 2012; Kikuchi and 
Shintani, 2012; Ullah et al. 2013, 2014), where the markets are efficient and informational 
contents are reflected fully and instantaneously in the prices. There are only few studies 
that evaluate the performance of the standard Nelson-Siegel model and its extended 
versions or other statistical models of term structure in terms of in-sample fit and out-of-
sample forecast in the context of emerging markets. 
Moreover, the bond market in Pakistan has expanded rapidly over the last 10 years, as it 
is currently the main source of financing for the government. The central bank is also trying 
to promote the development of the bond market by generating new products and the 
establishment of a group of primary dealers responsible for stimulating the market. In spite 
of this more than 90% of the issued bonds are government securities and the number of 
corporate issuers remains limited. Furthermore, the bond market is marked by a 
significantly lower volume of trading as it is smaller and illiquid compared to bond markets 
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of developed countries. In fact, the sparseness or infrequency of daily Treasury bonds 
transactions explains in consequence the inaccuracy of the interest rates yield curve. The 
drawback is that there is no specific term structure model of interest rates and market 
operators devise a proxy of the yield curve based only on the liquid bonds. Thus, the 
unevenly distributed maturities of di�erent bonds makes the estimation very di�cult and 
the market less likely to form an entire and smooth yield curve. This study attempts to fill 
this gap by investigating the Nelson-Siegel model and its extensions in terms of their ability 
to find a smooth yield curve which replicates the stylized facts of the various interest rates 
in the context of the Pakistan bond market. 
The focus of this study is to identify the most appropriate model for predicting the term 
structure of interest rates in the context of emerging markets. To this end, we formulate the 
standard Nelson-Siegel model (DNS) and its extended forms that account for the time 
varying volatility in the bond market (DNS-GARCH and DNS-EGARCH) in the state space 
framework to determine which of these three term structure models are suited for fitting 
and forecasting purposes.  
Against this background, this paper makes three contributions to existing literature. First, 
it investigates whether the promising results of the Nelson-Siegel model can be 
generalized to the bond markets of emerging economies, where the markets suffer from 
lack of liquidity and governments rely heavily on bond financing to finance its deficits. 
Secondly, this paper is the first attempt to investigate in a systematic and comparative 
fashion the Nelson-Siegel family of yield curve models in the government bond market of 
the Pakistan economy. Thirdly, we show that the inclusion of EGARCH effect is not only 
helpful in terms of in-sample fitting but also for long horizon forecasts.  
The remainder of the paper is structured as follows. Section 2 briefly describes the dynamic 
Nelson-Siegel model and its extended versions that account for time-varying volatility (we 
call the former DNS and the latter as DNS-GARCH or DNS-EGARCH). Estimation method 
is also discussed in the same section. Section 3 presents the data structure and estimation 
results, while section 4 describes the out-of-sample forecast performance of the models. 
Finally, section 5 concludes the paper. 

2. Literature Review 
The literature on term structure modeling can be classified in di�erent ways. One strand 
of literature uses models that impose the restriction of no arbitrage on the evolution of 
yields to avoid riskless opportunities, known as the affine class of models. Arbitrage-free 
models arise from equilibrium models and, therefore are based on sound economic 
foundation. Seminal works in this regard include Vasicek (1977), Cox et al. (1985) and 
Heath et al. (1992). Despite having the appealing characteristic of no-arbitrage restriction, 
the arbitrage –free class suffers from lack of fitting and predicting the yield curve (Duffee, 
2002). The other class consists of purely statistical models. The pioneer works in the class 
of statistical models include Nelson and Siegel (1987) and Svensson (1995). Although the 
original Nelson-Siegel equation gives a good shape of the yield curve for the selected data, 
it is still not able to solve problems involving complex data sets. Later, the original Nelson-
Siegel method was improved by adding additional factors in the model to estimate and 
forecast the yield curve. By including the additional curvature factor as in Svensson, (1995) 
and second slope as in Bliss (1996), the extended Nelson-Siegel model with four factors 
produces structural accuracy with longer maturities. Among others, Diebold and Li (2006) 
propose a two-stage model based on the Nelson and Siegel (1987) framework to forecast 
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the US term structure that presented better results than other competing models.  Their 
results beat the random walk, with the exception of the 1-month ahead horizon.  
After Diebold and Li (2006), many authors have developed different dynamic approaches 
of the Nelson–Siegel model and have reported improvements in forecasting. Koopman et 
al. (2010) introduce time-varying volatility in the DNS framework and conclude that the 
models with time-varying volatility outperform the models with static volatility in terms of in-
sample fit for the US bond market. Similarly, Ullah (2017) shows that considering the time-
varying volatility in the Nelson-Siegel model not only yields better in-sample fit but also 
improves the out-of-sample accuracy in the Japanese market. Diebold et al. (2008) extend 
the model to a global context, modeling a large set of country yield curves in a framework 
that allows for both global and country-specific factors.  
The implementation of yield curve modeling and forecasting in the context of emerging 
economies is recent. In the case of the Brazilian bond market yield curve, Vicente and 
Tabak (2008) show that the dynamic Nelson-Siegel model dominates forecasts made from 
affine models and is also better than random walk forecasts for some maturities and 
forecast horizons. Similar results are also presented in Cajueiro et al. (2009). The studies 
on the estimation of the term structure of interest rates in the Indian market show that cubic 
spline based methods have larger errors compared to the Nelson-Siegel and Svensson 
(1995) type models (Dutta, et al.  2005). The cubic B-spline and cubic spline with violence 
or smoothing spline penalty methods did not achieve the objectives for curve estimation. 
In the context of Taiwan and Malaysian bond markets (with small size of bond trading and 
lower liquidity level), Chou, et al. (2009) and Ali, et al. (2015) respectively suggest that the 
Nelson-Siegel model or its extended versions are capable of describing the shape of the 
term structure and forecast the term structure more accurately. Moreover, Chou, et al. 
(2009) show that the fitting performance of Svensson model is better than that of Bliss and 
Nelson-Siegel Model taking into account the liquidity constraint. They also compared the 
results with the case in which the liquidity constraint is not taken into consideration, these 
three models have a better fitting performance if the liquidity constraint is considered. This 
suggests that the liquidity constraint matters. In addition, Araujo and Cajueiro (2013) and 
Caldeira et al. (2016) show that it is not possible to determine an individual model that 
consistently produces superior forecasts for all maturities and all forecast horizons. 
Nevertheless, empirical results suggest that the traditional DNS model has good out-of-
sample forecasting performance when compared to the RW, AR(1), and VAR(1), especially 
when we consider 1- and 3-month ahead forecast horizons. 
Overall, the results show that there is no single forecast model that dominates all 
competitors. This is due to the fact that different models outperform the others, depending 
on time horizon ahead, maturity and forecast period.  

3. Term Structure Models 
The term structure of interest rates refers to the relationship between interest rates and 
time to maturity. The standard way to compute the term structure of interest rates is to plot 
the zero rates (derived from zero-coupon bonds) against the entire maturity spectrum. 
However, the limited maturity spectrum of zero-coupon bonds necessitates that the yields 
be derived from the coupon bearing bonds by considering each strip (coupon payment) as 
a distinct zero-coupon bond. Moreover, due to lack of market liquidity of long maturity 
bonds one cannot compute the zero rates for the entire maturity spectrum. Therefore, 
some sort of model is required to fill the gaps by analogy with the observed rates. In this 
section, we briefly describe the dynamic Nelson-Siegel (DNS) model for the computation 
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of yield curve and its two extended versions that account for the common volatility 
component (modeled as GARCH and an EGARCH process). For the ease of writing and 
interpretation, we termed the standard dynamic Nelson-Siegel model as DNS, and the two 
extended models as DNS-GARCH (where the variance of common volatility component is 
modeled as GARCH) and DNS-EGARCH (where the variance of common volatility 
component is modeled as an EGARCH process). 

3.1. The Nelson-Siegel Model 
Motivated by the expectations hypothesis, Nelson-Siegel (1987) introduced a three-factor 
model that is capable of explaining about 96% of the variation of the yield curve across 
maturities. The expectation hypothesis states that the rationally expected future spot rates 
will be equal to the current implied forward rates, i.e., forward rates will fluctuate in such a 
way that guarantees no arbitrage opportunity in the market. Nelson and Siegel (1987) 
suggest that the spot rates curve can be generated with the help of differential or difference 
equation. If the differential equation implies the spot rates, then implied forward rates will 
be the solution to this equation. Supposing that spot rates are constructed with the help of 
second order differential equation, then the functional form for the instantaneous implied 
forward rate can be written as: 
 

 ௧݂ሺ݉ሻ ൌ ଵ௧ߚ  ሻ݉ߣଶ௧expሺെߚ  ሻሿ݉ߣሻexpሺെ݉ߣଷ௧ሾሺߚ (1) 
 

with the time varying parameter vector ߚ௧ ൌ ሺߚଵ௧, ,ଶ௧ߚ  ଷ௧ሻᇱ. The ௧݂ሺ݉ሻ is the instantenousߚ
forward rate, ݉ is time to maturity and ߣ ൌ 1/߬, where ߬ is the real root of the differential 
equation. The resulting yield curve function, computed as  ܴ௧ሺ݉ሻ ൌ ݉ିଵ   ௧݂ሺݑሻ݀ݑ




, can 

be defined as: 
 

ܴ௧ሺ݉ሻ ൌ ଵ௧ߚ  ଶ௧ߚ ቈ
1 െ expሺെ݉ߣሻ

݉ߣ
  ଷ௧ߚ ቈ

1 െ expሺെ݉ߣሻ

݉ߣ
െ expሺെ݉ߣሻ   ௧ሺ݉ሻ (2)ߝ

 

where: ܴ௧ሺ݉ሻ is the zero-coupon spot rate for maturity  ݉ ൌ 1,2, … , ܰ at ݐ ൌ 1,2, … , ܶ. The 
functional form in (2) can produce various forms of curves including upward, downward, 
and humped shapes that are usually associated with the term structure of interest rate. 
Moreover, the parameters in Nelson-Siegel functional form can easily be interpreted. The 
limiting value of spot rate curve as ݉ ՜ 0 is ߚଵ௧  ݉ ଶ௧, and whenߚ ՜ ∞  the resulting value 
is ߚଵ௧. Since, ߚଵ௧ can be interpreted as the long term interest rate, while െߚଶ௧ as term 
premium or slope of the yield curve. 
Dielold and Li (2006) show that ߚଵ௧,  ଷ௧ can be interpreted as the yield curve latentߚ ଶ௧ andߚ
factors. The loading of ߚଵ௧ is unitary across all maturities and does not approach zero in 
the limit and, therefore, can be considered as the level factor. The ߚଶ௧ serves as the spread 
factor and can be interpreted as the slope of the yield curve, while ߚଷ௧ mainly affects the 
middle part of the curve and, hence, can be considered the curvature factor of the curve. 
The loading of ߚଷ௧ at both ends is zero but it reaches its maximum point at some 
intermediate maturity, in the range of 30 to 60 months in empirical literature. Lastly, the 
parameter ߣ specifies the maturity time at which the loading of the curvature factor ߚଷ௧ is 
optimal and also identifies the location of the U or the hump-shape on the yield curve. 
Therefore, the variety of shapes the curve can take is dependent on a single parameter ߣ, 
which represents the rate at which the slope and curvature factor loadings decay to zero. 
The formulation of the dynamic Nelson-Siegel (DNS) model is parsimonious and simple to 
be estimated. However, to model all yield curves in a single step, this calls for a state-
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space representation of the model.3 Since, we assume the first order vector autoregressive 
representation for the yield curve latent factors vector ߚ௧, which facilitates the state space 
representation of the latent factors model, with measurement and state equations (3 and 
4 respectively) as:  
 

 ܴ௧ ൌ Λሺߣሻߚ௧   ௧ (3)ߝ
௧ାଵߚ  ൌ ሺܫଷ െ ߤሻܣ  ௧ߚܣ   ௧ାଵ (4)ݒ
 ቂ

௧ߝ
௧ାଵݒ

ቃ  ܰ ൬ቂ0
0

ቃ , 
Ω 0
0 Σ௩

൨൰ (5) 
 

where: ܴ௧ is (N×1) vector of zero-coupon yields, ߚ௧ ൌ ሺߚଵ௧, ,ଶ௧ߚ  ଷ௧ሻᇱ is the (3×1) vector ofߚ
latent factors of the yield curve, ߤ is (3×1) vector of factors mean, Λሺߣሻ is (N×3) matrix of 
loadings and ܣ is (3×3) full-matrix of parameters. The ߝ௧ and ݒ௧ are (N×1) and (3×1) errors 
vectors of the observation and state equations respectively, Ω is (N×N) covariance matrix 
of the measurement equation innovations, and Σ௩ is (3×3) covariance matrix of the state 
innovations.  

3.2. The Dynamic Nelson-Siegel Model with Time-varying 
Volatility (DNS-GARCH and DNS-EGARCH) 

In the standard DNS model, it is assumed that the volatility in interest rates is time invariant. 
However, interest rates are the outcomes of trading in financial markets and, therefore, the 
volatility in various yields may also vary across time. Hence, we add a common volatility 
component to the yield curve specification while assuming the state space approach. This 
addition enables the standard DNS model to apprehend the exogenous shocks, which shift 
the yield curve and are not taken into account by the level, slope and curvature factors. 
The error term, ߝ௧, in the DNS model is restructured as: 
 

௧ߝ  ൌ Γఌߝ௧
כ  ௧ߝ

ା ,                  ߝ௧
ା ~ܰሺ0, Ωሻ (6) 

 

where: ߝ௧
ା and Γఌ are (N×1) vectors of noise component and loadings respectively, and ߝ௧

 כ
is a scalar representing the common shock term. The loading factor, Γఌ, shows the 
sensitivity of various yields to the common disturbance term. The conditional distribution 
of the common volatility component, ߝ௧

 :is assumed as ,כ
 

௧ߝ 
,௧ିଵ~ܰሺ0ߞ|כ ݄௧ሻ      (7) 

 

where:  ߞ௧ିଵ is the given information set up to time ݐ െ 1 and ݄௧ follows the standard 
GARCH specification (in DNS-GARCH model) and EGARCH (in DNS-EGARCH model) 
specification, which is specified in (8) for the DNS-GARCH and (9) for the DNS-EGARCH 
based model.4 

                                                            
3 Moreover, Diebold et al. (2006) show that the three latent factors in the Nelson-Siegel model 

are highly persistent. This means that we can model them as AR(1) or VAR(1). Similarly, Ullah 
et al. (2013) used the Japanese data and confirmed that the three latent factors of yield curve 
are highly persistent. They found VAR(1) specification to be better than the AR(1) and random 
walk specifications. 

4 The response of financial market differs with the nature of the shock. It is an accepted fact that 
volatility increases rapidly with negative news reaching the traders and investors. The impact 
of similar magnitude positive news tends to be much less pronounced.  
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logሺ݄௧ሻ ൌ ߛ  ଵߛ

௧ିଵߝ
כ

ඥ݄௧ିଵ

  ଶlogሺ݄௧ିଵሻ (8)ߛ

 
logሺ݄௧ሻ ൌ ߛ  ଵߛ

௧ିଵߝ
כ

ඥ݄௧ିଵ

 ଶlogሺ݄௧ିଵሻߛ  ߰ ቆቤ
௧ିଵߝ

כ

ඥ݄௧ିଵ

ቤ െ ॱ ቈቤ
௧ିଵߝ

כ

ඥ݄௧ିଵ

ቤቇ (9) 

 

where: ॱ൫หߝ௧ିଵ
כ /ඥ݄௧ିଵห൯ is the expectation of the absolute value of a standard normally 

distributed random variable, which is equal to ඥ2/ߨ.  The specification for variance in (8) 
assumes that that the volatility in various yields is governed by the latent exogenous 
shocks and lagged volatility, whereas in (9), besides the exogenous shocks and lagged 
volatility, we take into account for the asymmetric response to positive (good) and negative 
(bad) shocks.  
In the state-space framework the DNS-GARCH and DNS-EGARCH can be specified as: 

 ܴ௧ ൌ ሾΛሺߣሻ Γఌሿ 
௧ߚ

௧ߝ
൨כ  ௧ߝ

ା (10) 

௧ାଵߙ  ൌ ቂሺܫଷ െ ߤሻܣ
0

ቃ  ቂܣ 0
0 0

ቃ ௧ߙ  ቂ
௧ାଵݒ

௧ାଵߝ
כ ቃ (11) 

 


௧ߝ
ା

௧ାଵݒ
௧ାଵߝ

כ
 ~ܰ ൭

0
0
0

൩ , 
Ω 0 0
0 Σ௩ 0
0 0 ݄௧ାଵ

൩൱ (12) 

 
where: ߙ௧ ൌ ሺߚଵ௧, ,ଶ௧ߚ ,ଷ௧ߚ ௧ߝ

 ሻᇱ is (4×1) latent vector. Γఌ (N×1) vector shows the impact of aכ
common shock component on the various yields. The remaining matrices and vectors have 
the same definitions and dimensions as discussed in the specification of the DNS model.  
We further assume that the innovations, ߝ௧

ା and ݒ௧, and common volatility component, ߝ௧
 , כ

have Gaussian distribution. The variance of ߝ௧ାଵ
כ  is ݄ ௧ାଵ is modeled as GARCH or EGARCH 

processes, specified in (8) and (9) respectively. The model in equations (8 – 12) stipulates 
a comprehensive and flexible framework to fit the yield curve. It also accounts for the time-
varying volatility in yields for all maturities.  

3.3. Statistical Formulation of the Models and Estimation Method 
The models are estimated with the Kalman filter algorithm. To explain the estimation 
procedure for all three frameworks in a comprehensive way, we introduce a generalized 
framework. This framework uses some new notations. Signal and state equations are 
rewritten as: 
 

 ܴ௧ ൌ ௧ߦܤ  ݐ       , ௧ݓ ൌ 1,2, … , ܶ (13) 
௧ߦ  ൌ ܥ  ௧ିଵߦܨ   ௧ (14)ݑ 
 ቂ

௧ݓ
௧ݑ

ቃ  ܰ ൬ቂ0
0

ቃ , 
Ω 0
0 ܳ௧

൨൰ (15) 

 
where: the expressions of  ܤ, ,௧ߦ ,ܥ ,ܨ Ω, ܳ௧,  ௧ for all three frameworks are given inݑ ௧ andݓ
Appendix-I. 
The Kalman filter algorithm is applied as discussed in Hamilton (1994). The Gaussian 
likelihood function is evaluated to estimate the latent factors and the parameters. The 
Kalman filter iteration is initialized at the unconditional mean and variance of the state 
variables. The optimal estimate of the latent factors in Kalman filter is the conditional mean 
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of ߦ௧ dependent on information known until time ݐ െ 1 or ݐ, denoted as ߦመ௧|௧ିଵ and 

 :መ௧|௧ respectively. We calculate the recursive prediction step using the transition equationߦ
 

መ௧|௧ିଵߦ  ൌ ॱ௧ିଵሺߦ௧ሻ ൌ ܥ   መ௧ିଵ|௧ିଵ (16)ߦܨ
 

௧ܲ|௧ିଵ ൌ ॱ௧ିଵ ቂ൫ߦ௧ െ ௧ߦመ௧|௧ିଵ൯൫ߦ െ መ௧|௧ିଵ൯ߦ
ᇱ
ቃ ൌ ܨ ௧ܲିଵܨᇱ  ܳ௧ (17) 

 
where: ௧ܲ|௧ିଵ is the mean square error (MSE) matrix at the prediction step and ܳ௧ ൌ ܳ for 
the simple DNS model. 
Using the observation equation, the prediction step estimates are updated by 
observing ܴ௧ , thus in the update step: 
 

መ௧|௧ߦ  ൌ ॱ௧ሺߦ௧ሻ ൌ መ௧|௧ିଵߦ  ௧ܲ|௧ିଵܤᇱܪ௧
ିଵߟ௧ (18) 

 ௧ܲ|௧ ൌ ௧ܲ|௧ିଵ െ ௧ܲ|௧ିଵܤᇱܪ௧
ିଵܤ ௧ܲ|௧ିଵ (19) 

 

where: ߟ௧ is the forecast errors vector calculated as: ߟ௧ ൌ ܴ௧ െ  ௧ is the MSEܪ መ௧|௧ିଵ andߦܤ
matrix of ߟ௧ worked out as: ܪ௧ ൌ ܤ ௧ܲ|௧ିଵܤᇱ  Ω.  
The Kalman filter iterative process is initialized with ߦ and ܲ that are set equal to 
unconditional mean and covariance as discussed in Hamilton (1994). The last diagonal 
element of ܲ in GARCH and EGARCH based models is set equal to ݄ଵ, which is the 
unconditional expectation of the log variance. 
Furthermore, in the time-varying volatility based models, matrix ܳ௧ contains ݄௧ାଵ that is 
modeled by (E)GARCH process and relies on latent shocks at time ݐ, which are 
unobservable. The ݄௧ାଵ is computed by taking the conditional expectation at ݐ െ 1 of the 
latent variables in (8) and (9) for the DNS-GARCH (specified in 20) and DNS-EGARCH 
(specified in 21) respectively that give: 
 

 
  logሺ݄௧ሻ ൌ ߛ  ଵॱ௧ିଵߛ ቆ

௧ିଵߝ
כ

ඥ݄௧ିଵ

ቇ   ଶlogሺ݄௧ିଵሻ (20)ߛ

 
logሺ݄௧ሻ ൌ ߛ  ଵॱ௧ିଵߛ ቆ

௧ିଵߝ
כ

ඥ݄௧ିଵ

ቇ  ଶlogሺ݄௧ିଵሻߛ

 ߰ॱ௧ିଵ ቆቤ
௧ିଵߝ

כ

ඥ݄௧ିଵ

ቤ െ ॱ௧ିଵ ቈቤ
௧ିଵߝ

כ

ඥ݄௧ିଵ

ቤቇ 
(21) 

 

where: the estimate of ॱ௧ିଵሺߝ௧ିଵ
כ ሻ is the last element of ߦመ௧|௧ from the update step. The 

beginning of the Kalman filter iteration depends on initial state ߦ, initial covariance 
matrix ܲ and parameters vector ߠ. Defining ߠ ൌ ሺߣ, B, ,ܥ ,ܨ Ω, Q௧, Γఌ, ,ߛ ,ଵߛ ,ଶߛ ߰ሻ as the 
unknown parameters vector, and assuming a Gaussian distribution for the forecasting 
errors ߟ௧, the Gaussian log likelihood is computed as: 

 
log ሻߠሺ ܮ ൌ  ൬െ

ܰ
2

logሺ2ߨሻ െ
1
2

log|ܪ௧| െ
1
2

௧ߟ
ᇱ ௧ܪ

ିଵߟ௧൰

்

௧ୀଵ

 (22) 

 
The Matlab based numerical optimization routine of fminsearch is employed to optimize 
the log likelihood function (22) and obtain the estimates of the parameters.  
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4. Empirical Results 
The empirical results regarding the in-sample fitting performance of the three models, i.e., 
DNS, DNS-GARCH and DNS-EGARCH are presented in this section. Here, we answer 
questions that does considering the common volatility component in the term structure 
model enhance the performance of the underlying model and what are the underlying 
factors in deriving the yields for various maturities? The Kalman filter algorithm is employed 
to the zero-coupon yields data for various maturities in the bond market of Pakistan to 
attain the optimal estimates of the latent factors and the MLE estimates of the unknown 
parameters. Sections 3.1 and 3.2 give details of the data-set and estimation results 
respectively.  

4.1. Data and Summary Statistics 
We use the Pakistan yield data published by the Mutual Fund Association of Pakistan 
(MUFAP) and Pak Brunei Investment Company. We collect the monthly observations for 
the period from August 2002 until December 2016 on yields for 15 maturities of 3, 6, 9, 12, 
18, 24, 30, 36, 48, 60, 72, 84, 96, 108 and 120 months. 
The descriptive statistics for the yields are presented in Table 1. The results show the 
average yield curve to be upward sloping as the mean yield increases with maturity. 
Moreover, the short rates are found to be more volatile and persistent than long rates. 
Skewness exhibits an upward trend with maturity. Kurtosis of the short rates are lower than 
those of the long rates. The yields for all maturities are also highly persistent.  

Table 1 
Descriptive statistics of yields data across maturities 

Maturity Mean SD Max Min SK Kurtosis ොߩ ሺ1ሻ ߩො ሺ6ሻ ߩො ሺ12ሻ 
3 8.552 3.426 13.449 1.118 -0.561 2.427 0.990 0.890 0.703 
6 8.660 3.436 13.751 1.131 -0.533 2.439 0.990 0.887 0.694 
9 8.744 3.411 13.914 1.233 -0.522 2.445 0.990 0.883 0.686 

12 8.828 3.388 14.109 1.335 -0.511 2.449 0.990 0.880 0.678 
18 9.054 3.309 14.570 1.726 -0.489 2.381 0.989 0.867 0.663 
24 9.279 3.245 15.063 2.117 -0.456 2.313 0.987 0.848 0.642 
30 9.424 3.205 15.271 2.316 -0.441 2.272 0.987 0.844 0.635 
36 9.569 3.171 15.478 2.515 -0.422 2.232 0.986 0.838 0.625 
48 9.831 3.036 15.841 3.096 -0.397 2.276 0.985 0.825 0.618 
60 10.010 2.956 15.866 3.474 -0.381 2.275 0.984 0.816 0.605 
72 10.236 2.803 16.087 3.845 -0.375 2.391 0.983 0.798 0.583 
84 10.389 2.711 16.183 4.192 -0.356 2.409 0.982 0.792 0.579 
96 10.512 2.621 16.266 4.584 -0.309 2.350 0.981 0.790 0.580 
108 10.572 2.598 16.389 4.683 -0.326 2.392 0.981 0.790 0.585 
120 10.628 2.604 16.531 4.531 -0.345 2.528 0.980 0.782 0.570 

Note: The table shows descriptive statistics for monthly yields at different maturities. The last 
three columns contain sample autocorrelations at displacements of 1, 6 and 12 months. The 
sample period is 2002:08–2016:12. The number of observations is 173. 

Figure 1 presents a three-dimensional plot of the yield curve data. The visual inspection 
indicates that the yield curves have an upward slope at all points of time considered in this 
study. Moreover, the shape is almost stable except early 2006 and 2010. The figure shows 
that the yield curves have shifted down in the current episode of monetary policy ranging 
from early 2015 till date. This phenomenon is also reflected in the estimated conditional 
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volatility for the DNS-EGARCH model in Figure 2. These statistics provide the first 
evidence of a change in the dynamics of the yield curve as a result of the rise in interest 
rates in the Pakistan bond market. 

Figure 1 
Yield Curves - Data Plot 

The figure shows the yield curves, 2002:08–2016:12. The sample consists of monthly 
yield data from August 2002 to December 2016 (173 months) for maturities of 3, 6, 9, 12, 
18, 24, 30, 36, 48, 60, 72, 84, 96, 108 and 120 months (15 maturities).  

4.2. Estimation Results 
In Table 2, we present the estimates of mean vector ߤ and transition matrix ܣ for all three 
specifications of dynamic Nelson-Siegel model, i.e., DNS, DNS-GARCH and DNS-
EGARCH. The mean vector is statistically significant in all setups, however, the estimates 
of the elements of ߤ for the level and slope factors in the DNS-EGARCH are a bit larger as 
compared to the one in DNS-GARCH and DNS frameworks, whereas the estimated mean 
for curvature is larger in the latter two setups than the DNS-EGARCH model. 
The diagonal elements of matrix ܣ, which represent the own lag dynamics of factors, are 
highly significant and indicate that the yield curve factors are highly persistent. However, 
the level and curvature factors in time-varying volatility based frameworks are a bit more 
persistent than their counterpart DNS setup, while the slope factor seems more persistent 
in the DNS model than the rest of the two models. Cross factors dynamics seem 
unimportant except for the ߚଵ,௧ିଵ impact on the curvature and slope factors in the DNS and 
DNS-GARCH models respectively. In the EGARCH based model, there is significant 
impact of the level factor on both slope and curvature factors and lagged curvature on the 
level factor. The significant cross factors effect inspires for the VAR specification rather 
than the more parsimonious AR specification for modeling the yield curve factors. 
Moreover, the estimates of the decay parameter ߣ in all three setups are significant and 
imply that the inflection points occur at about 46 months’ 42 months’ and 48 months’ 
maturity in DNS-EGARCH, DNS-GARCH and DNS models respectively. The variation in 
optimality point of the curvature factor loading may be due to the additional parameters in 
the volatility based setups. 
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Table 2 
Latent Factors and (E)GARCH Parameter Estimates of the DNS-EGARCH,  

DNS-GARCH and DNS Models  

Panel 1: Estimates of matrix  and vector ࣆ 
 ଷ,௧ିଵߚ ଶ,௧ିଵߚ ଵ,௧ିଵߚ ߤ 
DNS-EGARCH 

 ଵ,௧ 9.805 (0.358) 0.862 (0.009) 0.021 (0.097) 0.213 (0.146)ߚ
 ଶ,௧ -6.020 (0.206) 0.411 (0.004) 0.924 (0.022) 0.348 (0.043)ߚ
 ଷ,௧ -2.021 (0.192) 0.007 (0.004) 0.015 (0.012) 0.828 (0.033)ߚ

(0.001) 0.03911 ߣ  Log L 1419.0281 
DNS-GARCH 

 ଵ,௧ 9.761 (0.827) 0.834 (0.192) 0.033 (0.188) 0.163 (0.139)ߚ
 ଶ,௧ -6.993 (0.541) 0.298 (0.117) 0.799 (0.148) 0.320 (0.053)ߚ
 ଷ,௧ -1.072 (0.241) -0.046 (0.033) 0.036 (0.026) 0.787 (0.342)ߚ

 Log L 1449.485  (0.003) 0.043 ߣ
DNS 

 ଵ,௧ 9.672 (0.090) 0.6239 (0.0046) 0.034 (0.020) 0.179 (0.013)ߚ
 ଶ,௧ -7.877 (0.362) 0.0821 (0.0278) 0.967 (0.015) 0.271 (0.032)ߚ
 ଷ,௧ -1.866 (0.526) -0.1451 (0.179) 0.031 (0.021) 0.729 (0.036)ߚ

 Log L 1372.569  (0.002) 0.038 ߣ
Panel 2: (E)GARCH model parameter estimates in the DNS-EGARCH and DNS-GARCH 
models 
 ߰ ଶߛ ଵߛ ߛ 
DNS-EGARCH 0.339 (0.001) -0.089 (0.001) 0.628 (0.002) -0.608 (0.001) 
DNS-GARCH 0.332 (0.024) 0.277 (0.003) 0.596 (0.072) - 
Note: The table reports the estimates for the parameters of the transition equation of the simple 
DNS, DNS-GARCH and DNS-EGARCH yields models and of (E)GARCH parameters estimates 
in the DNS-GARCH and DNS-EGARACH models. Panel 1 presents the estimates for the 
vector ߤ and matrix ܣ along with the decay parameter ߣ estimate, while panel 2 shows the 
parameters’ estimates of the volatility processes (GARCH and EGARCH) of the common 
component in the DNS-GARCH and DNS-EGARCH based models. The standard errors are in 
parenthesis. Bold entries denote that parameter estimates are significant at the 5% level. 

Regarding the volatility process parameters estimates in GARCH and EGARCH based 
models, the results are reported in panel 2 of Table 2. All estimates are statistically 
significant and also point out that lagged volatility plays a more dominant role than 
exogenous shocks in explaining current volatility in both setups. Furthermore, the bond 
market reacts asymmetrically to positive and negative shocks, as the estimate of 
asymmetry parameter ߰ is negative and highly significant. The statistical significance of 
asymmetric effect parameter ߰   and the residuals diagnostic of DNS model (skewness and 
excess kurtosis) motivates modelling volatility as an EGARCH rather than GARCH 
process. The residuals of DNS model are characterized by fat tails, as the excess kurtosis 
is positive for most of the maturities. The skewness is negative highlighting the asymmetry 
to the left of the residuals. Both stylized facts are rather stable for most of the maturities.  
To illustrate more clearly the pattern of common volatility in the bond market, in Figure 2, 
the conditional volatility ሺ݄௧ሻ of both GARCH and EGARCH based models is plotted over 
time. At first glance it seems that the conditional volatility process follows the same pattern 
across both models, however, the estimated volatility is higher at every point of time in 
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DNS-EGARCH than the DNS-GARCH model. It may be due to the additional term that 
captures the asymmetric effect and the comparatively weak impact of exogenous shocks 
effect (as ߛଵcoefficient is very small) in the EGARCH based framework as compared to the 
GRACH based setup. 

Figure 2 
DNS-GARCH and DNS-EGARCH Common Volatility ሺ࢚ࢎሻ 

 
The figure shows the plot of the volatility ሺ݄௧ሻ of the common shock component ሺߝ௧

 ሻ, which isכ
modelled as GARCH process in the DNS-GARCH, while as an EGARCH in DNS-EGARCH 
model, over time.  

Some historical events are clearly reflected in the graph. The last two big jumps correspond 
to the monetary and fiscal policy regimes in Pakistan. It shows that the yield curve responds 
to monetary policy stances and transmits the signals of monetary interventions to the real 
sector through alteration in the slope or/and curvature of the yield curve. The joint 
interaction of the yield curve factors and the macro economy will be of immense importance 
to evaluate the impact of monetary and fiscal policies on the yield curve and the possible 
feedback effect on the real sector and foreign exchange market in the context of emerging 
markets. However, we focus on this issue in the future research. Overall, the estimated 
stochastic volatility pattern over time shows that the bond market in Pakistan is highly 
sensitive to the policy related moves and also to the economic track and fundamentals in 
the country. The market is also sensitive to external shocks that arise/happen in leading 
world markets (spillover effect from rest of the world). Furthermore, volatility is high during 
periods of SBP (State Bank of Pakistan) interventions and external (global) shocks (such 
as evident in the case of the world financial crisis of 2008). Moreover, the overall pattern 
of loadings against maturity is also roughly similar to that of Koopman et al. (2010) and 
Lips (2012) who find a remarkably lower sensitivity of the 1- and 9-year maturities. The 
difference in volatility pattern of two alternate specifications is also consistent with the 
results of Lips (2012), that EGARCH based framework yields higher volatility than GARCH 
specification. 
As the three latent factors ߚଵ௧,  ଷ௧ were categorized as level, slope and curvatureߚ ଶ௧ andߚ
factors respectively, here, we compare their estimates in all three frameworks with their 
empirical counterpart. The empirical counterparts level (L), slope (S) and curvature (C) are 
constructed from the observed zero-coupon yield data: (i) the level factor is defined as the 
10-year yield (ii) the slope is the difference between the 10-year and 3-month zero rates, 
and (iii) the curvature as two times the two-year yield minus the sum of the 10-year and 3-
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month zero coupon yields. The pairwise correlation of empirically defined level factor and 
,௧ܮො൫ߩ መଵ௧ (model based) isߚ መଵ௧ߚ

ேௌିாீோு൯ ൌ 0.988, ,௧ܮො൫ߩ መଵ௧ߚ
ேௌିீோு൯ ൌ 0.987  and 

,௧ܮො൫ߩ መଵ௧ߚ
ேௌ൯ ൌ 0.988. The estimated pairwise correlation between the slope and ߚመଶ௧ is 

,ො൫ܵ௧ߩ መଶ௧ߚ
ேௌିாீோு൯ ൌ െ0.946, ,ො൫ܵ௧ߩ መଶ௧ߚ

ேௌିீோு൯ ൌ െ0.965 and ߩො൫ܵ௧, መଶ௧ߚ
ேௌ൯ ൌ െ0.954, while 

for the curvature ሺܥሻ and ߚመଷ௧ is ߩො൫ܥ௧, መଷ௧ߚ
ேௌିாீோு൯ ൌ 0.579, ,௧ܥො൫ߩ መଷ௧ߚ

ேௌିீோு൯ ൌ 0.486 and 
,௧ܥො൫ߩ  መଶ௧ߚ

ேௌ൯ ൌ 0.493. The pairwise correlations for the DNS-EGARCH for all three factors 
is higher than that of the DNS-GARCH and DNS models. There is very small difference in 
estimated correlation for the ߚመଵ௧ and ߚመଶ௧ (not statistically significant), but somewhat larger 
difference for the ߚመଷ௧.  
Overall, the analysis suggests that the estimated factors and the empirically defined factors 
follow the same pattern across time (shown in Figure 3), and therefore, ߚመଵ௧, ߚመଶ௧ and ߚመଷ௧ can 
be called level, slope and curvature factors, respectively.  
To compare the errors of state equations across three models, we compute the covariance 
matrices of the transition innovations (denoted as Σ௩ ) and the results are presented in 
Table 3. It is evident from the results that all three diagonal elements of the matrix Σ௩ that 
correspond to the variance of the state innovations are statistically significant, whereas 
only one off-diagonal element is statistically significant in all three setups.  

Figure 3 
Time Series Plot of Estimated Factors and Their Empirical Proxies 

 
Model-based level, slope and curvature (i.e., estimated factors) are plotted against the data 
based level, slope and curvature (i.e., empirical proxies), where level is defined as the 10-year 
yield, slope as the difference between the 10-year and 3-month yields and curvature as two 
times the 2-year yield minus the sum of the 10-years and 3- month zero-coupon yields. 
Rescaling of estimated factors is based on Diebold and Li (2006).  
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Comparatively, in the time-varying volatility based frameworks most of the variance and 
covariance terms are much smaller than the counterpart terms in DNS setup. Moreover, 
the DNS-EGARCH comes up with a bit smaller variance and covariance terms than the 
DNS-GARCH. Furthermore, Wald test for the joint significance of the off-diagonal element 
in matrix  Σ௩  is employed, because most of the off-diagonal elements are statistically 
insignificant. The Wald test results suggest the joint significance of the covariance terms.  

Table 3 
Estimates of Covariance Matrix   

DNS-EGARCH 
.ሺݍ  ,1ሻ ݍሺ. ,2ሻ ݍሺ. ,3ሻ 

,ሺ1ݍ . ሻ 1.157 (0.186)   
,ሺ2ݍ . ሻ -0.001 (0.091) 0.458 (0.079)  
,ሺ3ݍ . ሻ 0.206 (0.169) 0.180 (0.034) 0.427 (0.008) 

DNS-GARCH 
,ሺ1ݍ . ሻ 1.251 (0.192)   
,ሺ2ݍ . ሻ 0.002 (0.001) 0.723 (0.001)  
,ሺ3ݍ . ሻ 0.416 (0.397) 0.164 (0.478) 0.616 (0.005) 

DNS 
,ሺ1ݍ . ሻ 1.292 (0.093)   
,ሺ2ݍ . ሻ 0.002 (0.014) 0.548 (0.108)  
,ሺ3ݍ . ሻ 0.735 (0.622) 0.341 (0.125) 0.971 (0.063) 

Note: The table shows the estimates of the covariance matrices of the innovations in the state 
equations for all three models, i.e., DNS-EGARCH, DNS-GARCH and DNS. The standard errors 
are in parenthesis. Bold entries denote that parameter estimates are significant at the 5% level. 

To further evaluate the performance in terms of in-sample fitting, we present the summary 
statistics of the smoothed residuals of the observation equation in Table 4 for all three 
setups.  

Table 4 
Descriptive Statistics of the Yield Curve Residuals 

Model DNS-EGARCH Model DNS-GARCH Model DNS Model 
Maturity MAE RMSE ߩො ሺ1ሻ MAE RMSE ߩො ሺ1ሻ MAE RMSE ߩො ሺ1ሻ 

3 0.502 0.611 0.579 0.504 0.673 0.546 0.592 0.757 0.605 
6 0.491 0.657 0.545 0.500 0.662 0.544 0.577 0.739 0.605 

12 0.467 0.630 0.514 0.482 0.650 0.543 0.540 0.711 0.602 
24 0.569 0.747 0.671 0.594 0.778 0.689 0.601 0.785 0.693 
36 0.682 0.871 0.775 0.699 0.892 0.782 0.709 0.895 0.788 
48 0.712 0.906 0.796 0.724 0.925 0.799 0.736 0.955 0.801 
60 0.749 0.936 0.810 0.752 0.948 0.811 0.774 0.986 0.812 
72 0.730 0.919 0.803 0.747 0.943 0.811 0.770 0.954 0.812 
84 0.727 0.917 0.806 0.736 0.933 0.808 0.848 0.930 0.806 
96 0.702 0.891 0.783 0.718 0.914 0.795 0.899 0.921 0.795 
108 0.738 0.913 0.811 0.739 0.920 0.808 0.815 0.893 0.803 
120 0.706 0.895 0.794 0.726 0.919 0.809 0.808 1.000 0.810 

Note: The table presents summary statistic of the residuals for different maturity times of the 
measurement equation of DNS-EGARCH, DNS-GARCH and DNS models, using monthly data 
2002:08–2016:12. RMSE and MAE is the root mean squared errors and mean absolute error 
respectively. ߩො ሺ݅ሻ denotes the sample autocorrelations at displacements of 1-month. The 
number of observations is 173. 
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The results show that the extended frameworks, i.e., DNS-GARCH and DNS-EGARCH fit 
the observed yields more attractively as compared to the simple DNS model in terms of 
MAE as well as RMSE. Furthermore, the DNS-EGARCH and DNS-GARCH perform 
equally well to fit the yield curves in terms of MAE and residuals autocorrelation. However, 
DNS-EGARCH has a bit smaller RMSEs than the DNS-GARCH, but the difference may 
not be statistically significant. Overall, the results in Table 4 indicate that a more flexible 
and complex framework is required to fit the term structure of interest rates. 
Summarizing, it turns out that the Nelson-Siegel model is capable of capturing the variation 
in yields across maturities and is closer to the true representation. Likewise, for developed 
economies, the Nelson-Siegel model is capable of distilling the term structure of interest 
rates quite well and describes the evolution and trends of the yield curve in emerging 
markets. Furthermore, the performance of volatility based extended models for the in-
sample fit is consistent with the findings in Koopman et al. (2010) and Ullah et al. (2014) 
as they suggest that the addition of common volatility component in the standard DNS 
increases the flexibility to fit more complex shapes. Furthermore, our results provide 
evidence that besides fitting the yield curve a bit better, the EGARCH based specification 
is capable of capturing the asymmetric response of various yield to positive and negative 
shocks. 

5. Term Structure Forecasting 
Koopman et al. (2010) only report in-sample fit statistics for their DNS-GARCH model and 
no out-of-sample forecasting results. However, besides fitting current and describing past 
yield curve dynamics, term structure models are also used for what Diebold and Li (2006) 
call a key practical problem, namely to predict future interest rates. Hence it is useful to 
also evaluate the forecasting performance of the various models. The model, which comes 
up with a good approximation of the yield curve may not necessarily deliver attractive and 
satisfactory predictions of the future term structure of interest rates, therefore, in this 
section we assess the out-of-sample forecast performance of the standard DNS, DNS-
GARCH and DNS-EGARCH models in comparison with the benchmark AR(1) model of 
yields. 
The yield curve in our framework depends on the state vector ߚ௧, therefore, yield curve 
forecasting is similar to forecasting yield curve factors. For forecasting the yield for various 
maturities, the yield curve latent factors are predicted with the help of the state equation 
and, then these predicted factors (state variables) are inserted in the signal equations (13) 
to compute the forecasted yields. In the first stage, we estimate each model over a 
subsample using the state space specification of (13-15) and in the next stage, predict the 
݄-period ahead latent factors at each point of time in the out-of-sample forecast period by 
iterating forward the transition equation ݄-period ahead using the filtered state factors 
obtained in the previous stage. The ݄-period ahead predicted state vector is computed as: 
 

 
መ௧ା|௧ߦ ൌ ቈܫ௦ െ ቆ ܨ

ିଵ

ୀ
ቇ መܥ   መ௧|௧ (23)ߦܨ

 

where: ܫ௦ is the (s × s) identity matrix (ݏ ൌ 3 and 4 for simple DNS, and volatility based 
extended models respectively), ܥመ and ܨ are the parameters estimates of the state equation 
and ߦመ௧|௧ is the most recent available estimated factors vector in the update step.  
Furthermore, the estimation and forecasting is made recursively, using data from 2002:08 
to the time that the forecast is made, beginning in 2012:01 and extending through 2016:12 
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for ݄ ൌ 1,6 and 12 (i.e., three distinct forecast horizons are considered). Subsequently, the 
forecasted the state vector in (13), the ݄-month ahead forecast is computed as: 
 

 ܴ௧ା|௧ ൌ  መ௧ା|௧ (24)ߦܤ
 

where: ܴ௧ା|௧ is the forecast of the yield at time ݐ for ݐ  ݄ period (denoted as ܴ௧,௧ା), and 
 መ௧ା|௧ is the h-period ahead predicted vector of state variables. In the next stage, theߦ
forecast errors at ݐ  ݄ are computed as ݁௧,௧ା ൌ ܴ௧ା െ ܴ௧,௧ା, where ܴ௧ା is the actual 
observed yield vector at ݐ  ݄ and the ܴ௧,௧ା is the ݄-month ahead forecasted yields in 
period ݐ. 
Furthermore, the AR(1) model of yields for forecasting the term structure of interest rate 
serves as a benchmark for the comparison. The AR specification to compute the forecast 
of yields for various maturities is: 
 

 ܴ௧ାሺ݉ሻ ൌ ߜ  ଵܴ௧ሺ݉ሻߜ  ௧ାߝ  (25) 
 

for ݄ ൌ 1, 6, and 12, and ߝ௧  ܰሺ0, σଶሻ.5 

5.1. Term Structure Forecast Results 
Using the four specification to forecast the future path of yields for all 15 maturities 
(considered in this study), i.e., the DNS-EGARCH, DNS-GARCH, DNS and the AR(1) 
models for each forecast horizon, we calculate the forecast errors and compute their 
descriptive feature, such as mean absolute error (MAE), root mean squared errors (RMSE) 
and autocorrelation at various displacements. Table 5 presents the results of the forecasts 
of all four specifications for maturities of 3, 6, 12, 24, 30, 36, 60, 96 and 120 months of 
the ݄ ൌ 1,6 and 12 months. The table reports three main aspects, MAE, RMSE and errors 
persistency of forecast errors to compare the out-of-sample forecasts performance of each 
model.  
The results of one month ahead forecast are presented in table 5. All three specifications 
of the Nelson-Siegel model outperform the AR(1) yield forecasts in terms of all descriptive 
feature of the forecast errors, whereas, the standard DNS performs slightly better than the 
volatility based extended models, i.e., DNS-GARCH and DNS-EGARCH models. The MAE 
and RMSE for most of the maturities of the DNS are a bit smaller than the rest of the two 
models, however, in terms of the errors autocorrelation, the volatility based extended 
models outperform the DNS. Moreover, the two volatility based models (DNS-GARCH and 
DNS-EGARCH) have almost similar performance in terms of MAE, RMSE and errors 
persistency.  
The results in Table 5 for the 6 months and one year ahead forecast show that the forecast 
errors become larger as we lengthen the forecast horizon. Similar to the one-month ahead 
forecast, all three Nelson-Siegel type models outpace the benchmark AR(1) forecasts in 
all three descriptive features for ݄ ൌ 6, and 12. Among the remaining three models, the 
order of superiority runs from DNS-EGARCH to DNS-GARCH and to DNS. For ݄ ൌ 6 and 
12 months, the MAE and RMSE for the DNS-EGARCH is reasonably smaller for all 
maturities than the rest of the two specifications of yield, however, the errors persistency 
is similar in all three setups. Moreover, the DNS-EGARCH forecasts beat the 
corresponding DNS forecasts in terms of MAE, RMSE as well as errors autocorrelation for 
both 6 and 12 months ahead forecast horizons. However, in regard of MAE and RMSE, 

                                                            
5 Other time series specifications, such as random walk model can also be a benchmark model. 

However AR(1) specification of yield outpaces forecasts from this model. Hence we do not 
find it necessary to report results from this model.   
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the improvement of DNS-EGARCH over DNS-GARCH is very minor in both 6 and 12 
months ahead forecasts. 
In summary, the out-of-sample forecast results of the three Nelson-Siegel specifications 
seem reasonably accurate in terms of lower forecast errors than the benchmark AR(1) 
model of yield. Moreover, the volatility based extended specifications have better 
performance than the DNS at 6- and 12-month ahead forecast horizons, while the latter 
comes with much accurate forecasts for the short horizon forecasts, i.e., one month, than 
the DNS-GARCH and DNS-EGARCH models. Furthermore, the forecast errors of the 
EGARCH based model are almost identical to the GARCH based setup for ݄ ൌ 1, while a 
bit smaller for 6- and 12-month ahead forecast horizons. The serial correlation of forecast 
errors in the DNS may likely be from the pricing errors and illiquidity. Overall, the out-of-
sample forecasting results are similar with the one presented in Lips (2012), who finds that 
allowing for time-varying volatility in the DNS enables the model to better capture dynamics 
in the most volatile yields and produce relatively accurate 6- and 12-month ahead 
forecasts. 

Table 5 
Out-of-sample Forecasting Results 

M
aturity

DNS-EGARCH DNS-GARCH DNS AR(1) 

M
A

E

R
M

S
E

ොߩ
ሺ1ሻ

M
A

E

R
M

S
E

ොߩ
ሺ1ሻ

M
A

E

R
M

S
E

ߩ ො
ሺ1ሻ

M
A

E

R
M

S
E

ߩ ො
ሺ1ሻ

1 month ahead forecasting  
3 0.536 0.622 0.577 0.500 0.618 0.523 0.419 0.456 0.850 1.072 1.274 0.937 
12 0.492 0.529 0.513 0.427 0.500 0.482 0.422 0.487 0.945 1.117 1.342 0.944 
24 0.648 0.764 0.659 0.635 0.750 0.639 0.611 0.717 0.988 1.140 1.405 0.949 
36 0.849 0.955 0.791 0.857 0.977 0.810 0.802 0.928 0.809 1.160 1.394 0.950 
60 0.899 0.988 0.979 0.907 0.984 0.820 0.855 0.967 0.806 1.169 1.385 0.954 
96 0.842 0.945 0.783 0.840 0.964 0.794 0.816 0.935 0.799 1.191 1.419 0.951 
120 0.769 0.891 0.775 0.787 0.921 0.788 0.766 0.895 0.792 1.011 1.253 0.950 
6 months ahead forecasting  
3 1.087 1.259 0.839 1.125 1.306 0.756 1.754 2.061 0.780 2.111 2.300 0.937 
12 1.125 1.313 0.847 1.086 1.276 0.783 1.612 1.923 0.816 2.175 2.373 0.948 
24 1.373 1.333 0.887 1.402 1.742 0.858 1.847 2.280 0.880 2.217 2.422 0.942 
36 1.582 1.923 0.911 1.617 1.952 0.899 1.995 2.447 0.906 2.242 2.432 0.944 
60 1.734 2.028 0.917 1.757 2.069 0.913 2.054 2.465 0.917 2.309 2.500 0.959 
96 1.749 2.101 0.929 1.789 2.108 0.925 2.035 2.408 0.926 2.290 2.505 0.953 
120 1.745 2.102 0.928 1.783 2.105 0.926 1.974 2.358 0.925 3.127 2.355 0.954 
12 months ahead forecasting  
3 1.077 2.145 0.909 1.978 2.394 0.861 1.927 2.506 0.881 3.128 3.292 0.937 
12 1.768 2.150 0.916 1.820 2.153 0.872 1.942 2.268 0.906 3.218 3.394 0.944 
24 1.732 2.018 0.934 1.794 2.025 0.905 1.852 2.304 0.935 3.225 3.416 0.931 
36 1.617 1.758 0.950 1.682 1.929 0.935 1.977 2.463 0.952 3.227 3.411 0.936 
60 1.446 1.766 0.955 1.463 1.768 0.945 1.974 2.447 0.956 3.266 3.456 0.946 
96 1.330 1.666 0.957 1.374 1.707 0.950 1.955 2.400 0.958 3.246 3.457 0.936 
120 1.337 1.668 0.960 1.390 1.712 0.955 1.887 2.334 0.961 3.156 3.380 0.948 
Note: The table reports the results of out-of-sample forecasting using state-space specification 
for the DNS-EGARCH, DNS-GARCH and DNS models along with the AR(1) forecasts of yields 
for various maturities. We estimate the models recursively from 2002:08 to the time that the 
forecast is made. We define forecast errors at ݐ  ݅ as  ܴ௧ାሺ݉ሻ െ ܴ௧,௧ାሺ݉ሻ, where ܴ௧,௧ାሺ݉ሻ is 
the ݐ  ݅ month ahead forecasted yield at period ݐ, and we report the mean absolute errors 
(MAE) and root mean squared errors (RMSE) of the forecast errors, as well as their first order 
sample autocorrelation coefficients. 
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5.2. Out-of-sample Forecast Accuracy Comparisons 
While the results in the previous section show clear differences between the forecast 
accuracy of the four specifications, it is essential to evaluate the statistical significance of 
these differences. Here, we employ the Diebold and Mariano (1995) test that provides a 
means to compare the mean square errors of the two competing forecast errors. The 
Diebold and Mariano (DM) test is a standard statistical test that compares the squared 
forecast errors of two competing models and is the most commonly applied test for 
comparing the forecast accuracy. 
However, the focus in this study is on comparing the three Nelson-Siegel (1987) base 
specifications, i.e., DNS-EGARCH, DNS-GARCH and DNS model; we make the 
comparison among the four specifications of yield forecasting in four different pairs. Based 
on the results in the previous section, in the first pair, DNS is compared against the AR(1) 
specification of the yield, while the forecast errors of DNS-EGARCH and DNS-GARCH are 
compared with the standard DNS forecast errors in the second and third pair respectively. 
The fourth pair draws comparison between the DNS-EGARCH and DNS-GARCH.  
The DM-statistics for each pair of models and each forecast horizon of the Diebold–
Mariano test are provided in Table 6 that reflects the differences in the RMSE shown in 
Table 5. It is worthwhile to mention that besides the statistical significance; the sign of the 
statistic has an important interpretation in the context of DM-test. In our framework, the 
negative sign indicates the superiority of the model mentioned first in the first column of 
the table, such as in the first pair the negative sign show the preference of DNS over AR(1) 
model and vice versa.6 The results in Table 6 for the first pair show a universally significant 
difference in the squared errors for all three forecast horizons and all maturities of the 
standard Nelson-Siegel model (DNS) and AR(1) model, as all DM statistics are statistically 
significant. Moreover, all test-statistics are negative indicating that the DNS model provides 
more accurate forecasts for all maturities than the benchmark AR(1) model.  
The DM-statistics (for the second and third pairs DNS against DNS-GARCH and DNS-
EGARCH models, respectively) reported in Table 6 indicate statistically significant 
difference of the RMSE for the one-month-ahead forecast for most of the maturities. The 
p-value is greater than 0.1 for only two maturities (30- and 36-month maturities in case of 
DNS-GARCH) for ݄ ൌ 1, while the difference of the RMSE between the two models is 
statistically different from zero for the remaining maturities. Whereas in the case of DNS-
EGARCH all test statistics are positive and significant. It indicates that the DNS outpaces 
unanimously the DNS-GARCH as well as DNS-EGARCH for the very short horizon 
forecasts. Here the positive sign points towards the superiority of DNS over the competing 
model. Comparing the 6- month ahead forecasts of DNS in the second and third pair, the 
results point towards the universal preference of volatility based extended models over 
standard DNS as most test-statistics are negative and statistically significant. For ݄ ൌ 12, 
the DNS-EGARCH comes up with more accurate forecasts than the DNS (most test-
statistics are negative and significant), while the forecast errors of DNS and DNS-GARCH 
are almost identical in statistical terms. 
 

                                                            
6 In carrying out the DM-test, we compute the difference between the squared errors of the two 

competing models as: ݀௧ ൌ ݁ଵ௧
ଶ െ ݁ଶ௧

ଶ , where ݁ଵ௧
ଶ  is the squared forecast errors of DNS and 

݁ଶ௧
ଶ  is the squared forecast errors of AR(1) model. Since, the negative value of ݀௧ indicates that 

the DNS have lowered squared forecast errors as compared to the AR(1) specification of yield. 
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Table 6 

Diebold-Mariano Test-statistic 
Maturity DNS against the AR(1) DNS-EGARCH against the DNS 

ࢎ  ൌ  ࢎ ൌ  ࢎ ൌ  ࢎ ൌ  ࢎ ൌ  ࢎ ൌ  
3 -2.931** -3.588*** -2.219** 3.411*** -2.943*** -1.220 

12 -3.349*** -2.945*** -2.874*** 4.835*** -2.428** -0.255 
24 -1.987** -5.669*** -3.314*** 3.389*** -2.365** -0.397 
36 -2.198* -2.768** -2.373** 1.272 -2.329** -0.798 
60 -2.188* -1.997* -3.482*** 3.186*** -2.533** -1.255 
84 -4.589*** -2.005* -3.492*** 8.154*** -2.859*** -1.141 
96 -3.952*** -2.832*** -3.492*** 4.835*** -2.855*** -1.747* 
120 -3.427*** -3.891*** -3.441*** 4.621*** -2.831*** -1.802 

 DNS-EGARCH against the DNS DNS-EGARCH against the DNS-GARCH 
3 7.092*** -2.966*** -2.375** 0.765 0.839 -2.678** 

12 5.512*** -2.408** -2.386** -0.673 0.549 -2.161** 
24 5.097*** -2.384** -3.340*** -3.374*** -0.292 -1.105 
36 3.226*** -2.427** -2.735*** -2.615** 0.175 -1.773* 
60 2.153** -2.657** -1.223 -3.762*** -0.250 -0.126 
84 3.971*** -3.013*** -1.636* -4.348*** -0.898 -1.799* 
96 2.393** -2.960*** -1.764* -3.221*** -0.148 -1.832* 
120 1.998** -2.879*** -1.818* -2.863*** -0.058 -1.739* 

Note: The table presents Diebold–Mariano forecast accuracy comparison test results for the two 
different pairs of models, i.e., the DNS-EGARCH, DNS-GARCH, DNS models and AR(1) 
forecasts for 1, 6 and 12 months ahead forecasts. The null hypothesis is that the two forecasts 
have the same root mean squared error. ***, ** and * denote that the test statistic is significant at 
the 1%, 5% and 10% level respectively. 
 

Among the two volatility based extended models in the fourth pair, the results indicate that 
for ݄ ൌ 1 the DNS-EGARCH has preference over DNS-GARCH for long and medium term 
maturities, whereas both perform equally well for the short spectrum of maturities. In the 
case of 6- month ahead forecast horizons, both models have similar performance as all 
test-statistics are statistically not different from zero except the 108-month maturity. For the 
12-month ahead horizon, the results show that 9 out of 15 DM-statistics show statistically 
significant (at the 10% significance level) superiority of the DNS-EGARCH model over the 
DNS-GARCH model. 
The results of the DM test show that the Nelson–Siegel based yield curve specifications 
outperform competing benchmark forecast models such as the AR(1). Moreover, within the 
class of Nelson–Siegel models, the volatility based extended models have greater 
accuracy and success than the DNS model in forecasting yields for medium- and long-
forecast horizons, while the simple DNS has more attractive performance the one month 
ahead horizon. 

6. Conclusion 
The term structure of interest rates is considered as an important indicator of the economy 
as well as capital markets. It is considered a highly reliable source for contingent claims 
pricing, determining the cost of capital and managing financial risk. It is also widely used 
for understanding investors’ sentiments about the future conditions in the economy. In this 
study, we consider the standard Nelson-Siegel model and its extended versions that take 
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into account the time varying volatility, i.e., DNS-GARCH and DNS-EGARCH and compare 
them in terms of in-sample fitting as well as the out-of-sample forecast performance. We 
use monthly Pakistani government bonds zero coupon data (yield to maturity) from August 
2002 until December 2016 to carry out the empirical analysis. The study contributes to 
literature by expanding the earlier work of Koopman, et al. (2010). Besides looking at more 
elaborate specifications for volatility modeling such as E-GARCH, it also evaluates the 
predictive role of time-varying volitlity in out-of-sample forecasting. 
For the in-sample fit, the results show that the Nelson-Siegel model is capable of distilling 
the term structure of interest rates quite well and describes the evolution and trends of the 
yield curve in emerging markets as well as in the context of larger and developed markets. 
However, the magnitude of error in emerging markets is reasonably larger as compared to 
the developed markets. This might be due to ignoring the arbitrage free restriction or pricing 
error in the market (possibly because of lack of liquidity). Furthermore, the volatility based 
extended models, i.e., DNS-GARCH and DNS-EGARCH, are capable of fitting the yield 
curve more accurately than the standard DNS model, particularly in periods of high 
volatility. Moreover, the DNS-EGARCH model fits the curve slightly better than the DNS-
GARCH model. 
Regarding term structure forecasting, we conclude that all three specifications of yield 
curves based on the Nelson-Siegel functional form can replicate the interest rates' general 
trends in emerging economies. The out-of-sample forecast results of the Nelson-Siegel 
specifications seem reasonably accurate in terms of low forecast errors and outperform 
the benchmark time series forecast models of yields, such as AR(1) and random walk 
models. Moreover, by allowing for time-varying volatility in the model (DNS-EGARCH and 
DNS-GARCH), the term structure model better captures the dynamics in most volatile 
yields. It also tends to produce more accurate forecasts at both 6- and 12-month ahead 
horizons. However, the forecast errors of the simple DNS model in terms of RMSE are 
reasonably smaller as compared to the volatility based extended models at the short one-
month forecast horizon. We may conclude that DNS-EGARCH model has excellent 
performance for medium and longer forecast horizons. It also turns out that the richer 
parameterization of the model leads to a better in-sample fit and out-of-sample 
performance.  
The extensions on the work of Koopman, et al. (2010) presented in this study o�ers several 
directions for further research. The results show that the interest rate volatility dynamics 
might be captured more e�ciently by an asymmetric model, however an alternate 
specification such as GARCH-X including macroeconomic factors may also be helpful to 
capture volatility more efficiently. Secondly, rather than only considering the common 
volatility component in the observation equation, a similar specification can also be 
included in the state equation to capture the volatility in the 3-factors of yields.  
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Appendix-I: Coefficients and Latent Variable 
in the General State-space Form 

In the statistical formulation of the models in section 2.3, the matrices and vectors for the 
state and observations equations should be considered as follows. The matrices and 
vectors in state-space system in (13-15) for the simple DNS model should be defined as:  
 

ܤ ൌ Λሺߣሻ: (N×3) ߦ௧ ൌ ሾߚଵ௧, ,ଶ௧ߚ ௧ݓ ଷ௧ሿᇱ: (3×1)ߚ ൌ  ௧: (N×1)ߝ
ܥ ൌ ሾܫଷ െ ܨ (1×3) :ߤሿܣ ൌ (3×3) :ܣ ௧ݑ ൌ  ௧: (3×1)ݒ
Ω ൌ Ω: (N×N) ܳ௧ ൌ Σ௩: (3×3)  

 
while, for the DNS-GARCH and DNS-EGARCH models in the state-space system 
presented in (10-12), can be written as: 
 
ܤ ൌ ሾΛሺ߬ሻ Γఌሿ: (N×4) ߦ௧ ൌ ௧ߙ ൌ ሾߚଵ௧, ,ଶ௧ߚ ,ଷ௧ߚ ௧ߝ

 ሿᇱ: (4×1)כ

ܥ ൌ ቂሺܫଷ െ ߤሻܣ
0

ቃ: (4×1) ܨ ൌ ቂܣ 0
0 0

ቃ: (4×4) 

௧ݑ ൌ ቂ
௧ାଵݒ

௧ାଵߝ
כ ቃ: (4×1) ܳ௧ ൌ 

Σ௩ 0
0 ݄௧ାଵ

൨: (4×4) 

௧ݓ ൌ ௧ߝ
ା: (N×1) Ω ൌ Ω: (N×N)

 
In all three specifications Λሺߣሻ is (N×3) matrix of loadings, Γఌ is (N×1) vector showing the 
sensitivity of various yields to common volatility component,  ߚ௧ ൌ ሺߚଵ௧, ,ଶ௧ߚ  ଷ௧ሻᇱ is the (3×1)ߚ
vector of latent factors of the yield curve, ߙ௧ ൌ ሺߚ௧

ᇱ, ௧ߝ
 ,ሻᇱ is the (4×1) vector of latent factorsכ

 ௧ andߝ is (3×3) full-matrices of parameters. The ܣ is (3×1) vectors of factors mean, and ߤ
 ௧ are (N×1) and (3×1) innovations vectors of the observation and state equationsݒ
respectively, Ω is (N×N) covariance matrix of the measurement equation innovations, and 
Σ௩ is (3×3) lower triangular covariance matrix of the state innovations. Moreover, ߝ௧

ା is 
(N×1) errors vector of the observation equation in two time time-varying volatility (GARCH 
and EGARCH) based models. 




