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APPLYING NELDER MEAD’S 
OPTIMIZATION ALGORITHM FOR 
MULTIPLE GLOBAL MINIMA 

Ştefan ŞTEFĂNESCU*  

Abstract 
The iterative deterministic optimization method could not more find multiple global 
minima of a given objective function ( [6] ).  
Generally, the probabilistic optimization algorithms have not this restrictive behaviour, 
to determine only a single global minimum point. In this context we’ll prove 
experimentally that Nelder-Mead’s heuristic procedure can detect successfully  
multiple global extremal points. 
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1. Introduction 

For an arbitrary function RDh →:  with mRD ⊂  we intend to find those points 

Dx ∈*  , ),...,,,(* **
3

*
2

*
1 mxxxxx =   such that  

       )(* whinmrgax
Dw ∈

=   (1) 

Therefore  
 )(*)( xhinmxh

Dx ∈
=  (2) 

where ),...,,,( 321 mxxxxx = .  

In fact *)(xh  is the minimum global value for the function )(xh , Dx∈ . 

In the literature ( [6] ) are very present the classical derivative optimization methods, 
based on the gradient direction for finding the minimum global value *)(xh . 
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But always in practice the exact expression of the gradient function could be 
extremely hard for computing. For this reason the gradient expression is often 
approximated by finite differences.      
The non-derivative methods use directly only some selected values )(xh ( [1]-[5], [7]-
[10] ). In this context we remark the model-based variant and the geometry-based 
method too. 
More precisely, the model-based procedures work with an interpolation or also with a 
least-squares approximation of the objective function )(xh  to compute the next 
iteration in searching process of *x .  
Contrary, the geometry-based algorithms do not necessary involve an explicit auxiliary 
form of the function )(xh  and essentially produce samples from Dx ∈  which have 
imposed properties.   
The Nelder-Mead ( NM ) method is oriented for solving a continuous unconstrained 
optimization problem of type (2). 
A NP type algorithm is clearly an authentic geometry-based procedure whose 
flexibility is given by its four parameters δγβα ,,, which adjust the search process for 
the minimum function values.  
In general, the geometry-based procedures and particularly the NP algorithm are 
easily to be programmed. Their major advantage is imposed by a relative non 
frequently evaluation of the function )(xh . Usually, in practice, the computation of a 
complex objective function )(xh  is very time-consuming. Often the evaluation of )(xh  
demands before an auxiliary data collected activity.  

2. An implementation of the NM algorithm 
The iterative optimization procedures generally use only a starting point Dx ∈1 , 
chosen by specific rules.  
Contrary, the NP algorithm consider a nondegenerate simplex inside the domain 

mRD ⊂  as starting figure. At every iteration step the NP algorithm modifies a single 
vertex of the current simplex by applying a λ-transform. In this way it results another 
nondegenerate simplex.    

More precisely, for any two points mRy ∈  and mRz ∈  we can produce a new point 
mRw ∈  by using a λ-rule, that is 

 )( zyzw −+= λ   ,   R∈λ  (3) 
So, if ),...,,,( 321 myyyyy = , ),...,,,( 321 mzzzzz = , ),...,,,( 321 mwwwww =   

we get )( jjjj zyzw −+= λ   ,   mj ≤≤1  (4) 

Depending on the value of the coefficient λ , },,,{ δγβαλ ∈ , and also on the 
individual significance of the points y  and z , we can simulate more geometric type 
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operations as a α-reflection, a β-expansion, a γ-contraction or a δ-shrinkage ( [1}, [2], 
[5], [9] ).    
The classical Nelder-Mead algorithm [5] has a lot of little modified forms ( compare, for 
example, the NP procedures presented in [1]-[3], [7], [9] ). For the present study it was 
implemented in MatLab the variant given in [3]. This variant operates with the 
following λ-parameters : 
 1=α           2=β           5.0=γ           5.0=δ  (5) 

3. Multiple global minima 
In the subsequent we intend to test the NM algorithm when the function )(xh  has 
multiple minima. We are interested to see if the NM procedure could find all the global 
extremal values *x .  
The following example will give us the right answer.  
Example 1.  For 2=m  we will consider the function  RDh →:1  with    

 ]12,3[]6,0[ −= xD              2RD ⊂  (6) 
      |)3)(2(||)5)(1(|4)),(()( 112112111 −−−+−−+== wwwwwwwhwh  
Obviously   
 4)(inf)()( 111 ===

∈
whthsh

Dw
 (7) 

where  
 )2,1(=s          )6,5(=t  (8) 
and more Ds∈  , Dt ∈ .   
From a straightforward reasoning we deduce that the function )(1 wh  has, on the 
domain D , only two global extremal points. These special points are just the vectors 
s  and t  defined by the formulas (8).   
 
Graphic 1 gives us an imagine about how the function )(1 wh  fluctuates. 
We intend to verify if the NP procedure could find both minimizer points s  and t . The 
Graphic 1 does not suggest us clearly the exact places where we have the two global 
extremal points ts, . 

For this reason we can study the variability of the function )(2 wh ,  

 )),(()),(()( 2112122 wwhwwhwh −==  (9) 

The minimum values of the function )(1 wh  became the maximum values for the 
application )(2 wh . The Graphic 2 suggests at least two global maximization points for 
the function )(2 wh . So, )(1 wh  has multiple global minimizer points. 
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But the correct answer regarding the number of the global extremal points of )(1 wh  is 
obtain after an interpretation of the contour lines structure. So, we conclude that the 
function )(1 wh  has only two minimizer points ( see Graphic 3 ).  

Running 100  times the NM algorithm we get always only the minimizer vectors s  or 
t  but after a different number n  of iterations. More, the variants s  and t  appeared 
randomly and around the same proportion ( see Table 1 ).        

Table 1  
The minimization value *x  obtained after n  iterations 

( NM algorithm, },{* tsx ∈  , function )(1 wh ). 
x* n x* n x* n x* n x* n 
t 63 s 58 S 60 t 56 s 56 
t 61 s 56 S 56 t 59 t 63 
s 66 t 61 S 59 s 60 t 55 
s 52 s 59 S 54 t 60 t 72 
s 59 s 58 T 61 t 66 s 56 
s 56 t 67 T 54 s 56 s 53 
s 53 s 48 S 54 t 59 t 62 
s 56 s 59 T 55 t 56 s 55 
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s 57 t 54 T 66 s 55 s 55 
t 61 t 91 S 55 s 62 t 58 
t 70 t 81 S 62 s 55 t 68 
s 62 s 65 T 69 t 60 s 57 
s 57 t 66 S 55 t 59 s 60 
s 123 t 54 T 54 t 58 s 56 
t 65 t 59 T 62 s 55 t 52 
t 53 s 59 S 68 t 57 t 57 
s 58 s 73 S 56 t 56 t 116 
s 55 s 66 S 61 s 57 t 62 
s 55 t 57 S 72 s 63 t 77 
t 61 t 53 T 62 t 60 t 60 

4. Concluding remarks 
It is very known from the literature that the iterative deterministic optimization methods 
could not usualy find more multiple minima of a given objective function )(wh  ( details 
in [6] ).  
But this behavioural restriction isn’t generally true for the probabilistic optimization 
algorithms. 
In the present paper we proved experimentaly that the Nelder-Mead heuristic 
procedure can detect successfully  multiple extremal global points.  
More, in example 1, the NP procedure identified approximately in the same proportion 
the both global minimizer points ( see Table 1 ). 
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