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SOME COMPOSITE EXPONENTIAL-
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Abstract 

Prediction is a very important and not so easy task for an actuary. An insurance 
company needs predictions of the future claims in order to evaluate premiums, to 
assess its financial situation, probabilities of ruin, etc. Therefore, modeling the claims 
distribution is of great importance, but since this distribution is usually different from 
the classical ones (e.g. skewed and heavy tailed), researchers are trying to find new 
models that can fit better to insurance data. 
Such a composite model unifying a Lognormal and a Pareto distribution was 
introduced by Cooray and Ananda [1] and generalized by Scollnik [6]. In this paper we 
go even further and study a composite model obtained from two arbitrary distributions, 
then exemplify it with the Exponential and Pareto distributions. Some properties and 
statistical inference are also presented. 

Keywords: composite models, mixture models, Exponential and Pareto distributions, 
composite Exponential-Pareto models, parameter estimation 
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1. Introduction 

Actuarial science has to work with a large set of statistical tools (for data collection, 
analysis, estimating, forecasting and valuation), in order to provide financial and 
underwriting data for risk management, and to assess marketing opportunities. 
Therefore, actuaries must forecast losses using models of random events. The choice 
of claims distributions becomes an important and sometimes quite difficult task. 
A main classification of distributions with right-infinite domain is into “light” and “heavy” 
tailed, depending on how spread out they are in the right tail. In this sense, the 
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Exponential distribution is used as a standard: if a distribution has a right tail less 
spread out than the Exponential one, then it is called “light-tailed”, otherwise it is 
“heavy-tailed”. 

When studying the claims affecting a certain insurance portfolio, a frequent situation is 
that we have many small claims, but also a few large claims that generate a heavy-
tailed distribution. Such situations are often encountered in, e.g., property insurance, 
auto insurance, etc. (see, for instance [4]). Then, the claims distribution can be 
modeled as a combination of two densities, consisting of a less heavy-tailed 
distribution up to a certain threshold value and of a heavy-tailed distribution from that 
threshold on. Such distributions are the composite ones, as suggested by Cooray and 
Ananda [1]. They constructed a composite model as: 
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where: f1 and f2 are probability density functions (pdf), while c is a normalizing 
constant.  

In order to have a smooth pdf (1.1), continuity and differentiability conditions are 
imposed at �, from where we obtain the constant c, and also a condition that reduces 
by one the number of unknown parameters of f1 and f2. As mentioned before, f1 is 
usually taken to be a light-tailed distribution, while f2 will be heavy-tailed. 

In this paper, we chose the Exponential density for f1 and a Pareto density for f2. This 
choice is motivated by the fact that among the heavy-tailed distributions the Pareto 
one is preferred when it comes to model larger claims or reinsurance payments, while 
the Exponential distribution is easy to handle. Also, the Exponential distribution often 
appears in actuarial models for claims and, hence, plays an important role in models 
that allow for analytical computation of ruin probabilities (see, for instance [3]). For 
details on the Exponential and Pareto distributions see [2]. 

A composite Exponential-Pareto model in form (1.1) was already proposed by 
Teodorescu and Vernic [7]. The main characteristic of its pdf is that, even if its shape 
is similar to the Exponential, it has a larger tail that the corresponding Exponential, 
and a lighter tail than the corresponding Pareto. The composite Exponential-Pareto 
density obtained in [7] is  
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 (1.2) 

Recently, Scollnik [6] proposed two different composite models based on Lognormal 
and Pareto distributions. In the same manner, we suggest two different models based 
on Exponential and Pareto distributions. 

Section 2 is dedicated to the study of a mixture model equivalent to model (1.1), with 
focus on its pdf, cumulative distribution function (cdf), initial moments, characteristic 
function and a method for estimating the parameters. In Section 3 we reinterpret the 
composite Exponential-Pareto model from [7], which can be recognized as a two-
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component mixture model with fixed and a priori known mixing weights. In Sections 4 
and 5 we introduce two new composite Exponential-Pareto models and discuss some 
of their properties based on the general theory of Section 2. Two numerical examples 
are presented in Section 6, based on two data samples considered in Teodorescu and 
Vernic [7]. We end the paper with some conclusions. 

2. Some properties of a mixture model 

Scollnik [6] noticed that the pdf of the mixture model (1.1) might also be written as: 
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where: 10 �� r , while f1*
 and f2*

 are adequate truncations of the pdf-s f1 and f2. More 

precisely, if Fi denotes the cdf of fi, we have: 
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One should note that for more generality, we considered that the pdf f1 and, hence, 
(2.1), may also be defined for negative values of x.  
It is easy to see that pdf (2.1) can be interpreted as a two-component mixture model 
with mixing weights r and 1-r (i.e., a convex combination of two pdf-s),  
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We will now deduce some characteristics of model (2.1) concerning its cdf, initial 
moments and the characteristic function. If X is a random variable (r.v.) with pdf f, we 

denote its initial n-th order moment by ),()( n
n XEfE �  and its characteristic 

function by Xf �� � . 

Proposition 2.1. 

Let F denote the cdf of the pdf given in (2.1). Then  
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Proof. We consider two cases and use formulas (2.2): 

- when ,	���� x  
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Therefore, we get the formula of F. 

 

Proposition 2.2. 

The initial n-th order moment of the pdf (2.3) is 
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assuming that all the quantities involved exist. 
Proof.  
We have: 
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Proposition 2.3. 

The characteristic function of the pdf (2.3) is  
 ���� ttrtrt fff ),()1()()( *
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Proof.  
We have: 
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Statistical inference. Assuming that the pdf (2.1) depends on the real parameters 

,,,...,1 	�� s  where �s N, we will now present an estimation algorithm based on the 

maximum likelihood (ML) method. Consider the random sample 
 �nxx ,...,1 . Without 

loss of generality, we assume that it is an ordered sample, i.e. nxxx ��� ...21 . In 

order to apply the ML method, we must know the integer value m such that the 
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unknown parameter � is between the m-th and (m+1)-th observations, i.e. 

1��� mm xx 	 . Assuming that somehow we know this m, the likelihood function is 
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Unfortunately, in general, we do not know the exact value of m; also, one should note 
that if m changes, the ML estimation also changes. Therefore, we suggest the 
following estimation algorithm that takes into consideration all possible values of m so 

that 1��� mm xx 	 : 

Step 1. For each ,1,...,2,1 �� nm  do evaluate 	�� ˆ,ˆ,...,1̂ s  as solutions of the ML 

system 
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If 1
ˆ

��� mm xx 	  then the ML estimations are 

 		�� ˆˆ,,...,1,ˆˆ ��� ML
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i si . 

Step 2. If Step 1 does not give any solution for �, then we are in one of two situations: 
m=n or m=0, hence we recommend using only f1, and f2, respectively, for the likelihood 
function.  

Remark 2.1. With this algorithm, one has to check n-1 intervals, so that the computing 
time strongly depends on the magnitude of n. 

3. The first composite Exponential-Pareto model-
reinterpretation 

It is not difficult to see that the composite Exponential–Pareto model (1.2), that we will 
call from now on the first composite Exponential–Pareto model, can be written in the 
form (2.1), with f1 an Exponential pdf (hence f1*

 a right truncated Exponential pdf), 
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 a Pareto pdf starting from �, i.e. 
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Therefore, the value of r results immediately as 43.0�r . 

Thus, in our case, we can say that exactly 100r% (�43 %) of the observations are 

from an Exponential model truncated above at	 , and exactly 100( r�1 )% (�57%) of 

the observations are above 	 , in accordance with a certain parameter restricted 

Pareto model. Hence, the model (1.2) can be interpreted as a two-component mixture 

model with fixed and a priori known mixing weights r and r�1 . As 
35.1

1 1)( ��� eF 	 , 

it is easy to see that the truncation point 	  is always the 0.74-th quintile of the original 

underlying Exponential model with density f1. 
Scollnik [6] observed that such a mixture model, with fixed and a priori known mixing 

weights r and r�1 , is a very restrictive one. This is why in the following we extend this 
first Exponential–Pareto model to a general r. 

4. The second composite Exponential-Pareto model 

Using (2.1), we design a second composite Exponential-Pareto model as a truncated 

Exponential and Pareto mixture with threshold value 	 , but a priori unrestricted 

mixing weights. 

 

Proposition 4.1. 

The second composite Exponential-Pareto density is given by 
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where the parameters 0,, �	��  and 10 �� r  satisfy the continuity and 
differentiability conditions 
 ,1����	  (4.2) 
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Proof.  

The pdf (4.1) results immediately from (2.1) and (2.2) by taking 0,)(1 �� � xexf x��  

(i.e. an Exponential pdf) and 	�	
�

�

�� � x
x

xf ,)( 12  (i.e. a Pareto pdf), and noticing 

that 0)(,1)( 21 ��� � 		 �	 FeF . Hence, 
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There are four unknown parameters: 	�� ,,  and the mixing weight r. We would like 

the composite pdf to be smooth, so we will impose continuity and differentiability 

conditions at the threshold	 , i.e. 
 � 
 �00 ��� 		 ff  and 
 � 
 �00 '' ��� 		 ff , 

where 
'f  is the first derivative of f. 

From the first condition we obtain 
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Observe that now the mixing weight r is not a fixed and known value as it was in the 

previous section. In this model, r is free to vary in the interval � �1,0 , its precise value 

depending on the particular values of  ,� �  and 	 . 

From the differentiability condition at 	  we obtain  
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Condition (4.2) results easily by equating (4.4) and (4.5). Inserting (4.2) into the 
expression (4.4) of r gives 
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and, hence the condition (4.3) in both forms.  

 

Remark 4.1. One may notice that because of the conditions (4.2)-(4.3), the number of 
unknown parameters can be reduced from four to only two (e.g., we can express r and 
� in terms of � and �). In order to reduce even more the number of free parameters of 
this model, we tried to impose a second derivative 

requirement 
 � 
 �00 "" ��� 		 ff , which leads to the condition 
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which together with (4.2) and (4.3) results in 1021 ����� �� , which is 

impossible. 

 

Remark 4.2. The second composite model is reduced to the first composite model for 

35.0��  and 0.43r � .  

In Figures 1 and 2, we plotted the pdf (4.1) for different values of the parameters � 
and �, in order to see their effect on the tail of the distribution. One should notice that 
the tail of the second composite Exponential-Pareto distribution becomes heavier 
when � increases (for fixed �) or when � decreases (for fixed �). 
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Figure1 

Pdf (4.1) for �=10 and various values of � 

 
Figure 2 

Pdf (4.1) for �=1 and various values of �  
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Corollary 4.1. 

The cdf of the second Exponential-Pareto model is given by 
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Proof. The formula results immediately from Proposition 2.1 and from 
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Corollary 4.2. 
The initial n-th order moment of the second composite Exponential-Pareto distribution 
is given by 

 

 �

 � 
 �

1,
( ) 1 ,

1

n

n n

n
E f r r n

ne �	

�	 �	 �
�� �

% �
� � � �

��
, (4.6) 

where: 
 � 1

0
, , , 0,

t xt x e dx t&& &� �% � ��  is the lower incomplete gamma function. 

Proof.  
We will use Proposition 2.2. We need the moments of the truncated Exponential 
distribution and of the Pareto distribution. We have 
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where we changed the variable xu �� . 

For 
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Inserting them into Proposition 2.2 we get the stated result.  

Remark 4.3. The values 
 �'% ,n  involved in formula (4.6), with n a positive integer, can 

be evaluated recursively as 

  
 � 
 � 0,1,,,1 ���%��% � xnexxnnxn xn
, (4.8) 

with starting value 
 � 0,1,1 ���% � xex x
. Applying this recursion successively we 

also get 

 
 � 
 �0

!1, ! , 1, 0
!

n
n k x

k

nn x n x e n x
n k

� �

�

% � � � � �
�( , 



 Some Composite Exponential-Pareto Models for Actuarial Prediction 

Romanian Journal of Economic Forecasting – 4/2009 91 

but using directly recursion (4.8) seems to be a more efficient method in this case. 

Corollary 4.3. 

The characteristic function of the second composite Exponential-Pareto distribution is 
given by 
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Proof. We evaluate  
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and insert them in Proposition 2.3.  

Statistical inference. In order to apply the algorithm described at the end of Section 

2, if nxxx ��� ...21  is an ordered sample and 1��� mm xx 	 , the likelihood function 

(2.4) becomes in this case 
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Replacing now r and � in terms of � and � as given in (4.2)-(4.3), and making some 
calculation we get 
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From the first equation we obtain 
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One may notice that in order to have the compulsory condition 0�	 , the following 

condition results from (4.9) 
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Inserting now (4.9) into the second equation of the likelihood system leads to the 
following equation in � 
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This equation must be numerically solved for �. Once we obtained a positive solution, 
we check if it satisfies the condition (4.10). If so, then we insert it in (4.9) and, hence, 
the value of � results. 

One should note that if in this case 
ML	̂  is closer to 1x  or nx , it is better to choose the 

Pareto or Exponential models, respectively. 

5. The third composite Exponential-Pareto model 
(The composite Exponential-type II Pareto model) 

The third composite Exponential-Pareto model will also be developed in terms of the 
mixture model (2.1). This time we will make use of a version of the generalized Pareto 

distribution (GPD) above the threshold value	 , i.e. instead of 
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known as the Lomax or type II Pareto distribution, see e.g. Johnson et al. [2]. Now, 

letting 	*	�)* ���� , , this density function may be written as  
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Proposition 5.1. 

The third composite Exponential-Pareto density is given by 
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where the parameters 0,, �	�� , * 	� �  and 10 �� r  satisfy the continuity and 
differentiability conditions 
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 �.1

�	

�	

�
�

�

�

�
�

�
e
er  (5.4) 

Proof. 
Like in the proof of Proposition 4.1, we immediately obtain the pdf (5.2) from (2.1) by 

replacing 
*

1f  with the truncated Exponential pdf, and 
*

2f  with the type II Pareto pdf 

given in (5.1). This pdf has five unknown parameters: *	�� ,,,  and the mixing 

weight r. 
We now impose the continuity condition at the threshold point 	 , i.e. 


 � 
 �00 ��� 		 ff . This gives 
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Again the mixing weight r is not fixed and depends on the other four parameters. 

We may ensure that the resulting density function is smooth if we also impose a 

differentiability condition at 	 , so that 
 � 
 �00 '' ��� 		 ff . This restriction gives 
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From (5.5) and (5.6) we easily obtain the first condition, 
 � 1��� �	*� . Inserting 

this into (5.5) gives the expression (5.4) of r.  
Remark 5.1. One may notice that because of the conditions (5.3)-(5.4), the number of 
unknown parameters was reduced from five to three (e.g., by expressing r and � in 
terms of �,� and �). We tried to reduce further the number of free parameters of this 

model, by imposing a second derivative requirement 
 � 
 �00 "" ��� 		 ff , which 

leads to the condition 
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 �
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 �

,1211
1 3

3

	*
���� �	

�	 �
����

�
�

� re
e
r

 

and using (5.3)-(5.4) we get 1021 ����� �� , which is impossible. 

Remark 5.2. The third composite model is reduced to the second one for 0�* . 

For comparison, in Figure 3 we plotted all three composite Exponential-Pareto pdf-s, 
and also the corresponding Exponential and Pareto pdf-s. One may notice that the 
second and the third composite Exponential-Pareto models are more flexible, because 
they have more parameters. 



Institute of Economic Forecasting

Romanian Journal of Economic Forecasting – 4/200994 

Figure 3 

Exponential, Pareto and all three composite Exponential-Pareto (EP I, II, 

III) pdf curves for �=10, �=�=1 

 
Corollary 5.1. 

The cdf of the third Exponential-Pareto model is given by: 
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Proof. We apply Proposition 2.1 with 
xexF ����1)(1  and  
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Thus, the cdf of the third composite model results as (5.7). 

Corollary 5.2. 

The initial n-th order moment of the third composite Exponential-Pareto distribution is 
given by 
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where %  is the lower incomplete gamma function as introduced in Corollary 4.2. 
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Proof. We will use again Proposition 2.2. Like in the proof of Corollary 4.2, we get from 

(4.7): 
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Denoting 
 � 1nI x x dx�
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One should notice that the condition n��  is essential for the existence of this 

integral. Inserting this result into (5.8) we get  
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Using this and (4.7) in Proposition 2.2, the stated result is immediate.  

Statistical inference. We want to apply again the algorithm described in Section 2. If 

nxxx ��� ...21  is an ordered sample and 1��� mm xx 	 , for (5.2) the likelihood 

function (2.4) becomes 
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Replacing now r and � in terms of �,*  and � as given in (5.3)-(5.4), after some 

calculation we obtain 

 
 � 
 � 
 � 
 � 
 �
 �


 � 
 �

11

1 1
1

1
,..., ; , ,

m
n m Sn n m mn

n n
n m

e eL x x
P

e

	 ��� * 	 * 	

�	
�

* 	

� � * 	
� * 	

�

�� � � �� � � �

�
� � ��

� �
� '

�  
�! "! "

# $

, 



Institute of Economic Forecasting

Romanian Journal of Economic Forecasting – 4/200996 

where: 
 �
1 1

,
nm

m i n m j
i j m

S x P x*�
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� � �( � . Hence, the likelihood system is 
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This system looks very complicated. After some calculation, from the first and the third 
equations we get 
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while from the first and second equations we obtain 
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We then suggest the following approach: replace the ML system with the optimization 
problem 
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with constraints (5.9), (5.10) and 1��� mm xx 	 . Such an optimization problem can be 

solved by metaheuristic approaches (we suggest, for instance, a Variable 
Neighborhood Search VNS algorithm, see Mladenovic and Hansen [5]). 
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6. Numerical examples – Model comparison 

Let us now illustrate the estimation procedure described in Section 2. In Teodorescu 
and Vernic [7], we conducted a statistical study on two data samples generated from 
the Exponential-Pareto model (1.2), i.e. from the first composite Exponential-Pareto 
model, as called in this paper. In the following, we consider again these two data 
samples and try to fit also the newly introduced second composite Exponential-Pareto 
model (4.1). Since the first composite model was already fitted to these data in [7], we 
also present the corresponding results under the name of EP I (i.e., first Exponential-
Pareto model), in order to compare the fitting of both models. The second composite 
Exponential-Pareto model is shortly denoted by EP II. 

We would expect that, taking into consideration the randomness of the generating 
process, the second composite model fits better that the first one, because it allows 
for more variability (having more parameters).  

The data analysis was realized using Excel and Mathcad software. In Mathcad, we 
solved equation (4.11) using the existing function Root that implements the secant 
method. 

6.1 First example 
The first data set was sampled from an Exponential-Pareto population (1.2) with 
parameter � = 5, and has only n = 100 values. From Teodorescu and Vernic [7], the 
estimated value of the first composite Exponential-Pareto parameter by a MLE 

algorithm (described in [7]) is 5.427~
�	 . 

Using the algorithm indicated for the second composite Exponential-Pareto model, we 
obtained the following estimated values: 

 .4647.0ˆ,2148.0ˆ,5092.6ˆ,3983.0ˆ;42 ����� rm �	�  

We also noticed that for a few values of m close to 42, the equation (4.11) has 
solution, but the corresponding solution of � does not satisfy the 

condition 1��� mm xx 	 . Also, as soon as we get some distance of the good value of 

m (in both directions), the equation (4.11) has no real solution. Hence, at least for 
these data, we found only one corresponding solution.  

In order to check the distribution fitting, we applied the �
2
 test using the empirical and 

theoretical frequencies given in Table 1 (we approximated the values at four decimals 
by rounding). The �

2
 distances, calculated as 

 

 �( +

+�
�

..
.... 2

2

freqtheorn
freqtheornfreqabssampled , 

for both Exponential-Pareto distributions are: 

First Exponential-Pareto model (from [7]):     11.0542 �IEPd  

Second Exponential-Pareto model: 12.4992 �IIEPd . 

The �
2 

test accepts both models as expected, but in this case, the first Exponential-
Pareto model gives the best fit, since it has the smallest �

2
 distance. 
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Table 1  

Grouped data and theoretical frequencies  

(column 2 results from the data sample, while columns 3 and 5 are calculated using 
the first and second Exponential-Pareto distribution functions, respectively) 

 

Classes 

Sample 
absolute 

freq., if  

EP I 
freq., 

ip  


 �2
i i

i

f np
np
�

 

EP II 
freq., 

ip̂  


 �
i

ii

pn
pnf

ˆ
ˆ 2�

 

[0, 1) 

[1, 4) 

[4, 8) 

[8, 15) 

[15, 30) 

[30, 100) 

[100, 300) 

[300, 500) 

[500, 7930) 

15 

18 

13 

10 

13 

9 

9 

6 

7 

0.1263 

0.2353 

0.1371 

0.0989 

0.0866 

0.1085 

0.0660 

0.0230 

0.0730 

0.4409 

1.3019 

0.0369 

0.0010 

2.1709 

0.3154 

0.8651 

5.9089 

0.0128 

0.1193 

0.2365 

0.1511 

0.1092 

0.0926 

0.1109 

0.0639 

0.0214 

0.0634 

0.7887 

1.3515 

0.2952 

0.0776 

1.5106 

0.3952 

1.0668 

6.9443 

0.0693 

� n = 100  11.0543  12.4993 

6.2 Second example 
The second data sample, of n = 500, was taken from the first Exponential-Pareto 
model (1.2) with � = 10. From Teodorescu and Vernic [7], the estimated value of the 

first composite Exponential-Pareto parameter by a MLE algorithm is 9.1069~
�	 . The 

estimation algorithm for the second composite Exponential-Pareto model gives the 
estimated values 

 .4192.0ˆ,1508.0ˆ,9042.8ˆ,3426.0ˆ;219 ����� rm �	�  

When running the algorithm, we noticed again that equation (4.11) together with 

condition 1��� mm xx 	  has a unique solution. The �
2
 test (see Table 2 for involved 

frequencies, approximated by rounding) gives the distances:  

First Exponential-Pareto model (from [7]):     24.19392 �IEPd  

Second Exponential-Pareto model: 7611.232 �IIEPd . 

The �
2 

test accepts both models as expected, but this time, the second Exponential-
Pareto model fits best, having the smallest �

2
 distance. 
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Table 2  

Grouped data and theoretical frequencies  

(the columns significance is the same as in Table 1) 

Classes 

Sample 
absolute 

freq., if  

EP I 
freq. 

ip  


 �2
i i

i

f np
np
� EP II freq. 

ip̂  


 �
i

ii

pn
pnf

ˆ
ˆ 2�

 

[0, 3) 
[3, 6) 
[6, 9) 

[9, 14) 
[14, 25) 
[25, 40) 

[40, 100) 
[100, 300) 
[300, 600) 

[600, 1500) 
[1500, 2500) 

[2500, 10000) 
[10000, 30000) 

[30000, 10
5
) 

[10
5
, 21806·10

3
) 

93 
78 
48 
47 
33 
34 
54 
24 
16 
14 
11 
15 
11 
11 
11 

0.2060 
0.1320 
0.0846 
0.0833 
0.0906 
0.0611 
0.0938 
0.0792 
0.0363 
0.0363 
0.0157 
0.0309 
0.0158 
0.0115 
0.0187 

0.9766 
2.1645 
0.7582 
0.6755 
3.3621 
0.3844 
1.0716 
6.1486 
0.2647 
0.9617 
1.2422 
0.0136 
1.2143 
4.6748 
0.2804 

0.2064 
0.1313 
0.0835 
0.0813 
0.0896 
0.0606 
0.0935 
0.0795 
0.0368 
0.0370 
0.0161 
0.0318 
0.0164 
0.0121 
0.0200 

1.0148 
2.3143 
0.9272 
0.9949 
3.1087 
0.4462 
1.1213 
6.2534 
0.3118 
1.0903 
1.0813 
0.0523 
0.9479 
3.9992 
0.0972 

� n = 500  24.1939  23.7611 

7. Conclusions 

In order to minimize financial losses associated with uncertain undesirable insurance 
events, actuaries must forecast losses using models of random events. Therefore, 
modeling the claim distribution is of great importance and researchers are trying to 
find new models that fit better to insurance data.  

In this paper, we proposed three composite Exponential-Pareto models as alternatives 
to the composite Lognormal-Pareto models studied by Scollnick [6]. These composite 
Exponential-Pareto models have attractive properties concerning the pdf, cdf, 
moments, likelihood function, etc. The second and the third models are more flexible 
than the first one because they have more parameters. On the other hand, as 
compared to the third model, the second one can be estimated easier, while its shape 
is similar. 

As future plans, considering the fact that in Section 2 we presented the general 
framework for creating composite models, we aim at building other composite models 
as well, such as Gamma-Pareto or Weibull-Pareto models. These models could be 
used in situations where other models underestimate the tail probability or, in other 
words, in situations where other models underestimate the premium to be paid in case 
of large losses. 
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