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A\ bstract

k
The Jarque-Bera normality test verifies if the residues u, =Y, — A4, — ZlA»"X }” of the
=
k
regression hyper-plane Y = A, + 2. A, X, are normal random variables.In this paper
i=1
we present some numerical and Monte Carlo methods to obtain normal residues if the
Jarque-Bera test fails. We consider the case when we know the pdf, the cdf and the
inverse of the cdf for the random variable Y (example: the exponential distribution),
the case when we know only the first two elements (example: Erlang distribution) and
the case when we know only the pdf (example: the gamma distribution). We consider
also the case when we do not know even an analytical formula for the pdf. In this case
we will estimate the pdf using some known kernels (see section 2).
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] . Introduction

Consider n points in u "', X" X® where X1 =(X§i),Xg),...,XE),Yi). The
regression hyper-plane used in (Ciuiu, 2007) to classify patterns has the equation
(Saporta, 1990)

k
H:Y=A,+>YAX, suchthat (1)

i=1

n
Zui2 is minimum, (1)
i=1
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where the residues u; have the formula
k .
=Y, A -YA XY (17)
j=1

For the computation of A; from (1) we have to solve the system (Saporta, 1990)

k —4m8 — -
XX XA =X Y, i=0k, @)
s

where X - X, =Z and X =1.
For the obtained estimators of A; using (2) and of the residues u; we have the following
hypotheses (Jula 2003, Voineagu et al., 2007):

1. The estimators of A; are linear.

2. The estimators of u; have the expectation 0 and the same variance
(homoscedasticity).

3. The estimators of u; are normal.
4. The random variables u; are independent.

From the above hypotheses and from Gauss-Markov theorem we obtain the following
properties (Jula 2003, Voineagu et al., 2007):

1. The estimators of A; are consistent.

2. The estimators of A; are unbiased.

3. The estimators of A; have the minimum variance.
4. The estimators of A; have the maximum likelihood.

In (Jula 2003) there is presented a test for the normality of u;. First we compute the
skewness:

S=— 5 (3)
()
and the kurtosis:
—
u
K= (_2)2 . (4)
u
The Jarque-Bera statistics is
2 K _ 2
JB=n S— + Q . (5)
6 24

For the normal distribution of u; we have S=0, K =3 and JB=0. JB has in fact
the distribution X; ()(2 with two degrees of freedom), hence we accept the null

hypothesis H, :S=0 and K =3 with the error ¢ if and only if JB < Xig.
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2 . Making normal residues

In this section we consider the case when the Jarque-Bera test fails. We have the
following proposition (Ciuiu, 2009).

Proposition 1. If Y, have a normal distribution then the residues u; have a normal
distribution.
Proof: In the system (2) we have used XTTX and % instead of X' X and X'Y as
in (Jula 2003) and (Voineagu et al., 2007).
In this proof we will use the last notations and we obtain

u=(r, -x(XX)"'x" v
Therefore each u; is a linear combination of Yj , and the proposition is proved.
Remark 1. From the proof of the proposition 1 we can see that the reverse of the

proposition is also true if X(XTX)_1 X" has no eigenvalue equal to .
In (Jula, 2003) two methods to treat the case when the residues are not normal are
presented. The first method consists in the identification of the distribution of u;, and
(i)

to apply a nonlinear regression. The second one is to transform Y, and/or Xj to
eliminate the non-normality.

We will use the second method and the proposition 1: we transform Y, to obtain
normal variables. Suppose the pdf of Y, is f, the cdf of Y, is F and the inverse of
the cdf is F~'. Denote also by (I)(X) (D(X) and @' (x) the pdf and the cdf of the

standard normal distribution, and respectively its inverse.
We make the substitution

Z,=0"<K(Y,). (6)
we compute the regression hyper-plane (1) with Z instead of Y, and we obtain the
regression

k
Y=F" oCD(AO +§AiXij. (7)

In the above formulae the main problem is to compute @ and ¢_], for which we
currently use the table of centils of the normal distribution. In (Ciuiu, 2009) we have
presented some methods to compute the inverse of a cdf or the cdf. But these
methods are only Monte Carlo ones and do not take into account the particularities of
the considered distribution.

When we do not know an analytical formula for F! (as in the normal case F=@)
we estimate F~' (X) by numerical method as follows. If we know some X, and y,

such that F_l(x0 ) =y, and the analytical formula for the pdf f we solve the Cauchy
problem
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: (8)
y(x0)=o

For the normal or the Student distribution we take x4 =0.5 and y, =0, but for

instance in the case of the gamma distribution we can not take x, = y, =0 because

we can start with f(y,)=0 (if a>1). In this case we take some y, #0 and

X = F(yo). The numerical method to solve the Cauchy problem (8) can be the Euler

method, the modified Euler method or the Runge-Kutta method (Paltineanu et al.,
1998).

By Monte Carlo Methods we generate 10000 random variables z,,...,Z;4000, W€

order these values in increasing order, and finally we take Ffl(x)z Z[10000] - FOr the

random variables involving normal variables (normal, Student, chi square) we can
generate the normal variables by the central limit method, by the Box-Muler method or
by the Butcher 1 method. For those involving the exponential variables we generate
the exponentials using the inverse method, the rejection method or the mixture
method (Vaduva, 2004). For the gamma distribution we use the rejection method or
the mixture-rejection method.

When we know only an analytical formula for the pdf f we compute

X
F(x)=F(0)+ f(t)dt 9)
0
by the rectangles method, the trapezes method or by the Simpson method.

In the case of gamma distribution for computing F(X) and Ffl(x) we need to

compute F(a) using the Gauss-Laguerre integration formula (Paltineanu et al.,
1998).

For Monte Carlo methods we generate 10000 random variables and F(x)=F*(x)
(the empiric cdf). For the gamma distribution we estimate

s
[te! e tdt
F(x)=2——— (10)
(x) @
where the above integral and F(a) are computed by generating 100 random

variables Y uniform on |_O,LJ, respectively Y ~ exp(l). The integral is estimated by
the average of % ye! e, and F(a) by the average of Y (Vaduva, 2004).

When we do not know even the pdf f we can estimate this pdf using some kernels
(Vaduva, 1968, Vaduva and Pascu, 2003). If we have the n-size sample X,,...,X

n
we estimate the pdf f inx by
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n
f(x)= — ZK(X Xij, (1)
n-b, i3 b,
where Kis the kernel and b, is the window bandwidth.

There are some kernel functions K = Kj used in literature:

(X)={1 if x| <1

0if [x|>1

K
Ka(x)= g5 - 575 5 ) - 12
K

—_
|
>x
~
DR
|
>
A~ —

~
»
o
>
~— ~—
I
= Alw
—n
|
>
N

2 \2
Ks(x) = %(1 —-X ) 7571,1(")
where Kj is the rectangular kernel, K, is the Gaussian kernel, K is the Epanechnikoff
kernel, Kj is the triangular kernel, K, is the Bartlett-Priestley-Epanechnikoff kernel and
Ks is the biquadratic kernel.
The Epanechnikoff kernel K, minimizes the MISE (Min Integrated Square Error)

MISE(h)= jMSEx(ﬁ)dx, (13)
where MSE (A) is the mean square error (Vaduva 1968, Vaduva and Pascu 2003):
- - 2
MSE, ()= E{(h(x) ~h(x)) } | (13)
The window bandwidth must be chosen such that Jimb, =0 and [imn-b, =
n—»o0 n—00

(Vaduva, 1968, Vaduva and Pascu, 2003). In our C++ program we take b, = % and

n
we obtain

n
f(x)=—— Y K[n(x-x,)). a1
Vn G
Therefore for computing the cdf we use the formula

F(x):%if((\/ﬁ(x—Xi)), (14)
i=1

where K is the cdf if the pdf is the kernel K. This formula is easy to use because,
except the Gaussian kernel, we know the analytical formula for K. In the case of
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Gaussian kernel we compute IZ(X) = @(X) by numerical or Monte Carlo methods as
we have mentioned above.

The numerical method to compute the inverse of the cdf is the bisection method in the
interval between the minimum of the values X; and the maximum of them. If the kernel

is defined on an interval (for instance [— 1,1] if the kernel is triangular) we subtract
1
2.
of the interval). In the case of the Gaussian kernel we do the same operations tacking
1=3 (the 3-0o rule).

1 . . . .
Py from the minimum value, and we add PPy to the maximum one (/ is the length

For the Monte Carlo method we use the same algorithm as for computing F'if we
know f, and the random variables are generated using the mixture method as
follows. First, we generate an integer uniform random variable Y € {1,...,n}. Next, we
generate a random variable X having the pdf K, and the desired generated value is
%+ Xy . For the Epanechnikoff, Bartlett-Priestley-Epanechnikoff and for the
biquadratic kernel we generate the random variable having the pdf K by the inverse
method (Vaduva, 2004), the computation of K™! (U) being computed in the same

way that it is computed F_I(X) in (Ciuiu, 2009): first we generate 1000 random

variables uniform on [— 1,1]. For each of the generated values y we take F™'(x) =¥

such that Y’(y)—U'y has its minimum in y (Y’(y) is a primitive of F(y)). For the
Epanechnikoff kernel we multiply the result in the case of Bartlett-Priestley-

Epanechnikoff kernel by \/g

Sometimes we have a shortcut for obtaining Z; in (6). For instance, if the distribution of
Y is log-normal we can do the substitution

Z,=nY,, 6)
and (7) becomes
Kk
i=1
The centil of the ;(2 distribution with two degrees of freedom is computed by the
formula )(22;8 =-2Ing, because the )(22 distribution is identical to the exp(%)
distribution (Ciuiu, 2005, Ciuiu, 2006).

3. Applications

Example 1. Consider the same monthly series as in the previous examples, but the
table is about the other goal credits. The results are in the following table (Statistical
Section of the NBR Monthly Bulletin):
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Xi 358.7 381.6 428.5 448 4974 5194 5711 6133 661.1

X 323.7 3041 307.8 3274 4235 402 478.8 549.2 604.4

Y 10 13.2 12.9 13.4 38.4 853 126.7 1746 226.3

Xi 710 7614 8403 901 1006.6 11211 1186.1 1248.8 1309.3

X 655.6 7674 901.3 980.5 1069.5 1231 1400.3 1571.5 1791.5

Y 281.7 3734 4648 5447 638.2 745 806.3 860.5 968.1

X1 | 1365.9 1402.3 1432.1 1437.8

Xz | 1916.1 2129.4 22135 1821.9

Y | 1000.1 1094.9 1270.7 1402

The regression plane is Y =-445.22095+0.92707X, +0.14184X,, the
skewness is 2.08023 and the kurtosis 8.31283 . Because the Jarque-Bera statistics
is 41.7409 and the y, centil of 0.05=5.99146 we have 41.7409 >5.99146,

hence we reject that the residues are normal.

Even we can compute also the integrals by the rectangles or by the trapezes method,
in this example we will refer only to the Simpson method, because is the most precise
(Paltineanu et al., 1998). For solving the Cauchy problem we refer only to Runge-Kuta
method, by the same reasons. For the Monte Carlo method we will refer only to the
Box-Muler method to generate the normal variables, because the method is the most
rapid (Vaduva, 2004).

First, we consider the distribution exp(1). We estimate 1 = L = 0.00197 . We are in

L
X
the case when we know analytical formulae for F and F.

If we generalize and we consider the distribution Erlang we estimate the parameters
n=1 and 4 =0.00197, hence it is the previous case. Therefore we obtain the same
results, the only exception being the last value of Y when we give values to X, and

X, , because we compute the inverse of the Erlang distribution by numerical or Monte
Carlo methods. The values obtained by the Monte Carlo Method are not the same,
because of the randomness.

More general, if Y has a Gamma distribution with we estimate the parameters by the
moments method and we obtain & =1.32812 and £ =381.64604. In fact from
these values we estimate the Erlang parameters choosing n =1 because it is the
closest integer numberto « .

The obtained regressions, the new skewness, the new kurtosis and the new Jarque-
Bera statistics for the above distributions of Y and for the unknown distribution using
the kernels presented in this paper are listed in table 1. The corresponding
applications of the regressions from table 1 are listed in table 2.
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For all the above case we accept the normality because the new Jarque-Bera
statistics is less than 5.99146. If we consider X;=1500.5 and X, =1675.67 we

obtain the following results.

Table 2
Application of the above-mentioned regressions
Distribution of Y, method and Normal value | Uniform value Initial value
possible kernel of Y of Y of Y

exp(0.00197), numerical methods 2.41305 0.99209 2453.09113
method
E,(0.00197), numerical methods 2.41305 0.99209 2452.80966
E, (0.00197), Monte Carlo method 2.40228 0.9922 2460.17346
'(1.32812, 381.64604), - 0.99624 3452.53477
numerical methods
F(1.32812, 381.64604), Monte 2.61345 0.9959 2455.24388
Carlo method
Unknown, rectangular kernel, 1.8362 0.96684 1401.95142
numerical methods
Unknown, rectangular kernel, Monte 1.8362 0.96684 1401.95672
Carlo method
Unknown, Gaussian kernel, 1.76291 0.96104 1401.83521
numerical methods
Unknown, Gaussian kernel, Monte 1.90436 0.973 1401.94525
Carlo method
Unknown, Epanechnikoff kernel, 1.83108 0.96646 1401.84323
numerical methods
Unknown, Epanechnikoff kernel, 1.8128 0.9651 1401.52327
Monte Carlo method
Unknown, triangular kernel, 1.83613 0.96683 1401.9434
numerical methods
Unknown, triangular kernel, Monte 1.81451 0.9669 1401.93914
Carlo method
Unknown, Bartlett-Priestley- 1.83611 0.96683 1401.93238
Epanechnikoff kernel, numerical
methods
Unknown, Bartlett-Priestley-Epane- 1.82547 0.9626 1401.7868
chnikoff kernel, Monte Carlo method
Unknown, biquadratic kernel, 1.83619 0.96683 1401.94541
numerical methods
Unknown, biquadratic kernel, Monte 1.81337 0.9648 1401.7868
Carlo method
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If we consider the random variable Y lognormal we obtain the normal variables Y :
(2.30259,2.58022,2.55723,2.59525,3.64806, 4.44617,4.84182,5.16250,5.42186,

5.64084,5.92265,6.14161,6.30024,6.45865,6.61338,6.69246,6.75751,6.87534,
6.90786,6.99842,7.14732,7.24566), and finally the regression
Y = exp(O.4192+O.00968X1 —0.00342X2). The new skewness is -0.26974, the

new kurtosis is 1.79648 , and the new Jarque-Bera statistics is 1.59454 . Because we
have 1.59454 <5.99146 we accept that the residues are normal. If X;=1500.5,

X, =1675.67 we obtain the normal variable Y =9.21196 and the initial variable
Y =10016.21484 .

4. Conclusions

When the Jarque-Bera test fails we have to transform the random variable Y in a
normal one using (6) and proposition 1. If we want to compute a new value of Y
when we know new values for the explanatory variables we do the inverse
transformation.

If we know analytical formulae for the pdf f, the cdf F and the inverse of the cdf F' we
use the formula (6). If some of the above elements are not known we compute them
by numerical or Monte Carlo methods, as in the second section.

The obtained normal variables Z are standard ones, except the lognormal case, when
we obtain the normal variables using logarithm. An open problem is to use some other
normal random variables (with other expectation and other variance).

When we go from exponential random variable to the Erlang one the estimation of the
parameters is done using the moments’ method to estimate the gamma distribution
parameters, and we choose n being the closest integer to « . After we choose n we

re-compute ﬁz% and finally /1:%. Even we obtain in example 3 n=1 the

computation of F' is done by numerical or Monte Carlo methods. The differences
between the regressions in the cases of the exponential and Erlang distributions
(opposite the numerical methods, when we obtain the same regressions) are due to
the fact that in this case we obtain as solution a random variable with the expectation
being the true solution. Even in the case of the same distribution we obtain different
(but closer) results in different moments of running the program.

We can see that when we go to the most general case of Gamma distribution we
obtain o =1.32812 and B =381.64604 , close to the exponential (Erlang with n =1)

distribution. The differences are first from the approximations of o =1+1.32812 and

B == 550557 = 507.61421 = 381.64604 . Secondly the differences come also from

the numerical computation of F(a), respectively from the use of the formula (10) and
from the simulations of Gamma random variables in the case of the final value of Y .
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If we consider in example 3 being Student with bias we estimate the number of
degrees of freedom n =2 and bias 506.87273. This is in fact the expectation of Y.
Because the k-moments of the Student distribution can be computed only for k <n,
we have theoretical skewness and kurtosis only for n > 5. For these values of n we

obtain the theoretical skewness 0 and the theoretical kurtosis 3+

6 .
decreasing
4

from 9 to 3. These values are quite different to those obtained in the example. Of
course, we take into account the sum form of cumulants for independent random
t
variables, and that L'tg for tzg or t=2. When we run the program we
n
B
i=1
obtain for instance by Monte Carlo method all the uniform random variables Y tacking
the values 0 or 1 (or very close to these values), and the obtained regression
coefficients have the very high absolute value. Therefore we obtain multicoliniarity. If

we consider Y distributed 32 we obtain n = 507 and the regression coefficients of
X, and X, being 0. This error comes from the fact that the expectation of Y is

506.87173 and the variance is 193445.96649 = 2 -506.87173 = 1013.74546 (for 2
distribution the variance is twice the expectation, and E(X)=n). For the case of

Snedecor-Fisher distribution we estimate the degrees of freedom by the moments’
method, and we obtain n, =0 and n, =2, which is an error. This comes from the fact

that the expectation of this distribution is equal to the variance of the Student
distribution with n, degrees of freedom, and n, is computed using the ratio %{%)

The non-normality in example 3, opposite the other two examples, can be explained
first by the high variance of the resulting variable Y : it starts from 10 (January 2007 )
to 1402 (October 2008). We can notice also that in the case of the household
credits (example 2) the values of Y are generally small in function of the credits
amounts in Euro (X,). This can be explained by the use of prices in Euro in

household market, and it can also be an explanation of the normality of residues.
The same situation is in example 1 with X, (credits in lei). In the last example we
have another situation: in January 2007 X, and X, had comparable values and the

resulting variable Y was small in function of the other two, and, even the explanatory
variables remain comparable until the end of the period, Y becomes also in October
2008 comparable to X, and X,. This can also explain the non-normality of Y .
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