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NUMERICAL AND MONTE CARLO 
METHODS TO MAKE NORMAL RESIDUES 
IN REGRESSION 

Daniel CIUIU�

Abstract 

The Jarque-Bera normality test verifies if the residues )(

1
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i
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j
ii XAAYu
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����  of the 

regression hyper-plane ii

k
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0 XAAY

�
���  are normal random variables.In this paper 

we present some numerical and Monte Carlo methods to obtain normal residues if the 
Jarque-Bera test fails. We consider the case when we know the pdf, the cdf and the 
inverse of the cdf for the random variable Y (example: the exponential distribution), 
the case when we know only the first two elements (example: Erlang distribution) and 
the case when we know only the pdf (example: the gamma distribution). We consider 
also the case when we do not know even an analytical formula for the pdf. In this case 
we will estimate the pdf using some known kernels (see section 2). 
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1. Introduction 

Consider n points in 1k�R  , � � � �n1 X,...,X , where � � � � � � � �� �i
i

k
i

2
i

1
i Y,X,...,X,XX � . The 

regression hyper-plane used in (Ciuiu, 2007) to classify patterns has the equation 
(Saporta, 1990) 

ii

k

1i
0 XAAY:H ���

�
 such that (1) 

2
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n
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u�

�
 is minimum, (1’) 
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where the residues ui have the formula  
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�
 (1”) 

For the computation of Ai from (1) we have to solve the system (Saporta, 1990) 

 k,0i,YXAXX ijji

k

0j
������

�
, (2) 

where ii0 XXX ��  and 1X2
0 � . 

For the obtained estimators of Ai using (2) and of the residues ui we have the following 
hypotheses (Jula 2003, Voineagu et al., 2007):  

1. The estimators of Ai are linear. 

2. The estimators of ui have the expectation 0 and the same variance 
(homoscedasticity). 

3. The estimators of ui are normal. 

4. The random variables ui are independent. 

From the above hypotheses and from Gauss-Markov theorem we obtain the following 
properties (Jula 2003, Voineagu et al., 2007): 

1. The estimators of Ai are consistent. 

2. The estimators of Ai are unbiased. 

3. The estimators of Ai have the minimum variance. 

4. The estimators of Ai have the maximum likelihood. 

In (Jula 2003) there is presented a test for the normality of ui. First we compute the 
skewness: 

 

� �2
3

2

3

u

uS �  (3) 

and the kurtosis: 

 � �22

4

u

uK � . (4) 

The Jarque-Bera statistics is  
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24
3K

6
SnJB

22

. (5) 

For the normal distribution of ui we have 0S � , 3K �  and 0JB � .  JB  has in fact 

the distribution 
2
2�  (

2�  with two degrees of freedom), hence we accept the null 

hypothesis  0S:H0 �  and 3K �  with the error �  if and only if 
2

;2JB ��� . 
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2. Making normal residues 

In this section we consider the case when the Jarque-Bera test fails. We have the 
following proposition (Ciuiu, 2009). 

Proposition 1. If iY  have a normal distribution then the residues iu  have a normal 

distribution. 

Proof: In the system (2) we have used n
XXT

 and n
YXT

 instead of XX T
 and YXT

 as 

in (Jula 2003) and (Voineagu et al., 2007). 
In this proof we will use the last notations and we obtain 

 � �� �YXXXXIu T1T
n

�
��  . 

Therefore each iu  is a linear combination of jY , and the proposition is proved. 

Remark 1. From the proof of the proposition 1 we can see that the reverse of the 

proposition is also true if � � T1T XXXX �
 has no eigenvalue equal to1. 

In (Jula, 2003) two methods to treat the case when the residues are not normal are 

presented. The first method consists in the identification of the distribution of iu , and 

to apply a nonlinear regression. The second one is to transform iY  and/or 
� �i
jX  to 

eliminate the non-normality. 

We will use the second method and the proposition 1: we transform iY  to obtain 

normal variables. Suppose the pdf of iY  is f , the cdf of iY  is F  and the inverse of 

the cdf is 
1F�
. Denote also by � �x� , � �x�  and � �x1��  the pdf and the cdf of the 

standard normal distribution, and respectively its inverse. 
We make the substitution 

 � �i
1

i YFZ ���� ,` (6) 

we compute the regression hyper-plane (1) with Z instead of Y, and we obtain the 
regression 

 	


��



� ����

�

�
ii

k

1i
0

1 XAAFY � . (7) 

In the above formulae the main problem is to compute �  and 
1�� , for which we 

currently use the table of centils of the normal distribution. In (Ciuiu, 2009) we have 
presented some methods to compute the inverse of a cdf or the cdf. But these 
methods are only Monte Carlo ones and do not take into account the particularities of 
the considered distribution. 

When we do not know an analytical formula for 
1F�

 (as in the normal case ��F ) 

we estimate � �xF 1�
 by numerical method as follows. If we know some 0x  and 0y  

such that  � � 00
1 yxF ��

 and the analytical formula for the pdf f  we solve the Cauchy 

problem 
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 � �
� ��

�
�

�
��

00

yf
1

yxy
y

. (8) 

For the normal or the Student distribution we take 500 .x �  and 00 �y , but for 

instance in the case of the gamma distribution we can not take 000 �� yx  because 

we can start with � � 00 �yf  (if 1�� ). In this case we take some 0y0 �  and 

� �00 yFx � . The numerical method to solve the Cauchy problem (8) can be the Euler 

method, the modified Euler method or the Runge-Kutta method (P�ltineanu et al., 
1998). 

By Monte Carlo Methods we generate 10000  random variables 1z ,..., 10000z , we 

order these values in increasing order, and finally we take � � � �x10000
1 zxF �
� � . For the 

random variables involving normal variables (normal, Student, chi square) we can 
generate the normal variables by the central limit method, by the Box-Muler method or 
by the Butcher 1 method. For those involving the exponential variables we generate 
the exponentials using the inverse method, the rejection method or the mixture 
method (V�duva, 2004). For the gamma distribution we use the rejection method or 
the mixture-rejection method. 

When we know only an analytical formula for the pdf f  we compute 

 � � � � � �dttf0FxF
x

0
���  (9) 

by the rectangles method, the trapezes method or by the Simpson method. 

In the case of gamma distribution for computing � �xF  and � �xF 1�
 we need to 

compute � ���  using the Gauss-Laguerre integration formula (P�ltineanu et al., 
1998). 

For Monte Carlo methods we generate 10000  random variables and � � � �xFxF ��  

(the empiric cdf). For the gamma distribution we estimate 

 � � � � ,
dtet

xF
t1

0

x

��

�
�

�� ��
�  (10) 

where the above integral and � ���  are computed by generating 100  random 

variables Y uniform on � ��x,0 , respectively � �1expY  . The integral is estimated by 

the average of 
Y1x eY �� ��

� , and � ���  by the average of Y  (V�duva, 2004). 

When we do not know even the pdf f  we can estimate this pdf using some kernels 

(V�duva, 1968, V�duva and Pascu, 2003). If we have the n-size sample n1 X,...,X  

we estimate the pdf f  in x  by 
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XxK
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1xf , (11) 

where K is the kernel and bn is the window bandwidth. 

There are some kernel functions jKK �  used in literature: 
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, (12) 

where K0 is the rectangular kernel, K1 is the Gaussian kernel, K2 is the Epanechnikoff 
kernel, K3 is the triangular kernel, K4 is the Bartlett-Priestley-Epanechnikoff kernel and 
K5 is the biquadratic kernel. 
The Epanechnikoff kernel K2 minimizes the MISE (Min Integrated Square Error) 

 � � � ��
$

$�

� dxĥMSEĥMISE x , (13) 

where � �ĥMSE x  is the mean square error (V�duva 1968, V�duva and Pascu 2003): 

 � � � �
%&
'

��
� ��

2
x )x(h)x(ĥEĥMSE . (13’) 

The window bandwidth must be chosen such that 0blim n
n

�
$(

 and $��
$(

n
n

bnlim  

(V�duva, 1968, V�duva and Pascu, 2003). In our C++ program we take 
n

1
nb �  and 

we obtain 

 � � � �� �i

n

1i
XxnK

n
1xf ��� �

�

. (11’) 

Therefore for computing the cdf we use the formula 

 � �� ��
�

��
n

1i
iXxnK~

n
1)x(F , (14) 

where K~  is the cdf if the pdf is the kernel K. This formula is easy to use because, 

except the Gaussian kernel, we know the analytical formula for K~ . In the case of 
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Gaussian kernel we compute )x()x(K~ ��  by numerical or Monte Carlo methods as 

we have mentioned above. 

The numerical method to compute the inverse of the cdf is the bisection method in the 
interval between the minimum of the values Xi and the maximum of them. If the kernel 

is defined on an interval (for instance � �1,1�  if the kernel is triangular) we subtract 

n2
l
�

 from the minimum value, and we add 
n2

l
�

 to the maximum one (l is the length 

of the interval). In the case of the Gaussian kernel we do the same operations tacking 

3l �  (the )�3  rule). 

For the Monte Carlo method we use the same algorithm as for computing 
1F�

 if we 

know f , and the random variables are generated using the mixture method as 

follows. First, we generate an integer uniform random variable * +n,...,1Y, . Next, we 

generate a random variable X having the pdf K, and the desired generated value is 

Yn
X X� . For the Epanechnikoff, Bartlett-Priestley-Epanechnikoff and for the 

biquadratic kernel we generate the random variable having the pdf K  by the inverse 

method (V�duva, 2004), the computation of � �UK 1�
 being computed in the same 

way that it is computed � �xF 1�
 in (Ciuiu, 2009): first we generate 1000  random 

variables uniform on � �1,1� . For each of the generated values y we take y~)x(F 1 ��
 

such that � � yUy ��-  has its minimum in y~  ( � �y-  is a primitive of � �yF ). For the 

Epanechnikoff kernel we multiply the result in the case of Bartlett-Priestley-

Epanechnikoff kernel by 5 . 

Sometimes we have a shortcut for obtaining Zi in (6). For instance, if the distribution of 
Y is log-normal we can do the substitution 

 ii YlnZ � , (6’) 

and (7) becomes 

 		



�
��



�
�� �

�
ii

k

1i
0 XAAexpY . (7’) 

The centil of the 
2�  distribution with two degrees of freedom is computed by the 

formula �� � ln22
;2 �� , because the 

2
2�  distribution is identical to the � �2

1exp  

distribution (Ciuiu, 2005, Ciuiu, 2006). 

3. Applications 

Example 1. Consider the same monthly series as in the previous examples, but the 
table is about the other goal credits. The results are in the following table (Statistical 
Section of the NBR Monthly Bulletin): 
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X1 358.7 381.6 428.5 448 497.4 519.4 571.1 613.3 661.1
X2 323.7 304.1 307.8 327.4 423.5 402 478.8 549.2 604.4
Y 10 13.2 12.9 13.4 38.4 85.3 126.7 174.6 226.3
    

X1 710 761.4 840.3 901 1006.6 1121.1 1186.1 1248.8 1309.3
X2 655.6 767.4 901.3 980.5 1069.5 1231 1400.3 1571.5 1791.5
Y 281.7 373.4 464.8 544.7 638.2 745 806.3 860.5 968.1
        

X1 1365.9 1402.3 1432.1 1437.8
X2 1916.1 2129.4 2213.5 1821.9
Y 1000.1 1094.9 1270.7 1402

 

The regression plane is 21 X14184.0X92707.022095.445Y ���� , the 

skewness is 08023.2  and the kurtosis 31283.8 . Because the Jarque-Bera statistics 

is 7409.41  and the 2�  centil of 99146.505.0 �  we have 99146.57409.41 � , 

hence we reject that the residues are normal. 

Even we can compute also the integrals by the rectangles or by the trapezes method, 
in this example we will refer only to the Simpson method, because is the most precise 
(P�ltineanu et al., 1998). For solving the Cauchy problem we refer only to Runge-Kuta 
method, by the same reasons. For the Monte Carlo method we will refer only to the 
Box-Muler method to generate the normal variables, because the method is the most 
rapid (V�duva, 2004). 

First, we consider the distribution � �.exp . We estimate 00197.01 ��
X

. . We are in 

the case when we know analytical formulae for F  and 
1F�

. 

If we generalize and we consider the distribution Erlang we estimate the parameters 

1n �  and 00197.0�. , hence it is the previous case. Therefore we obtain the same 

results, the only exception being the last value of Y  when we give values to 1X  and 

2X , because we compute the inverse of the Erlang distribution by numerical or Monte 

Carlo methods. The values obtained by the Monte Carlo Method are not the same, 
because of the randomness.  

More general, if Y has a Gamma distribution with we estimate the parameters by the 

moments method and we obtain 32812.1��  and 64604.381�� . In fact from 

these values we estimate the Erlang parameters choosing 1n �  because it is the 
closest integer number to � .  

The obtained regressions, the new skewness, the new kurtosis and the new Jarque-
Bera statistics for the above distributions of Y and for the unknown distribution using 
the kernels presented in this paper are listed in table 1. The corresponding 
applications of the regressions from table 1 are listed in table 2. 



12
6

T
a

b
le

 1
  

T
h

e
 n

e
w

 s
k

e
w

n
e

s
s

, 
th

e
 n

e
w

 k
u

rt
o

s
is

 a
n

d
 t

h
e

 n
e

w
 J

a
rq

u
e

-B
e

ra
 s

ta
ti

s
ti

c
s

 

D
is

tr
ib

u
ti
o

n
 o

f 
Y

, 
m

e
th

o
d
 a

n
d
 

p
o

s
s
ib

le
 k

e
rn

e
l 

R
e

g
re

s
s
io

n
 

S
k
e

w
n

e
s
s
 

K
u

rt
o

s
is

 
J
a

rq
u

e
-B

e
ra

�
�

00
19

7
.0

ex
p

, 
n

u
m

e
ri
c
a

l 

m
e

th
o

d
s
 

�
�

2
1

1
00

16
4

.0
00

57
5

.0
46

80
4

.3
X

X
F

Y
�

�
�

�
�

�
�

 
13

51
9

.0�
 

84
36

7
.1

29
26

8
.1

�
�

00
19

7
.0

ex
p

, 
M

o
n

te
 C

a
rl
o

 

m
e

th
o

d
 

�
�

2
1

1
00

16
5

.0
00

57
8

.0
49

33
8

.3
X

X
F

Y
�

�
�

�
�

�
�

 
12

94
9

.0�
88

15
8

.1
20

81
.1

�
�

00
19

7
.0

1E
, 
n

u
m

e
ri
c
a

l 

m
e

th
o

d
s
 

�
�

2
1

1
00

16
4

.0
00

57
5

.0
46

80
4

.3
X

X
F

Y
�

�
�

�
�

�
�

 
13

51
9

.0�
84

36
7

.1
29

26
8

.1

�
�

00
19

7
.0

1E
, 
M

o
n

te
 C

a
rl
o

 

m
e

th
o

d
 

�
�

2
1

1
X

00
16

3
.0

X
00

57
1

.0
44

67
5

.3
F

Y
�

�
�

�
�

��
15

20
7

.0�
87

74
.1

24.1

�
,

32
81

2
.1

�
�

64
60

4
.

38
1

, 

n
u

m
e

ri
c
a

l 
m

e
th

o
d

s
 

�
�

2
1

1
00

19
.0

00
66

4
.0

09
84

2
.4

X
X

F
Y

�
�

�
�

�
�

�
 

13
97

3
.0�

84
98

2
.1

28
42

7
.1

�
,

32
81

2
.1

�
�

64
60

4
.

38
1

, 
M

o
n
te

 

C
a

rl
o

 m
e

th
o

d
 

�
�

2
1

1
00

20
7

.0
00

67
9

.0
10

60
5

.4
X

X
F

Y
�

�
�

�
�

�
�

10
64

9
.0 �

90
27

2
.1

14
52

7
.1

U
n

k
n

o
w

n
, 
re

c
ta

n
g

u
la

r 
k
e

rn
e

l,
 

n
u

m
e

ri
c
a

l 
m

e
th

o
d

s
 

�
�

2
1

1
00

07
1

.0
00

36
8

.0
49

72
8

.2
X

X
F

Y
�

�
�

�
�

�
�

45
46

5
.0 �

43
82

3
.2

04
72

1
.1

U
n

k
n

o
w

n
, 
re

c
ta

n
g

u
la

r 
k
e

rn
e

l,
 

M
o

n
te

 C
a

rl
o

 m
e

th
o

d
 

�
�

2
1

1
00

07
3

.0
00

36
9

.0
48

81
3

.2
X

X
F

Y
�

�
�

�
�

�
�

59
87

1
.0�

66
44

9
.2

41
75

3
.1

U
n

k
n

o
w

n
, 
G

a
u

s
s
ia

n
 k

e
rn

e
l,
 

n
u

m
e

ri
c
a

l 
m

e
th

o
d

s
 

�
�

2
1

1
00

05
8

.0
00

34
2

.0
39

12
7

.2
X

X
F

Y
�

�
�

�
�

�
�

32
77

5
.0�

41
36

7
.2

70
90

1
.0

U
n

k
n

o
w

n
, 
G

a
u

s
s
ia

n
 k

e
rn

e
l,
 

M
o

n
te

 C
a

rl
o

 m
e

th
o

d
 

�
�

2
1

1
00

07
2

.0
00

36
8

.0
48

64
4

.2
X

X
F

Y
�

�
�

�
�

�
�

32
88

6
.0�

43
09

5
.2

69
33

9
.0

U
n

k
n

o
w

n
, 
E

p
a

n
e

c
h

n
ik

o
ff

 
k
e

rn
e

l,
 n

u
m

e
ri
c
a

l 
m

e
th

o
d

s
 

�
�

2
1

1
00

07
.0

00
36

6
.0

48
90

3
.2

X
X

F
Y

�
�

�
�

�
�

�
 

44
51

.0�
49

66
.2

95
87

2
.0

U
n

k
n

o
w

n
, 
E

p
a

n
e

c
h

n
ik

o
ff

 
k
e

rn
e

l,
 M

o
n

te
 C

a
rl
o

 m
e

th
o

d
 

�
�

2
1

1
00

06
9

.0
00

36
2

.0
46

62
1

.2
X

X
F

Y
�

�
�

�
�

�
�

48
83

7
.0�

43
34

.2
16

88
2

.1

U
n

k
n

o
w

n
, 
tr

ia
n

g
u

la
r 

k
e

rn
e

l,
 

n
u

m
e

ri
c
a

l 
m

e
th

o
d

s
 

�
�

2
1

1
00

07
1

.0
00

36
8

.0
49

71
9

.2
X

X
F

Y
�

�
�

�
�

�
�

45
46

7
.0�

43
84

8
.2

04
70

3
.1



12
7

D
is

tr
ib

u
ti
o

n
 o

f 
Y

, 
m

e
th

o
d
 a

n
d
 

p
o

s
s
ib

le
 k

e
rn

e
l 

R
e

g
re

s
s
io

n
 

S
k
e

w
n

e
s
s
 

K
u

rt
o

s
is

 
J
a

rq
u

e
-B

e
ra

U
n

k
n

o
w

n
, 
tr

ia
n

g
u

la
r 

k
e

rn
e

l,
 

M
o

n
te

 C
a

rl
o

 m
e

th
o

d
 

�
�

2
1

1
00

06
8

.0
00

36
2

.0
47

61
5

.2
X

X
F

Y
�

�
�

�
�

�
�

42
24

6
.0�

48
79

9
.2

89
47

2
.0

U
n
k
n
o
w

n
, 
B

a
rt

le
tt
-P

ri
e
s
tl
e
y
-

E
p

a
n

e
c
h

n
ik

o
ff

 k
e

rn
e

l,
 

n
u

m
e

ri
c
a

l 
m

e
th

o
d

s
 

�
�

2
1

1
00

07
1

.0
00

36
8

.0
49

71
5

.2
X

X
F

Y
�

�
�

�
�

�
�

45
46

8
.0 �

43
86

.2
04

69
4

.1

U
n
k
n
o
w

n
, 
B

a
rt

le
tt
-P

ri
e
s
tl
e
y
-

E
p

a
n

e
c
h

n
ik

o
ff

 k
e

rn
e

l,
 M

o
n

te
 

C
a

rl
o

 m
e

th
o

d
 

�
�

2
1

1
00

06
9

.0
00

36
4

.0
48

04
5

.2
X

X
F

Y
�

�
�

�
�

�
�

51
07

1
.0 �

45
50

5
.2

22
85

6
.1

U
n

k
n

o
w

n
, 
b

iq
u

a
d

ra
ti
c
 k

e
rn

e
l,
 

n
u

m
e

ri
c
a

l 
m

e
th

o
d

s
 

�
�

2
1

1
00

07
1

.0
00

36
8

.0
49

72
6

.2
X

X
F

Y
�

�
�

�
�

�
�

45
46

5
.0�

43
82

7
.2

04
71

8
.1

U
n

k
n

o
w

n
, 
b

iq
u

a
d

ra
ti
c
 k

e
rn

e
l,
 

M
o

n
te

 C
a

rl
o

 m
e

th
o

d
 

�
�

2
1

1
00

06
7

.0
00

36
0

.0
46

17
4

.2
X

X
F

Y
�

�
�

�
�

�
�

48
19

.0�
42

03
6

.2
15

94
9

.1



Institute of Economic Forecasting

Romanian Journal of Economic Forecasting – 4/2009128 

For all the above case we accept the normality because the new Jarque-Bera 
statistics is less than 5.99146. If we consider 515001 .X �  and 6716752 .X �  we 

obtain the following results. 

Table 2  

Application of the above-mentioned regressions 

Distribution of Y, method and 
possible kernel 

Normal value 
of Y 

Uniform value 
of Y 

Initial value  
of Y 

� �00197.0exp , numerical methods 413052.  992090.  091132453.  

� �00197.0exp , Monte Carlo 

method 

423542.  99260.  857132486.  

� �00197.01E , numerical methods 413052.  992090.  809662452.  

� �00197.01E , Monte Carlo method 402282.  99220.  173462460.  

� ,32812.1� �64604.381 , 

numerical methods 

67312.2
 996240.  534773452.  

� ,32812.1� �64604.381 , Monte 

Carlo method 

613452.  99590.  243882455.  

Unknown, rectangular kernel, 
numerical methods 

83621.  966840.  951421401.  

Unknown, rectangular kernel, Monte 
Carlo method 

83621.  966840.  956721401.  

Unknown, Gaussian kernel, 
numerical methods 

762911.  961040.  835211401.  

Unknown, Gaussian kernel, Monte 
Carlo method 

904361.  9730.  945251401.  

Unknown, Epanechnikoff kernel, 
numerical methods 

831081.  966460.  843231401.  

Unknown, Epanechnikoff kernel, 
Monte Carlo method 

81281.  96510.  523271401.  

Unknown, triangular kernel, 
numerical methods 

836131.  966830.  94341401.  

Unknown, triangular kernel, Monte 
Carlo method 

814511.  96690.  939141401.  

Unknown, Bartlett-Priestley-
Epanechnikoff kernel, numerical 
methods 

836111.  966830.  932381401.  

Unknown, Bartlett-Priestley-Epane-
chnikoff kernel, Monte Carlo method

825471.  96260.  78681401.  

Unknown, biquadratic kernel, 
numerical methods 

836191.  966830.  945411401.  

Unknown, biquadratic kernel, Monte 
Carlo method 

813371.  96480.  78681401.  
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If we consider the random variable Y  lognormal we obtain the normal variables Y : 
� ,.,.,.,.,.,.,.,.,. 421865162505841824446174648063595252557232580222302592  

,.,.,.,.,.,.,.,.,. 875346757516692466613386458656300246141616922655640845  

�245667147327998426907866 .,.,.,. , and finally the regression 

� �21 00342000968041920 X.X..expY ��� . The new skewness is 269740.� , the 

new kurtosis is 796481. , and the new Jarque-Bera statistics is  594541. . Because we 

have 991465594541 .. �  we accept that the residues are normal. If 515001 .X � , 

6716752 .X �  we obtain the normal variable 211969.Y �  and the initial variable 

2148410016.Y � . 

4. Conclusions 

When the Jarque-Bera test fails we have to transform the random variable Y  in a 

normal one using (6) and proposition 1. If we want to compute a new value of Y  
when we know new values for the explanatory variables we do the inverse 
transformation. 

If we know analytical formulae for the pdf f , the cdf F and the inverse of the cdf F-1
 we 

use the formula (6). If some of the above elements are not known we compute them 
by numerical or Monte Carlo methods, as in the second section. 

The obtained normal variables Z are standard ones, except the lognormal case, when 
we obtain the normal variables using logarithm. An open problem is to use some other 
normal random variables (with other expectation and other variance). 

When we go from exponential random variable to the Erlang one the estimation of the 
parameters is done using the moments’ method to estimate the gamma distribution 
parameters, and we choose n  being the closest integer to � . After we choose n  we 

re-compute n
X�� , and finally �. 1� . Even we obtain in example 3 1n �  the 

computation of 
1F�
 is done by numerical or Monte Carlo methods. The differences 

between the regressions in the cases of the exponential and Erlang distributions 
(opposite the numerical methods, when we obtain the same regressions) are due to 
the fact that in this case we obtain as solution a random variable with the expectation 
being the true solution. Even in the case of the same distribution we obtain different 
(but closer) results in different moments of running the program. 

We can see that when we go to the most general case of Gamma distribution we 

obtain 328121.��  and 64604381.�� , close to the exponential (Erlang with 1n � ) 

distribution. The differences are first from the approximations of 3281211 .���  and 

6460438161421507
001970

11 ... ����� . . Secondly the differences come also from 

the numerical computation of � ��� , respectively from the use of the formula (10) and 

from the simulations of Gamma random variables in the case of the final value of Y . 
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If we consider in example 3 being Student with bias we estimate the number of 
degrees of freedom 2�n  and bias 87273506. . This is in fact the expectation of Y . 

Because the k-moments of the Student distribution can be computed only for nk � , 
we have theoretical skewness and kurtosis only for 5/n . For these values of  n we 

obtain the theoretical skewness 0 and the theoretical kurtosis 
4

6
3

�
�

n
 decreasing 

from 9 to 3. These values are quite different to those obtained in the example. Of 
course, we take into account the sum form of cumulants for independent random 

variables, and that 1

1

1 "

		



�
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2

3
�t  or 2�t . When we run the program we 

obtain for instance by Monte Carlo method all the uniform random variables Y  tacking 
the values 0 or 1 (or very close to these values), and the obtained regression 
coefficients have the very high absolute value. Therefore we obtain multicoliniarity. If 

we consider Y  distributed 2
n�  we obtain n = 507 and the regression coefficients of 

1X  and 2X  being 0. This error comes from the fact that the expectation of Y  is 

87173506.  and the variance is 74546101387173506296649193445 ... ���  (for 2�  

distribution the variance is twice the expectation, and � � nXE � ). For the case of 

Snedecor-Fisher distribution we estimate the degrees of freedom by the moments’ 
method, and we obtain 01 �n  and 22 �n , which is an error. This comes from the fact 

that the expectation of this distribution is equal to the variance of the Student 

distribution with 2n  degrees of freedom, and 1n  is computed using the ratio 
� �
� �XE
XE 2

. 

The non-normality in example 3, opposite the other two examples, can be explained 

first by the high variance of the resulting variable Y : it starts from 10  (January 2007 ) 

to 1402  (October  2008 ). We can notice also that in the case of the household 

credits (example 2) the values of Y  are generally small in function of the credits 
amounts in Euro � �2X . This can be explained by the use of prices in Euro in 

household market, and it can also be an explanation of the normality of residues. 

The same situation is in example 1 with 1X  (credits in lei). In the last example we 

have another situation: in January 2007  1X  and 2X  had comparable values and the 

resulting variable Y  was small in function of the other two, and, even the explanatory 
variables remain comparable until the end of the period, Y  becomes also in October 
2008  comparable to 1X  and 2X . This can also explain the non-normality of Y . 
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