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MODELING STOCK INDEX RETURNS 

USING SEMI-PARAMETRIC APPROACH 
WITH MULTIPLICATIVE ADJUSTMENT 

Kaiping WANG1 

Abstract 

In this paper we utilize a semi-parametric approach with multiplicative adjustment to 
estimate the distributions for a series of stock index returns including developed and 
emerging economies.  
The semi-parametric approach has potential improvements over both pure parametric 
and non-parametric estimators. Firstly, in the case where the parametric model is 
misspecified so that the parametric estimator for the true density is usually 
inconsistent, the semi-parametric estimator can still be consistent with the true 
density. Secondly, in comparison with the kernel density estimator, the semi-
parametric estimator can result in bias reduction as long as the parametric model can 
capture some roughness feature of the true density function, whereas the two 
estimators have the same asymptotic variance.  
The simulation results show that the proposed approach has good finite sample 
performance compared with non-parametric approach. We  apply the  approach to the 
empirical data of a series of stock index returns and find support for it in each of the 
markets under consideration. 
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I. Introduction 

The change of stock returns is of particular interest to investors, analysts and financial 
regulators, which can significantly affect the performance of an investment over a long 
time period and even threaten the stability of the financial system. For example, the 
global financial crisis began in 2007 when the subprime mortgage crisis originated in 
the US spread rapidly to most financial markets around the globe and has resulted in 
global stock markets experiecing substantial fall in asset prices and entered a period 
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of high volatility (Chevapatrakul and Tee, 2014). Mishkin (2011) discussed both the 
crisis and global recession. 
A popular assumption usually made is that financial logarithmic returns follow a normal 
distribution. However, this assumption is not supported by empirical evidence. The 
existing literatures showed that distribution of stock returns exhibits negative skewess 
and heavy tails (Fama, 1965; Gray and French, 1990; Bekaert et al., 1998). This 
property is very important in risk management. For example, a good description of the 
returns series is important for risk measures like VaR and ES (Expected Shortfall).  
To explain heavy tail and asymmetry phenomena, many authors used parametric 
distributions such as skewed-t distribution (Hansen, 1994), skewed generalized t 
distribution (Theodossiou, 1998), skewed exponential power distribution (Fernandez, 
et al., 1995; Ayebo and Kozubowski, 2004; Komunjer, 2007), generalized hyperbolic 
distribution (Necula, 2009), two-parameter Weibull distribution (Gebizlioglu et al., 
2011) and so on. Instead of the parametric models, Butler and Schachter (1998) 
employed a non-parametric kernel quantile estimators of the pdf of the returns on a 
portfolio.  
The parametric approach is attractive for a number of reasons. First of all, the 
parameters of a model often have important interpretations to a subject matter 
specialist. Another attractive aspect of parametric approach is its statistical simplicity, 
i.e., estimation of the entire function boils down to inferring a few parameter values. 
The third reason is that it can provide an excellent estimator if the class of parametric 
functions happens to be correctly chosen. However, it is model dependent and is 
subject to errors of model misspecification.  
The non-parametric approach, has in general a slower rate of convergence, but has 
attractive flexibility that can be used without the structural assumption that underlying 
structure is controlled by a finite dimensional parameter. So, the non-parametric 
estimator has the advantage of being free of distributional assumptions on returns, 
while being able to capture fat-tail and asymmetry distribution of returns automatically.  
In recent years, there have been increasing interests and activities in the general area 
of semi-parametric approaches. A semi-parametric approach with multiplicative 
adjustment has been used to improve the density estimation. The approach can be 
viewed as semi-parametric in such a case that it combines parametric and non-
parametric methods. In the proposed approach, a parametric estimator is used as a 
crude guess of true density function. This initial parametric approximation is adjusted 
via multiplication by a non-parametric factor. It was shown that the semi-parametric 
estimator has the very same asymptotic variance as the standard non-parametric 
method, while there is substantial room for reducing the bias if the chosen parametric 
initial function belongs to a wide neighborhood around the true density function. Hjort 
and Glad (1995) proposed a density estimator based on the naive estimator of the 
non-parametric factor. Hjort and Jones (1996) suggested and investigated two 
versions of multiplicative density estimator. Naito (2004) proposed a local L2-fitting 
criterion with index α. Wang and Lin (2008) showed that the multiplicative adjustment 
method can be applied to density estimation for time series. Wang (2012) utilized this 
method to propose an alternative way to implement the historical simulation approach 
to VaR estimation. Similar ideas has been used to improve the regression estimation 
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(Glad, 1998, Wang et al., 2009), time series conditional variance estimation (Mishra et 
al., 2010) and quantile regression (Ghouch and Genton, 2009). 
In this paper we utilize the above semi-parametric approach to estimate the 
distributions for a series of stock index returns including developed and emerging 
economies. We presents a Monte Carlo simulation for different distribution shapes and 
the results show that the proposed approach has good finite sample performance 
compared with non-parametric approach. We then apply the  approach to the 
empirical data of a series of stock index returns and find support for it in each of the 
markets under consideration. 
The paper is organized as follows. In the next section we introduce the semi-
parametric approach with multiplicative adjustment and present its advantages over 
parametric and non-parametric ones. Section III presents a Monte Carlo simulation to 
examine the finite sample performance of the proposed approach. In section IV we  
present the empirical results for a series of stock index returns and perform goodness-
of-fit tests. Section V includes conclusions. 

II. The Semi-Parametric Approach with 
Multiplicative Adjustment 

Let { }T
ttX 1=  be a realization from a stationary process with marginal density f  and 

distribution function )(⋅F . In the proposed approach, a parametric density estimator is 
utilized, but it is seen as a crude guess of the true density f . This initial parametric 
approximation is adjusted via multiplication by an adjustment factor ξ  which can be 
determined by non-parametric approaches using some criteria. 
Suppose ),( θxg  be a given parametric family of densities, where the possibly 

multidimensional parameter )',( 1 pθθθ L=  belongs to some open and connected 

region in p -space. Let the parametric-start estimate be )ˆ,( θxg , where θ̂  is an 

estimator of the least false value 0θ  according to a certain distance measure between 

f  and ),( θ⋅g . For concreteness we here chose θ̂  as the maximum likelihood 

estimator and define 0θ  as the minimizer of the kullback-Leibler distance on θ .  

The next problem is the determination of the adjustment factor ξ . Hjort and Glad 
(1995) proposed a density estimator based on the naive estimator of ξ . Hjort and 
Jones (1996) suggested and investigated two versions of multiplicative density 
estimator. Naito (2004) proposed a local 2L -fitting criterion with index α , including 
the above estimators proposed by Hjort and Glad (1995) and  Hjort and Jones (1996) 
as special cases. However, the focus of all of the above mentioned papers is in i.i.d. 
observations. Wang and Lin (2008) showed that the multiplicative adjustment method 
can be extended to density estimation for time series.  
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II.1 The Local 2L -fitting Criterion with Index α  

Let )()( 11 zhKhzKh
−−=  and )(zK  is a kernel function, which is taken to be a 

symmetric probability density, and h  is the bandwidth. Following Naito (2004) and 
Wang and Lin (2008), the adjustment factor ξ  is determined by minimization of the 
empirical version of the function 

 ∫
−

−= du
ug

ugufxuKxQ h αθ
ξθαξ

)ˆ,(
])ˆ,()([)()|,(

2

 [II.1] 

for a fixed target point x , where α  is a real number called the index. This method is 
called the local 2L -fitting criterion. After omitting the irrelevant term, the empirical 
version of [II.1] can be expressed as 
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Using this ξ̂ , a class of semi-parametric density estimators is obtained by 
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When =α 0, 1 and 2, we have the following relationships: 

 )(ˆ)(0̂ xfxf HJ= , )(ˆ)(1̂ xfxf LL= , )(ˆ)(2̂ xfxf HG= , 

where )(ˆ xfHJ  and )(ˆ xfLL  are two estimators proposed by Hjort and Jones (1996), 

and )(ˆ xfHG  is the density estimator proposed by Hjort and Glad (1995). 

The corresponding estimate for the distribution function )(⋅F  is 
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II.2 Advantages of the Semi-Parametric Approach with Multiplicative 
Adjustment 

According to Wang and Lin (2008), under some mixing and smoothness conditions, let 
),()( 00 θxgxg = , with 0θ be the best parametric approximation to f , the asymptotic 

bias and variance of )(ˆ xfα  are respectively, 
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Where ∫= dzzKzK )(22σ  and ∫= dzzKKR 2)()( . 

Then the asymptotic MISE (AMISE) of )(ˆ xfα  is 
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The kernel density estimator )(~ xf  of f  is defined by 

 ∑
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and its AMISE is (Fan and Yao, 2003, p.206) 
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Where [ ]∫=ℜ dxxff 2)(''}~{ . 

Then the kernel estimator )(~ xFn  of distribution function is  
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Several properties of )(~ xFn  have been investigated. Moreover, it has been shown by 

several authors that the asymptotic performance of )(~ xFn  is better than that of the 
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empirical distribution function )(xFn . For example, Reiss (1981) proved that the 

relative deficiency of the E.D.F. )(xFn  with respect to )(~ xFn  quickly tends to infinity 
as the sample size increases. Swanepoel (1988) derived optimal smoothing 
parameter in the sense of minimizing the mean integrated squared error (MISE) and 
asserted that the kernel-type estimator )(~ xFn  is asymptotically more efficient than the 

E.D.F. )(xFn . 

From [II.3] and [II.4], the new semi-parametric approach is better than the traditional 
kernel estimator in all cases where }ˆ{ αfℜ  is smaller in size than }~{ fℜ . 

Furthermore, if f  is in the model }),({ Θ∈θθ ：xg , that is, )(f)(0 xxg = , then the 

)( 2hO  term of the bias vanishes and, consequently, the new estimators achieve a 

parametric convergence rate. Naito (2004) compared }ˆ{ αfℜ  with }~{ fℜ  for the case 

in which f  belongs to a class of normal mixture densities used in Marron and Wand 
(1992). The class of normal mixture densities is a very broad one because any density 
can be approximated arbitrarily closely in various senses by a normal mixture (Marron 
and Wand, 1992). Naito confirmed that αf̂  is better than, or at least competitive with, 

f~  for all cases in that comparison. 

III Simulation Study 

Finite sample performance of the proposed distribution estimators was investigated by 
Monte Carlo simulation. The distribution functions studied in this section cover three 
different density shapes. The Gaussian, skewed unimodal and kurtotic unimodal 
distributions were considered as the distribution function (see Marron and Wand 
(1992) for the definitions about the last three densities) because they typify some 
different challenges to distribution estimation. In each model, 500 samples of size 
=n 100, 500, 1000 are generated respectively. The MISE ),( hα  value for a given 

combination of ),( hα  was estimated by the average of these 500 realizations of 
ISE ),( hα . To obtain a precise approximation to the minimum MISE, a grid search of 
the combination ),( hα  was implemented. The Gaussian kernel was used throughout. 

The estimators compared in this study were )(~ xFn  and )(ˆ xFα  for =α 0, 1 and 2. 

We utilized )()ˆ,( 1ˆ µφθ
σ

−= − xxg  for all cases, i.e., we started with a Gaussian 

approximation, where )ˆ,( 2σµ  is the MLE of ),( 2σµ . 
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Values of min108 × MISE are tabulated in Table 1 - Table 3, where the minimum is 
taken over h . Also tabulated in parentheses are 610 times the standard error (SE) for 
each case. 

Table 1  
The Value of Estimated 810)(min ×hMISEh  for Samples of Size 100=n . 

 Gaussian Skewed unimodal Kurtotic unimodal 

)(~ xFn  106.66 
(24) 

149.77 
(33) 

78.43 
(18) 

)(0̂ xF  114.32 
(25) 

149.77 
(33) 

77.89 
(17) 

)(1̂ xF  48.75 
(11) 

148.58 
(33) 

78.78 
(17) 

)(2̂ xF  21.58 
(5) 

147.99 
(33) 

79.71 
(18) 

 
Table 2  

The Value of Estimated 810)(min ×hMISEh  for Samples of Size 500=n . 
 Gaussian Skewed unimodal Kurtotic unimodal 

)(~ xFn  28.41 
(6) 

50.84 
(11) 

44.32 
(10) 

)(0̂ xF  21.12 
(5) 

49.81 
(11) 

44.09 
(10) 

)(1̂ xF  20.41 
(5) 

49.07 
(11) 

44.20 
(10) 

)(2̂ xF  2.06 
(0.5) 

48.50 
(11) 

44.30 
(10) 

 

Table 3  

The Value of Estimated 810)(min ×hMISEh  for Samples of Size 1000=n . 
 #1 

Gaussian 
#2 Skewed 
unimodal 

#3 Kurtotic 
unimodal 

)(~ xFn  2.72 
(6) 

59.30 
(13) 

52.11 
(12) 

)(0̂ xF  1.83 
(0.4) 

57.71 
(13) 

51.59 
(12) 

)(1̂ xF  1.44 
(0.3) 

58.15 
(13) 

51.83 
(12) 

)(2̂ xF  1.16 
(0.3) 

58.60 
(13) 

52.07 
(12) 

 

Firstly, case 1 is that f  is in the parametric model so that the )( 2hO  term of the bias 

of )(ˆ xFα  vanishes, as mentioned in section II. For #1 all of )(ˆ xFα  (except )(0̂ xF  in 
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Table 1) are significantly better than )(~ xFn . Secondly, for cases #2, all  )(ˆ xFα  are 

better than )(~ xFn  and the best α  is 2 ( =n 100 and 500) or 0 ( =n 1000). Finally, for 

case #3, the estimator )(0̂ xF  is the best.  

The simulation results show that the proposed approach has good finite sample 
performance. 

IV. Empirical Results 

IV.1 Data and Tests of Normality 
The data under consideration consists of daily returns for four stock indexes: USA 
(S&P 500), Japan (Nikkei 225), Germany (DAX), China (SSEC) in two different 
periods: a pre-crisis period (for the period January 1998 to June 2006) and a post-
crisis period (for the period July 2006 to June 2011). Returns are defined  as the first 
difference of the natural logarithm of each index, i.e.,  

 )]log()[log(100 1−−⋅= ttt IIR , 

where: tR  and tI  are the return and the index in day t , respectively. 

The summary information about the empirical distributions of stock returns, together 
with Jarque-Bera nomality test statistics are presented in Table 4. 

Table 4 
The Distributional Characteristics of the Returns 

Index Skewness Kurtosis JB statistic 
pre-crisis 0.0021 5.4994 555.4701 S&P 500 
post-crisis -0.2451 11.4479 3.7624e+003 
pre-crisis -0.0349 4.5982 222.5390 Nikkei 225 
post-crisis -0.5415 11.3400 3.6189e+003 
pre-crisis -0.1062 5.1807 431.2442 DAX post-crisis 0.1902 10.5722 3.0418e+003 
pre-crisis 0.4444 8.4062 2.5540e+003 SSEC post-crisis -0.4129 5.3389 311.9625 

 
Table 4 shows that all the distributions are skewed and leptokurtic, thus exhibiting 
heavy tails (and high peaks), and Jarque-Bera test rejects the null hypothesis that the 
returns are normally distributed. 

IV.2 Estimation Results 
For the semi-parametric approach, we utilize normal distribution as an initial 
parametric approximation of the true density, i.e.,  

 )ˆ()ˆ,( ˆ µφθ σ −= xxg , 
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where: )ˆ,ˆ( 2σµ  is the MLE of ),( 2σµ . For the adjustment factor, the Gaussian kernel 
was used, the index α was selected by data-based method (Naito, 2004), and the 
bandwidth is choosed by the unbiased least squares cross-validation (Hjort and Glad, 
1995).  
In order to compare the relative fit of the semi-parametric approach and the normal fit, 
we performed goodness-of–fit tests. We divide the range of returns into 20 equal, non-
overlapping intervals contained in [-10%, 10%]. The results of these tests are shown in 
Table 5. The goodness-of-fit test follows a chi-square distribution with 

1−− kp degree of freedom, where p is the number of intervals and k is the number 
of parameters estimated for each distribution. 
The results show that, the normal distribution provides bad fit, it is cleared rejected in 
all markets. The semi-parametric approach, on the other hand, cannot be rejected in 
any market. 

Table 5 
Goodness-of-fit Results 

Index Normal Semi-parametric 
pre-crisis 3.9522e+005 8.3471 

S&P 500 
post-crisis 1.2844e+006 12.5154 
pre-crisis 1.4042e+003 6.4118 

Nikkei 225 
post-crisis 4.6355e+003 9.2260 
pre-crisis 535.2262 5.6983 

DAX 
post-crisis 2.3901e+005 9.5908 
pre-crisis 5.9828e+006 10.2417 

SSEC 
post-crisis 676.9179 8.4619 

V. Concluding Remarks 

In this paper, we proposed a semi-parametric approach with multiplicative adjustment 
to estimate the distributions of stock index returns. 
The semi-parametric approach presents several potential improvements over both 
pure parametric and non-parametric estimators. Firstly, in the case where the 
parametric model is misspecified so that the parametric estimator for the true 
distribution is usually inconsistent, our semi-parametric estimator can still be 
consistent with the distribution. Secondly, in comparison with the nonparametric kernel 
estimator, our estimator can result in bias reduction as long as the parametric model 
can capture some roughness feature of the true distribution function, whereas the two 
estimators have the same asymptotic variance.  
The simulation and empirical results show that the proposed approach has good 
performance. 
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