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Abstract 
The purpose of this study is to evaluate the forecasting ability of GARCH-type models in 
estimating the Value-at-Risk (VaR) by introducing a new four-parameter distribution, called 
Exponentiated Odd Log-Logistic Normal distribution. The statistical properties of new heavy-
tailed distribution are investigated and a simulation study is performed to assess the 
maximum likelihood estimations of introduced distribution. Then, the VaR is forecasted by 
using mean and volatility forecasts and quantile estimation of introduced distribution. Daily 
VaR forecasting ability of proposed two-stage model is compared with the GARCH models 
specified under heavy-tailed distributions by means of two backtesting methods. Empirical 
findings show that proposed two-stage model outperforms to well-known distributions such 
as normal, Student’s-t, generalized error, and skewed generalized error distributions at high 
quantiles.  
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I. Introduction 
The Value at Risk (VaR) is one of the most popular approaches to measure market risk. The 
VaR, in its most general form, measures the potential loss in value of a risky asset or portfolio 
over a defined period for a given confidence interval. From a statistical point of view, the 
VaR entails the estimation of quantile of the distribution of returns. Despite its importance 
and simplicity, there is no universally accepted method to compute the VaR of a portfolio, 
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while different models may lead to significantly different risk measures (Kuester et al., 2006; 
McMillian and Kambouroudis, 2009). A main concern in the estimation of market risk with 
the VaR method is the choice of the appropriate model, since a misspecified model leads to 
inaccurate risk estimation.  
While calculating the VaR using one of the statistical models, many assumptions are 
necessary. One of them is that the asset returns are identically, independent and normal 
distributed. However, in reality, the financial data is not normal distributed and exhibits 
properties of skewness or kurtosis. Therefore, modeling VaR with normality assumption, 
without considering the big and unexpected losses that stated in tail of the distribution, 
causes underestimated or overestimated VaR forecasts. Because of the fact that normal 
distribution fails to modeling the tail of the financial return series, many researchers have 
used skewed and heavy-tailed distributions in forecasting VaR to overcome this problem. 
Numerous models have been suggested to capture the volatility clustering effect; the most 
widely used one is the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) 
model (Bollerslev, 1986). Nelson (1991), Zangari (1996), Venkataraman (1997), Angelidis 
et al. (2004), Harmantzis et al. (2004), Hung et al. (2008), Lee et al. (2008), and Braione and 
Scholtes (2016) evaluated the performance of GARCH models under heavy-tailed 
distributions, such as Student-t, mixture normal, generalized error distribution, skewed 
generalized error distribution, to forecast daily VaR. As a result of these studies, leptokurtic 
distributions are able to produce better daily VaR forecasts due to financial return series 
exhibit skewness and excess kurtosis. However, more flexible distribution is still required for 
estimating VaR as a statistical tool for advance risk modelling. 
More concretely, our objective is to examine the suitability of GARCH models by proposing 
exponentiated odd log-logistic normal (EOLLN) distribution which yields quite satisfactory 
results. For this aim, we first introduce a four-parameter distribution, called as EOLLN, which 
extends the normal distribution and provides skewed and heavy-tailed structures for shape 
of the probability density function (pdf). The main advantage of the proposed distribution for 
modeling VaR is to provide a better fitting performance to financial return series than other 
well-known distributions such as normal, Student’s-t, generalized error, and skewed 
generalized error distributions. This distribution is a good candidate to remove the inability 
of well-known distributions modeling the tail of the financial return distribution. Then, we 
define a dynamic VaR model, named GARCH-EOLLN, to forecast the daily VaR based on 
the proposed distribution with GARCH volatility model. The proposed two step VaR model 
can be summarized as follows: In the first step, financial return series is modeled by GARCH 
volatility model to obtain one-day-ahead forecasts of conditional mean, volatility and extract 
the standardized residuals. In the second step, extracted standardized residuals are 
modeled by introduced distribution to obtain quantile estimation for given confidence levels. 
The rest of the paper is organized as follows: Section 2 introduces the statistical properties 
of EOLLN distribution comprehensively. GARCH models based on different distributional 
assumptions and proposed model specification are presented in Section 3. Backtesting 
methodology is given in Section 4. Empirical findings and model comparisons are presented 
in Section 5. Conclusion is given in Section 6.  

II. Exponentiated Odd Log-logistic Normal 
Distribution 

In this section, we propose a new extended normal distribution with heavier tails called the 
exponentiated odd log–logistic normal (EOLLN) model. 
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Braga et al. (2016) recently proposed odd log-logistic normal (OLLN) distribution with shape 

parameter 0   which is much more flexible than some well-known distributions such as 
beta normal, skew normal, gamma normal, and Kumaraswamy normal models. The cdf of 

the EOLLN model with an additional shape parameter 0   is defined by 
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where �  is a location parameter, 0   is a scale parameter, (.)  and (.)  are the 

pdf and cdf of the standard normal distribution, respectively. 
The corresponding EOLLN density is given by 
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where 0   and 0   are the shape parameters. Henceforth, a random variable with 

density function (2) is denoted by X ~ EOLLN(α,β,μ,σ) .  

Plots of the EOLLN density function for some parameter values are displayed in Figure 1.  
Based on Figure 1, we compare the tail behavior of EOLLN distribution with normal 
distribution. It is clear that EOLLN distribution has fatter tail than normal distribution for 
different parameter combinations. This property of EOLLN distribution provides an 
opportunity to estimate more realistic tail probability than normal distribution for financial 
return series.  
Equation (3) has tractable properties especially for simulations. The tail probabilities of 
EOLLN distribution are compared with normal distribution. Table 1 shows the tail 
probabilities of EOLLN and normal distributions for some selected parameter values. Based 
on Table 1, it is clear that EOLLN distribution has fatter tails than normal distribution.  

The quantile function (qf) is in widespread use in statistics Let ( ; , , , )F x u      and 
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 be the inverse of 
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. Then, the qf of X is given by 
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Figure 1 

Plot of the EOLLN pdf for Several Values of Parameters 

 
Table 1 

Left and Right Tail Probabilities of Normal and EOLLN Distributions 

Distribution P(X>2) P(X>3) Distribution P(X<-2) P(X<-3) 
Normal(0,1) 0.0227 0.0013 Normal(0,1) 0.0227 0.0013 

EOLLN(0.5,1.5,0,1) 0.1918 0.0527 EOLLN(0.5,1.5,0,1) 0.0481 0.0067 
Normal(2,2) 0.5000 0.3085 Normal(0,2) 0.1586 0.0668 

EOLLN(1.5,2.5,2,2) 0.8232 0.479 EOLLN(1.5,0.5,0,2) 0.2751 0.1371 
Normal(-1,5) 0.2742 0.2118 Normal(0,4) 0.3085 0.2266 

EOLLN(0.7,2,-1,5) 0.5590 0.4888 EOLLN(0.5,0.8,0,4) 0.4809 0.4329 
Normal(-2,3) 0.0912 0.0477 Normal(0,5) 0.3445 0.2742 

EOLLN(0.5,0.7,-2,3) 0.1752 0.1319 EOLLN(0.9,0.7,0,5) 0.488 0.4245 

 
Estimation 
In this subsection, we consider estimation of the unknown parameters of the EOLLN 
distribution by the method of maximum likelihood. Let 1 2, ,..., nx x x be observed values from 

the EOLLN distribution with parameters ሺα, β, µ, σሻ. The log-likelihood function for ሺα, β, µ, σሻ  
is given by 
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The derivatives of the log-likelihood function with respect to the parameters ሺα, β, µ, σሻ are 
given by, respectively, 
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Simulation Study 
Now, we evaluate the performance of the MLEs of the parameters of EOLLN model with a 
simulation study. Inverse transform algorithm is used to generate random data from the 
EOLLN distribution. The precision of the MLEs is discussed by means of bias, mean square 
error (MSE), estimated average length (AL) and coverage probability (CP). We generated 
N=1000 samples of sizes 50,55,...,800n  from EOLLN distribution with 

3.5, 0.7, 0.3, 2.7       . We obtained MLEs of the parameters for each generated 

sample and standard errors of MLEs are obtained by inverting observed information matrix. 
The estimated bias, MSEs CPs and ALs are obtained using following equations:  

 

�    

�    

   

 

1

2

1

ˆ ˆ
1

ˆ
1

1 ˆ

1 ˆ

ˆ ˆ1.95996 , 1.95996

3.919928

i i

i

N

i
i

N

i
i

N

i i
i

N

i

Bias n
N

MSE n
N

CP n I s s

AL n s
N





  

 

 

 

 









 

 

  










 

where  , , ,     . The numerical results of simulation are shown in the plots of Figures 

2. It is clear from these plots that the estimated biases and MSEs decrease when the sample 
n increases. The CPs of all parameters are near to 0.95 and approaches to nominal value 
when the sample size increases. Further, the AL of all parameters decreases when the 
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parameters decreases when the sample size increases. The results are obtained for 
selected parameters but similar results can be obtained for other parameter combinations.  

Figure 2 
Estimated Biases, MSEs, ALs and CPs for Selected Parameter Values 

        

   

III. GARCH Models in VaR Estimation and 
Proposed Model Specification 

The VaR of a long position (left tail of the distribution function) over a given time horizon t 
and probability p, while p is one minus the VaR confidence level, is defined as  

1(1 )pVaR F p   
where F  is the distribution function of financial losses, 1F   denotes the inverse of F  and 
p  is the quantile at which VaR is calculated. ARCH(q) by and GARCH(p,q) models are used 

to model time-varying volatility in financial econometrics. ARCH(q) model was introduced by 
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Engle (1982) and expressed the conditional volatility as a linear function of the past q 
squared residuals. GARCH(p,q) model was introduced by Bollerslev (1986) and expressed 
the conditional volatility as a linear function of the past q squared residuals and past p 
conditional volatilities. In order to estimate VaR, let  1ln 100t t tR S S     denotes the daily 

returns of the assets on time t  and tS  represents represents the closed prices of the assets. 

GARCH(1,1) can be written as follows: 

ܴ௧ ൌ ௧ߤ ൅ ݁௧ 

݁௧ ൌ ߳௧ߪ௧   ߳௧~݅݅݀. 

௧ߪ
ଶ ൌ ߱ ൅ ௧ିଵ݁ߙ

ଶ ൅ ௧ିଵߪߚ
ଶ 

                                                        
Where: t  and 2

t respectively, are the conditional mean and variance. t  is the innovation 

distribution and commonly supposed that the innovation distribution follows a normal 
distribution. Log-likelihood function of GARCH model under normality assumption can be 
written as follows: 
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According to GARCH-N model, one-day-ahead VaR forecast can be calculated as: 

 1
1 1 1t t p t tVaR    
                                                

Where:  1
p t   is the quantile of standard normal distribution at p  level and 

respectively 1t  , 1t   are one-day-ahead forecasts of the conditional mean and 

variance. 

GARCH-models coupled with conditionally normally distributed innovations “conditional 
student distribution” is unable to fully account for the tails of the marginal distributions of daily 
returns. Several conditional distributions proposed in the GARCH (e.g., Student’s-t 
distribution, skewed generalized error distribution (SGED) and generalized error distribution 
(GED)). Bollerslev (1986, 1987) proposed the standardized Student’s-t distribution with 

2   degree of freedom. Student’s-t is symmetric distribution and for 4  , conditional 
kurtosis greater than 3, which exceeds the normal value. Under this specification, the log-
likelihood function, for a sample of T observations, is given by 
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Where: ( )  is the gamma function and   is the thickness parameter of the distribution 

tails. The one-day-ahead VaR forecast based on Student’s-t distribution is defined as 

 
 1

1 1 1t t p t tVaR    
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where  1
p t   is the quantile of Student’s-t distribution at p  level and respectively 1t 

, 1t   are one-day-ahead forecasts of the conditional mean and variance.  
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In order to model the excess kurtosis observed asset prices, assumption on t can be 

relaxed. Nelson (1991) proposed the GED instead of assuming t is normally distributed. 

Under this specification, the log-likelihood function for GED distributed t : 
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where:   is the tail-thickness parameter and  
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Here, (.)  is the gamma function. The Gaussian distribution is a special case of the GED 

when 2  . If 2  , the GED has fatter tails than Gaussian distribution. According to 
Nelson (1991) specification, the log-likelihood function is given by 
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According to GARCH(1,1) model,  2 2 2
1 1t t te        in the above equation. Parameters 

of the GARCH(1,1) model can be obtained by the numerical maximization procedure. The 
one-day-ahead VaR forecast based on GED is defined as 
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where:  1

p t   is the left quantile of the GED at p  level.  

Lee et al. (2008) used the SGED which provides a flexible distribution for modeling the 
empirical distribution of financial data. The pdf of standardized SGED is given by 
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Here,  is the shape parameter with constraint 0  ,   is skewness parameter with 
1 1   . The SGED turns out to be the standard normal distribution when 2   and 

0  . The log-likelihood function of GARCH-SGED model is 
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where:  is the parameter vector. The one-day-ahead VaR forecast based on SGED is 

defined as 
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where:  1

p t   is the left quantile of SGED at p  level. 

Now, we show that GARCH models with the EOLLN distribution yields quite satisfactory 
results and compare our proposed model with GARCH models where normal distribution, 
Student’s-t distribution, GED and SGED are considered as innovation distributions. For this 
aim, we propose the novel VaR model, called as GARCH-EOLLN, to forecast daily VaR.  

The proposed dynamic VaR model can be briefly summarized as follows: At the first 
stage, GARCH model is fitted to financial return series to obtain one-day-ahead forecast 
of conditional mean variance and extract standardized residuals for the second stage 
by the pseudo maximum likelihood method. At the second stage, the EOLLN distribution is 
used to model extracted standardized residuals from stage one to obtain quantile estimation 
for given confidence level. Finally, the VaR is estimated using the quantile estimation of the 
EOLLN and one-day-ahead forecast of conditional mean and variance. The VaR forecasting 
performance of the proposed model is compared with the GARCH models specified under 
skewed and heavy-tailed distributions by means of backtesting procedure. In summary, 
proposed model has the following steps:  

 Step 1. The benchmark model, GARCH (1,1) is fitted to the return series by the 
pseudo maximum likelihood estimation (PML) to maximize the log-likelihood 
function assuming normal innovations and obtain the one day ahead forecasts of

 from the fitted model and extract the standardized residuals . 

 Step 2. Standardized residual obtained from the first step is modeled via EOLLN to 
estimate the quantile of innovation distribution at p  level. Using the parameter 

estimation of EOLLN distribution and forecasts of 1 1 and t t   , 1tVaR  can be 

forecasted where: 

 
1

1 1 1( ; , , , )t t p t tVaR a b     
   

 
Here, 2( ; , , , )p t a b    is the quantile of the EOLLN distribution at p  level. One can easily 

estimate the quantile of EOLLN as follows: 
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where:  1   is the quantile function for the normal distribution with location parameter   

and scale parameter  . 

IV. Evaluating VaR Models 
Backtesting methodology is used to compare the forecasting accuracy of the GARCH 
models in terms of VaR forecasts. The backtesting methodology consists of comparing the 
VaR forecast with actual realized loss in the out-of-sample period. Kupiec (1995) proposed 
a likelihood ratio test of unconditional coverage  ucLR  to evaluate the model accuracy. The 

LR test examines whether the failure rate is equal to expected one. ucLR  test statistic is 

given by 

 

01

01

2
1

(1 )2 ln
ˆ (1 )

nn

uc nn

p p
LR 

 
 

    
�

 
where: 1 0 1ˆ ( )n n n    is the maximum likelihood estimation of p , 1n   represents the total 

violations (violation occurs when the realized return exceeds the forecasted VaR value) and 

0n  represents the total non-violations forecasts. Under the null hypothesis ˆ:oH p  , the 

LR statistics follows a chi-square distribution with one degree of freedom. 

Christoffersen (1998) proposed a likelihood ratio test of conditional coverage  ccLR  to 

remove the lack of Kupiec’s test. ccLR test investigates both equality of failure rate and 

expected one and also independently distributed violations. ccLR
 test statistic, under the null 

hypothesis that the failures are independent and equal to expected one, can be given as 
follows: 
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where: ijn
 is the number of observations with value i  followed by j  for , 0,1i j   and  

ij
ij

ij
j

n

n
 


are the probabilities, , 1i j   denotes the violation has been occurred otherwise 

indicates the opposite case. The main advantage ccLR  of test is that it can reject a VaR 

model that generates too many or too few clustered violations (Marimoutou et al., 2009). 

ccLR test statistics follows a chi-square distribution with two degrees of freedom. 

V. Empirical Findings 
Data  
To evaluate the performance of the proposed approach, the NASDAQ -100 and S&P-500 
indexes are used. The used time series data sets, for NASDAQ-100 and S&P-500 indexes, 
contain 1533 and 1278 daily observations from 03.08.2010 to 01.09.2016 and from 
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29.09.2012 to 27.09.2017, respectively. The descriptive statistics of NASDAQ -100 and 
S&P-500 indexes are given in Table 2. 

Table 2 
Summary Statistics for the NASDAQ -100 and S&P-500 Indexes 

Descriptive Statistics NASDAQ -100 S&P-500 
Number of observations 1533 1278 
Minimum -0.063 -0.0402 
Maximum 0.0493 0.0383 
Mean 0.0006 0.0005 
Median 0.0008 0.0004 
Std. Deviation 0.0107 0.0077 
Skewness -0.354 -0.3725 
Kurtosis 3.866 5.5761 
Jarque-Bera 559.913 (0.000) 382.921 (0.000) 
Ljung-Box 49.425 (0.014) 23.878 (0.2478) 

 
Table 2 shows that the mean returns are closed to 0. The Jarque–Bera statistics in Table 2 
also show that the null hypothesis of normality is rejected at any level of significance for both 
indexes, as evidenced by high excess kurtosis and negative skewness. Thus, it is clear that 
log returns of NASDAQ-100 and S&P-500 indexes have non-normal characteristics, excess 
kurtosis, and fat tails.  
Table 3 shows the estimated parameters of the GARCH(1,1) model. As seen from Table 3, 
the constant term, ARCH(1), and GARCH(1) parameters are highly significant for both 
indexes.  

Table 3 
GARCH(1,1) Parameter Estimation for the NASDAQ -100 and S&P-500 Indexes 

NASDAQ-100 S&P-500 
Parameters Constant ARCH(1) GARCH(1) Constant ARCH(1) GARCH(1) 
Estimates 0.00000495 0.1074 0.8467 0.000006331 0.1748 0.7165 
SE 0.00000136 0.0254 0.0295 0.000001843 0.03846 0.05345 
t-value 3.650 4.23 28.716 3.434 4.543 13.406 
p-value 0.000262 0.0000233 <0.00001 0.000594 <0.00001 <0.00001 
 

Table 4 shows the diagnostic statistics for raw data and standardized residuals extracted 
from GARCH(1,1) model. The residual series have significant excess skewness-kurtosis and 
normal distribution assumption is not realistic and also LM-test result indicates the ARCH 
effects. 

Table 4 
Diagnostic Statistics of Raw Data and Standardized Residuals of GARCH(1,1) 

NASDAQ-100 S&P-500 
Series Return series Residuals series Return series Residuals series 
Jarque-Bera 559.913 (0.000) 59.362 (0.000) 382.921 (0.000) 212.292 (0.000) 
Ljung-Box 49.425 (0.014) 7.429 (0.684) 23.878 (0.2478) 23.128 (0.2826) 
LM-test 258.881 (0.000) 9.9655 (0.619) 198.0501 (0.000) 10.8599 (0.9498) 
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Extracted residual from GARCH(1,1) process is modeled with normal, GED, SGED, and the 
proposed distribution. The parameter estimations are given in Table 5. Based on the figures 
in Table 5, the proposed distribution provides overall best fit and the best explanation of the 
standardized residual. Besides, the proposed distribution has the lowest log-likelihood value 
among all of other alternative models. Therefore, this model could be the best for the 
NASDAQ -100 and S&P-500 indexes. 

Table 5 
Estimated Parameters of Distributions 

Index Models Parameter Estimates   
NASDA
Q-100 

Normal 0.041, 0.999    1607.595 

GED 0.011, 1.000, 1.352      1586.710 

SGED 0.044, 0.998, 1.378, 0.900         1584.523 

Proposed Distribution-
EOLLN 

3.772, 0.687, 0.273, 2.875        1582.972 

S&P-
500 

Normal 0.0515, 0.999   1812.163 

GED 0.067, 0.9992, 1.214     1769.584 

SGED 0.0447170, 0.995, 1.248, 0.9      
 

1768.258 

Proposed Distribution-
EOLLN 

0.483, 0.128, 1.459, 0.327        1760.519 

* Parameter estimations are obtained for non-standardized GED and SGED. 

Dynamic VaR Estimation with Rolling Window 

In this subsection, GARCH(1,1) model is estimated using a rolling window procedure. Rolling 
window estimation produce allows us to capture time-varying characteristics of the time 
series in different time periods. Window lengths are determined as 1133 and 878, 
respectively. The next 400 daily returns are used to evaluate the out of sample performance 
of VaR models.  

Empirical Results of NASDAQ-100 Index 

NASDAQ-100 index is used to evaluate the out of sample performance of VaR models. All 
used VaR models are evaluated by comparing the actual and expected failure rates and 
using two backtesting tests. 
Table 6 shows the backtesting results of GARCH(1,1)-normal, GARCH(1,1)-Student’s-t, 
GARCH(1,1)-GED, GARCH(1,1)-SGED and GARCH-EOLLN models for left tail of loss 
distribution.  According to failure rates, GARCH models specified under the normal, 
Student’s-t, GED and SGED innovation distributions perform poorly for both confidence 
levels; whereas, the proposed model outperforms to other models and shows great 
consistency for both confidence levels. Note that only the proposed model has equal 
expected and actual failure rates for 0.95 and 0.99 confidence levels.  
Backtesting results based on the left tail of loss distribution show that GARCH(1,1)-normal, 
GARCH(1,1)-Student’s-t and GARCH(1-1)-GED models underperform and rejected for both 
backtesting at p=0.01 level.. Although GARCH(1,1)-SGED model performs well at both 
confidence levels according to backtesting results, one can easily see from Table 6 that 
GARCH(1,1)-SGED model causes the overestimated VaR forecasts.  
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Table 6 
Out-of-sample Performance of VaR Models by Means of Backtesting Results for 

the Left Tail of Loss Distribution (p=0.05 and p=0.01) 

p=0.05  
Nasdaq-100 Number 

of Forecasts 
Expected 
Violation 

Observed 
Violation 

Failure
Rate 

LRuc LRcc 

GARCH- 
Normal 

400 20 27 6.8% 2.335  
(0.126) 

2.354  
(0.308) 

GARCH- 
Student's t 

400 20 28 7.0% 3.012  
(0.083) 

3.013  
(0.222) 

GARCH- 
GED 

400 20 26 6.5% 1.738 (0.187) 1.798  
(0.407) 

GARCH- 
SGED 

400 20 25 6.3% 1.223 (0.269) 1.350  
(0.509) 

Proposed  
Model 

400 20 20 5.0% 0.000  
(1) 

0.599  
(0.645) 

p=0.01  
Nasdaq-100 Number 

of Forecasts 
Expected 
Violation 

Observed 
Violation 

Failure
Rate 

LRuc LRcc 

GARCH- 
Normal 

400 4 10 2.5% 6.417  
(0.011) 

7.806  
(0.02) 

GARCH- 
Student's t 

400 4 9 2.3% 4.660  
(0.031) 

6.406  
(0.041) 

GARCH- 
GED 

400 4 9 2.3% 4.660  
(0.031) 

6.406 
(0.041) 

GARCH- 
SGED 

400 4 8 2.0% 3.131  
(0.077) 

5.300  
(0.071) 

Proposed  
Approach 

400 4 4 1.0% 0.000  
(1) 

0.177  
(1) 

*The values in parenthesis represent the p values of LRuc and Lrcc tests. 

Table 7 
Out-of-sample Performance of VaR Models by Means of Backtesting Results for 

the Right Tail of Loss Distribution (p=0.95 and p=0.99 ) 

p=0.95  
Nasdaq-100 Number of 

Forecasts 
Expected 
Violation 

Observed 
Violation 

Failure 
Rate 

LR-uc LR-cc 

GARCH-
Normal 

400 20 15 3.8% 1.485 
(0.231) 

1.736 
(0.420) 

GARCH-
Student's t 

400 20 15 3.8% 1.485 
(0.231) 

1.736 
(0.420) 

GARCH- 
GED 

400 20 13 3.3% 2.928 
(0.087) 

3.548 
(0.170) 

GARCH- 
SGED 

400 20 19 4.8% 0.053 
(0.817) 

0.064 
(0.968) 
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p=0.95  
Nasdaq-100 Number of 

Forecasts 
Expected 
Violation 

Observed 
Violation 

Failure 
Rate 

LR-uc LR-cc 

Proposed 
Model 

400 20 19 4.8% 0.053 
(0.817) 

0.064 
(0.968) 

p=0.99  
Nasdaq-100 Number of 

Forecasts 
Expected 
Violation 

Observed 
Violation 

Failure 
Rate 

LR-uc LR-cc 

GARCH-
Normal 

400 4 2 0.5% 1.237 
(0.266) 

1.257 
(0.533) 

GARCH-
Student's t 

400 4 1 0.3% 3.250 
(0.071) 

3.255 
(0.196) 

GARCH-
GED 

400 4 1 0.3% 3.250 
(0.071) 

3.255 
(0.196) 

GARCH-
SGED 

400 4 2 0.5% 1.237 
(0.266) 

1.257 
(0.533) 

Proposed 
Model 

400 4 3 0.8% 0.276 
(0.599) 

0.322 
(0.851) 

*The values in parenthesis represent the p values of LR-uc and LR-cc tests. 

Table 7 shows the backtesting results of VaR models for right tail of loss distribution. The all 
used VaR models perform well according to two backtesting results. However, when the 
observed failure rates of VAR models are examined, it is clear that proposed approach and 
GARCH-SGED models are closer to expected failure rate than other models. Proposed 
model and GARCH-SGED models show similar performance for right tail of loss distribution. 
In summary, GARCH-EOLLN performs the best according to both backtesting results and 
failure rate values for both tail of loss distribution.  

Empirical Results of S&P-500 Index 

In this subsection, S&P-500 index is used. Table 8 shows the backtesting results of VaR 
models for left tail of loss distribution. Based on the figures in Table 8, it is clear that proposed 
model outperforms among others. According to backtesting results, all models perform well, 
except GARCH(1,1)-Normal and GARCH-Student's t for p=0.01 level. Considering the 
failure rates, GARCH models specified under the normal, Student’s-t, GED and SGED 
innovation distributions perform poorly for both confidence levels. Based on the figures in 
Table 8, it is clear that proposed model outperforms among others and failure rates of 
proposed distribution are closed to nominal values. 

Table 8 
Out-of-sample Performance of VaR Models by Means of Backtesting Results for 

the Left Tail of Loss Distribution (p=0.05 and p=0.01) 

p=0.05  
S&P-500 Number  

of Forecasts 
Expected  
Violation 

Observed  
Violation 

Failure  
Rate 

LR-uc LR-cc 

GARCH- 
Normal 

400 20 13 3.3% 2.928  
(0.087) 

2.533  
(0.315) 

GARCH- 
Student's t 

400 20 14 3.5% 2.107  
(0.147) 

3.548  
(0.170)) 



 Forecastıng Value-at-Rısk wıth Two-Step Method 

Romanian Journal of Economic Forecasting – XX (4) 2017 111 

p=0.05  
S&P-500 Number  

of Forecasts 
Expected  
Violation 

Observed  
Violation 

Failure  
Rate 

LR-uc LR-cc 

GARCH- 
GED 

400 20 13 3.3% 2.928  
(0.087) 

2.533  
(0.315) 

GARCH- 
SGED 

400 20 12 3.0% 1.860  
(0.158) 

1.877  
(0.402) 

Proposed  
Model 

400 20 20 5.0% 0.000  
(1) 

0.599  
(0.645) 

p=0.01  
S&P-500 Number  

of Forecasts 
Expected  
Violation 

Observed  
Violation 

Failure  
Rate 

LR-uc LR-cc 

GARCH- 
Normal 

400 4 9 2.3% 4.660  
(0.031) 

6.406  
(0.041) 

GARCH- 
Student's t 

400 4 9 2.3% 4.660  
(0.031) 

6.406  
(0.041) 

GARCH- 
GED 

400 4 8 2.0% 3.131  
(0.077) 

5.300 
(0.071) 

GARCH- 
SGED 

400 4 8 2.0% 3.131  
(0.077) 

5.300  
(0.071) 

Proposed 
 Approach 

400 4 3 0.8% 0.276  
(0.599) 

0.322  
(0.851) 

*The values in parenthesis represent the p values of LR-uc and Lr-cc tests. 

Table 9 shows the backtesting results of VaR models for right tail of loss distribution. The 
obtained results are similar to results of right tail of loss distribution. The proposed 
distribution shows great consistency for both tail of loss distribution. It is strong evidence that 
two-step GARCH-EOLLN model produce high accuracy VaR forecasts.  

Table 9 
Out-of-sample Performance of VaR Models by Means of Backtesting Results for 

the Right Tail of Loss Distribution (p=0.95 and p=0.99 ) 

p=0.95  

S&P-500 Number of 
Forecasts 

Expected 
Violation 

Observed 
Violation 

Failure 
Rate 

LR-uc LR-cc 

GARCH-
Normal 

400 20 10 2.5% 6.398 
(0.011) 

2.145 
(0.252) 

GARCH-
Student's t 

400 20 11 2.8% 5.059 
(0.024) 

1.540 
(0.340) 

GARCH- 
GED 

400 20 10 2.5% 6.398 
(0.011) 

2.145 
(0.252) 

GARCH- 
SGED 

400 20 12 3.0% 3.907 
(0.048) 

1.115 
(0.454) 

Proposed 
Model 

400 20 20 5.0% 0.000  
(1) 

0.599 
(0.645) 
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p=0.99  

S&P-500 Number of 
Forecasts 

Expected 
Violation 

Observed 
Violation 

Failure 
Rate 

LR-uc LR-cc 

GARCH-
Normal 

400 4 3 0.8% 0.276 
(0.599) 

0.322 
(0.851) 

GARCH-
Student's t 

400 4 3 0.8% 0.276 
(0.599) 

0.322 
(0.851) 

GARCH- 
GED 

400 4 2 0.5% 1.237 
(0.266) 

1.257 
(0.533) 

GARCH- 
SGED 

400 4 3 0.8% 0.276 
(0.599) 

0.322 
(0.851) 

Proposed 
Model 

400 4 4 1.0% 0.000  
(1) 

0.177  
(1) 

*The values in parenthesis represent the p values of LR-uc and LR-cc tests. 

VI. Conclusion 
This study assesses the performance of proposed distribution, called as “exponentiated odd 
log-logistic normal distribution” (for short EOLLN), to forecast the VaR by means of two-step 
method and improves the forecasting accuracy at high quantiles for both tail of loss 
distribution. Proposed VaR model are compared with conventional models: GARCH-normal, 
GARCH-Student’s-t, GARCH-generalized error distribution and GARCH-skewed 
generalized error distribution by means of backtesting. According to backtesting results, 
GARCH-EOLLN model outperforms to other models in view of accuracy of VaR forecasts. 
The contribution of this study can be summarized as follows: EOLLN distribution is applied 
to VaR methodology successfully. The proposed two-step method has proved its ability to 
capture leptokurtic features of loss distribution. EOLLN distribution provides great fit to the 
left tail of loss distribution which contains extreme and unpredictable losses. It is clear that 
the proposed two-step model can be used to forecast market VaR value by financial 
institutions and regulators. 
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Appendix 
 
Expansions  
In this subsection, we provide alternative mixture representations for the pdf and cdf of X. 
Despite the fact that the pdf and cdf of EOLLN require mathematical functions that are widely 
available in modern statistical packages, frequently analytical and numerical derivations take 
advantage of power series for the pdf. Some useful expansions for (2) can be derived by 
using the concept of power series. First, we obtain an expansion for the cdf of EOLLN using 

a power series for 
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     and 
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where: k kb h (α,β)
. Then, using the ratio of two power series, we obtain  
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 (4) 

where: 

0
0
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a
c

b
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 and the coefficients kc
  for 1k   are determined from the recurrence 

equation 
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The pdf of X is obtaining by differentiating Equation (4) as 
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 (5) 
Equation (5) reveals that the EOLLN density function is a mixture of Exp–N densities. Thus, 
some of its structural properties such as the ordinary and incomplete moments and 
generating function can be obtained from well–established properties of the Exp–N 
distribution. This equation is the main result of this section. 
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Moments and Moment Generating Function 
Some of the most important features and characteristics of a distribution can be studied 
through moments (e.g. tendency, dispersion, skewness and kurtosis). Now, we obtain 
ordinary and incomplete moments of the EOLLN distribution. Henceforth, let Z = (X – μ)/σ 
be a random error variable, where X has density function given by (2). Then, the random 
variable Z has the EOLLN(0, 1, α, β) distribution. The moments of X having the EOLLN (μ, 
σ, α, β) distribution are easily determined from the moments of Z by 

 
 

n
n n n r r r

r 0

n
E X E (μ σZ) μ σ E(Z )

r




         


. 

Thus, we can work with the standardized random variable Z. The first representation for 
'
n  

is based on the (n, r) th probability weighted moment (PWM) (for n and r positive integers) 
of the standard normal distribution defined by,  
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We define the Lauricella function of type A (Exton, 1978) as 
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where: 
  ( 1)...( 1)a

k
a a a k   

 denotes the Pochhammer symbol, i.e. the kth rising 

factorial power of a with the convention 
 0
a 1

. Nadarajah (2008) expressed τn,r in terms 
of the Lauricella function of type A as 
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  (6) 
The nth ordinary moment of Z is given by 
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where: n,kτ
 can be determined from Equation (6)




