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Abstract 
This paper aims to explore the true green efficiency of ocean economy in 11 coastal 
regions of China over 2004–2014. An extended three-stage DEA is proposed to improve 
the efficiency assessment of ocean economy. Malmquist–Luenberger productivity 
indexes are introduced into three-stage DEA model, which can simultaneously account 
for the impacts of undesirable outputs, environmental variables, and statistical noise. 
The results show that the environmental variables have significant impacts on regional 
ocean efficiency. Comparing with Malmquist productivity indexes, the average 
Malmquist–Luenberger productivity indexes of ocean economy have deteriorated over 
the past ten years. After eliminating the influences of environmental variables and 
statistical noise, the efficiency change and technical change of regional ocean economy 
are lower than the unadjusted case and technology inefficiency is the major cause of 
the inefficiency in China. Finally, a clustering matrix of the green efficiency of the 
regional ocean economy is presented to illustrate spatial refraction among 11coastal 
regions.  
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1. Introduction 
China’s ocean economy has sustained its rapid development. However, according to 
the 2014 Ocean Statistical Bulletin, negative growth has been observed in the marine 
salt industry. While high-pollution and/or high-emission industries, such as marine 
mining, oil and gas, chemicals, and shipbuilding, continue to exhibit a high growth rate, 
marine resources and environmental issues could become bottleneck factors. This 
restricts the development of China’s ocean economy in the future. These facts also raise 
important questions. What developmental pattern would the efficiency of the ocean 
economy demonstrate under the constraints of resource and environmental factors? 
How can we achieve a reasonable consumption of resources and minimal 
environmental impact while increasing the ocean economic efficiency? Thus, the 
scientific study of the green efficiency of the ocean economy and the investigation of 
the factors that influence that efficiency are of substantial significance to the health of 
the ocean economy in China. 
The data envelopment analysis (DEA) is a broadly used technique to measure the 
efficiency of decision-making units (DMUs). The greatest advantage of this method is 
that it can be applied for the efficiency evaluation of any DMUs that utilize inputs in order 
to produce outputs. The reason is it does not depend on prior function assumptions 
about inputs and outputs. There are many different DEA models used in surveys of 
economic, social and environmental evaluation achieving good reputation 
(Emrouznejad and Yang, 2016). Among the related literature about extended DEA 
models, the Malmquist productivity index (MPI) originally proposed by Malmquist (1953) 
has become an important concept. This method has been developed in the non-
parametric framework by several authors (e.g. Färe and Grosskopf, 1992; Thrall, 2000). 
Studies show that MPI has been widely recognized as an indirect measure of economic 
prosperity, standard of living and the competitiveness of an economy (Lall et al., 2002). 
MPI can utilize the directional distance function (DDF) to easily accommodate multiple 
inputs and multiple outputs cases when panel data are available. Meanwhile, changes 
in the MPI can be further decomposed into the components of efficiency change and 
technical change and offer more insights into the multiple sources of productivity growth 
(Lee et al., 2016). Essentially, it is an index denoted by MPI which represents total factor 
productivity (TFP) growth of DMUs in a multi-inputs-outputs framework (Yu et al., 2016). 
Furthermore, the TFP growth can reflect a kind of progress or regress inefficiency along 
with progress or regress of the frontier technology between two periods of time. Hence, 
MPI method has become very popular to evaluate efficiency of economic, energy and 
environmental productivity growth, which is a typical multi-inputs-outputs problem. 
The sustainable economy has become an important forum for questions and 
concerns. From the view of sustainable growth, there are more and more attempts to 
develop measures of productivity growth incorporating both desirable and undesirable 
factors in some production processes. Chung et al. (1997) modified the MPI and gave 
an integrated concept about MPI and DDF. A Malmquist-Luenberger productivity index 
was presented, which was denoted by MLPI. Since then, the research based on the 
MLPI become flourishing in various domains. As the first remarkable effort employing 
MLPI in manufacturing industries efficiency assessment is the paper of Färe et al. 
(2001). Afterwards, a number of studies relied on the concept of MLPI to evaluate the 
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economic energy environmental efficiency. For example, He et al. (2013) measured the 
energy efficiency and productivity change of China's iron and steel industry over the 
period 2001-2008. Munisamy and Arabi (2015) deployed MLPI to evaluate 48 Iranian 
thermal power plants productivity change in three different categories, e.g., steam, gas, 
and combined cycle over an eight year period of restructuring in the power industry. 
Emrouznejad and Yang (2016) introduced MLPI based on DDF to address the issue of 
productivity evolution of CO2 emissions reduction in China. In recent years, the 
improved DEA methods are applied to energy environmental efficiency of the ocean 
economy, which indicates producing more economic values with less resource and less 
environmental influence (Sueyoshi and Yuan, 2015; Yu et al., 2016; Chen, 2010). For 
example, Huang and Fu (2013) used the extended DEA model to measure the energy 
environmental efficiency of low carbon ocean economy. Ding et al. (2015) employed 
MLPI to evaluate energy environmental efficiency in the 11 coastal regions. They 
incorporated resource and environmental factors into the system of efficient evaluation 
and concluded that ignoring the changes in undesirable outputs underestimated true 
productivity growth accounting for pollution and irrational use of resources.  
However, previous studies on the energy environmental efficiency of ocean economy 
have not considered the diversity of regional economy, e.g., territory, external trade and 
educational level. They assume that the difference in regional economy mainly comes 
from microcosmic management decisions, rather than specific environmental 
conditions. Ignoring the types of circumstances may result in biased efficiency 
estimation and misleading policy applications (Avkiran & Rowlands, 2008). The 
existence and widening of regional economic differences must receive due attention as 
they would inflict negative influences upon ocean economy (Chen et al., 2007). Hence, 
the main contribution of this study is the provision of more valuable suggestions for 
regional ocean economy, based on the true green efficiency obtained by the three-stage 
DEA model with consideration of environmental variables and statistical noise4. This 
method is originally proposed Fried et al. (2002) to purge the impacts of exogenous 
environmental features and statistical noise. In this study, we adopt the spirit of the 
three-stage methodology of Fried et al. and extend the conventional MPI to an adjusted 
MLPI that includes a comprehensive index of environmental pollution as an undesirable 
output. In the first stage, we choose a comprehensive index of resource consumption 
as the resource input, and treat a comprehensive index of environmental pollution as 
an undesirable output produced together with desirable outputs. Instead of using the 
hyperbolic output measures proposed in Chang (1999), we use the directional distance 
function developed in Chung et al. (1997) to calculate the output slack (or surplus) for 
each output where the regional ocean economic activities to reduce its bad outputs and 
increase its good outputs are described. In the second stage, we use stochastic frontier 
analysis (SFA) to regress the estimated output slacks against the observed 
environmental variables and use the regression results to adjust the observed output 
values while purging the influences of the environment and statistical noise. In the third 
stage, we re-run the DEA model based on the DDF and MLPI using the adjusted output 

                                                           
4 In order to distinguish the word of “environmental” between “energy and environmental 

efficiency” and “external environmental influences”, we use green efficiency to denote energy 
and environmental efficiency.  
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and input data. Panel data for 11 coastal regions in China covering the years 2004-2014 
are used to analyze the green efficiency of ocean economy. The findings can help 11 
coastal regions understand the real causes of poor green efficiency and make 
improvements accordingly. At the same time, the MLPI can also provide explanations 
for the reasons why some coastal regions underperform and a way by which to improve 
productivity at different time periods.  
The remainder of this paper is structured as follows. Section 2 presents the 
methodology, i.e., DDF and the improved three-stage DEA method. In Section 3 the 
data and description are given. Section 4 reports and discusses the results of our 
empirical analysis. Section 5 concludes this paper. 

2. Methodology  

2.1 Directional Distance Function 
To construct the best-practices boundaries for the production of China’s ocean economy 
in each period, this study regards each coastal region as a decision-making unit. 
Resources are viewed as investment resources, and based on social preferences for 
output and output’s ability to improve social welfare, we consider environment damage 
as undesired output and the gross ocean production (GOP) as desired output. The 
possible set of all production that contains the two output types is termed the green 
technology of marine production, which reflects the input-output relationship that can be 
achieved using technology during each decision-making unit’s production process 
under the constraints of resources and the environment. 

Based on output-oriented production, we assume that 1, ,Kk  L  production units use 
N  factor inputs 1( , , ) N

nx x x R L  and obtain M  desired outputs 1( , , ) M
My y y R L  

and I  undesired outputs 1( , , b ) I
Ib b R L . This paper uses DDF to conduct optimized 

adjustment of desired output and undesired output in different directions to optimize 
marine output growth and reduce pollution (Chung et al., 1997). Thus, the DDF is 
defined as follows: 

,ݔሬሬԦ଴ሺܦ  ,ݕ ܾ; ݃௬	, െ݃௕ሻ ൌ :ߚሼ	݌ݑݏ ൫ݕ ൅ ,	௬݃ߚ ܾ െ  ሻሽ  (1)ݔሺ݌	߳	௕൯݃ߚ

where:   is the distance function value, which indicates the maximum extent of 
increase in desired output and decrease in undesired output when the output 
combination  ,y b  moves to the production frontier according to the directional vector. 
  can be obtained by solving the following linear programming: 
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௞ᇲ௧ݔ଴௧ሬሬሬሬԦ൫ܦ    , ௞ᇲ௧ݕ , ܾ௞ᇲ௧ ; ௞ᇲ௧ݕ , െܾ௞ᇲ௧ ൯ ൌ maxߚ	ݏ. ෍.ݐ ௞௠௧ݕ௞௧ݖ ൒ ሺ1 ൅ ௞ᇲ௠௧௄ݕሻߚ
௞ୀଵ , ݉ ൌ 1,  	ܯ,			ܮ

																																																										෍ ௞௧ܾ௞௜௧ݖ ൒ ሺ1 െ ሻܾ௞ᇲ௜௧௄ߚ
௞ୀଵ , ݅ ൌ 1, ,				ܮ  ሺ2ሻ																																								ܫ
෍ݖ௞௧ݔ௞௡௧ ൑ ௞ᇲ௡௧௄ݔ
௞ୀଵ , ݊ ൌ 1, ,				ܮ ௞௧ݖ	ܰ ൒ 0 , ݇ ൌ 1, ,				ܮ 	ܭ

where: k  represents the k th region, t
kz  represents the weight of the k th sample 

observation value, and a non-negative weight indicates an unchanged scale of 
production technology. t

ky   represents the expansion ratio of the desired output y , and 
t
kb   represents the reduction ratio of undesired output.   = 0 indicates that production 

decision-making units are at the frontier. A larger   value indicates that the efficiency 
of production decision-making units is lower when they are farther from the frontier. 

2.2 Improved Three Stage DEA  
In the first stage, we use DEA to analyze input and output and measure the green TFP 
of the ocean economy when each DMU is considering resource and environmental 
factors, which is the measurement result of the second part. 
 
In the second stage, we use an analysis similar to SFA and first obtain the value of 
output difference variance during the first stage. Then, during the second stage, we 
combine this value with external environment variables to construct an SFA model to 
examine the respective impacts of external environmental factors, random errors, and 
inefficient management on the slack variables of desired output and undesired output. 
Firstly, the SFA model with slack variables of desired output, slack variables of 
undesired output, and environmental variables is defined as follows: 

    ; ; ;m m i i
mk k mk mk ik k ik ikS f v u S f v u            (3) 

In Equation (3), mkS  is the balance value when the k th DMU produces the m th desired 
output, ikS  is the balance value when the k th DMU produces the i th undesired output, 

1 , ,k k pk     L  represents the p th observable exogenous environmental variable,   

is the parameter of the environmental variables to be estimated, and  ;kf    indicates 
how environment variables affect the balance value, which is represented by a linear 
form. , ,m ik m ikv u  is a mixed error term, and ,m ikv  represents a random disturbance term 
that is subject to a normal distribution with a mean of zero and the same variance 

 2
, ,~ 0,m ik vm iv N  . ,m iku  indicates management inefficiency and is presumably subject to 

a truncated normal distribution  2
, ,~ ,m ik um iu N u  . The two are independent and 
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unrelated. We make , 2 2 2
, , ,

m i
um i um i vm i     .   close to 1 indicates that the effect of 

management factors is dominant.   close to 0 indicates that the effect of random errors 
is dominant. 

 

Next, we use the regression results ( 2 2ˆ ˆ ˆ ˆ, , ,uk vku   ) from Equation (3) and the estimate 

of management inefficiency  ˆ
k k kE u v u     to separate random errors from 

management inefficiency items. Thus, we obtain the estimate of random error mkv : 

  
   ˆˆ ˆ

1, , ; 1, ,

m
mk mk mk mk k mk mk mkE v v u S E u v u

i K m M
     

 L L
   (4) 

We use the same method to obtain the estimated value of random error ikv . 

Finally, we adjust the two types of output to remove the effects of different external 
environmental factors and random errors so that decision-making units from different 
external environments can be placed in the same environment (Fried et al., 2002). 
Specifically, we place all decision-making units in a good external environment. When 
experiencing good luck, we adjust the desired output upward by a small amount and the 
undesired output downward by a small amount. The adjustment formula is as follows: 

        * ˆ ˆ ˆ ˆ; min ; minm m m m
mk mk k k mk mky y f f v v          ]   (5) 

        * ˆ ˆ ˆ ˆ; min ; mini i i i
ik ik k k ik ikb b f f v v             (6) 

where: * ,mk mky y  are adjusted and original desired output values, respectively, and * ,ik ikb b  
are adjusted and original undesired output values, respectively. In Equations (5)-(6), the 
first brace to the right represents placing all DMUs in the same external environment, 
and the second brace represents all DMUs having the same luck after adjustment. 

In the third stage, with the desired and undesired output data after adjustment replacing 
the original output data, we reapply the DDF and re-calculate the MLPI of various DMUs. 
This paper defines the MLPI denoted by ML that is incorporated into resource and 
environmental factors from the t  session to the 1t   session as follows: 

௧௧ାଵܮܯ ൌ ൤ ଵା஽బ೟ሬሬሬሬሬԦ൫௫೟,௬೟,௕೟;௬೟,ି௕೟൯ଵା஽బ೟ሬሬሬሬሬԦሺ௫೟శభ,௬೟శభ,௕೟శభ;௬೟శభ,ି௕೟శభሻ ൈ ଵା஽బ೟శభሬሬሬሬሬሬሬሬሬሬԦ൫௫೟,௬೟,௕೟;௬೟,ି௕೟൯ଵା஽బ೟శభሬሬሬሬሬሬሬሬሬሬԦሺ௫೟శభ,௬೟శభ,௕೟శభ;௬೟శభ,ି௕೟శభሻ൨ଵ/ଶ(7) 

The ML represents the change in the productivity rate from the t  session to the 1t   
session (Chung et al., 1997). If the ML is greater (less) than 1, the productivity rate of 
the DMUs is increasing (decreasing). The ML can be further decomposed into an index 
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that calculates efficiency changes (MLEC) and an index that measures technological 
change (MLTC). The expressions are as follows: 

௧௧ାଵܮܯ    ൌ ௧௧ାଵܥܧܮܯ ൈ  ௧௧ାଵ    (8)ܥܶܮܯ

௧௧ାଵܥܧܮܯ   ൌ ଵା஽బ೟ሬሬሬሬሬԦ൫௫೟,௬೟,௕೟;௬೟,ି௕೟൯ଵା஽బ೟శభሬሬሬሬሬሬሬሬሬሬԦሺ௫೟శభ,௬೟శభ,௕೟శభ;௬೟శభ,ି௕೟శభሻ   (9) 

௧௧ାଵܥܶܮܯ  ൌ ቈଵା஽బ೟శభሬሬሬሬሬሬሬሬሬሬԦ൫௫೟,௬೟,௕೟;௬೟,ି௕೟൯ଵା஽బ೟ሬሬሬሬሬԦሺ௫೟,௬೟,௕೟;௬೟,ି௕೟ሻ ൈ ଵା஽బ೟శభሬሬሬሬሬሬሬሬሬሬԦ൫௫೟శభ,௬೟శభ,௕೟శభ;௬೟శభ,ି௕೟శభ൯ଵା஽బ೟ሬሬሬሬሬԦሺ௫೟శభ,௬೟శభ,௕೟శభ;௬೟శభ,ି௕೟శభሻ ቉ଵ/ଶ (10) 

MLEC measures the degree of approximation between each DMU and the unit’s 
production frontier. The greater (less) value than 1 indicates improvement 
(deterioration) in the technical efficiency of production units. MLTC estimates frontier 
changes of production possibility from the t  session to the 1t   session. The greater 
(less) value than 1 indicates technological progress (regression) of production units. 

3.Data and Variable Specification 
To keep the sample data comparable, available, and scientific, we select three input 
and two output indicators to measure the green efficiency of the ocean industry. The 
data are from the China Marine Statistical Yearbook (2004-2014), the China Energy 
Statistical Yearbook and the China Environment Statistical Yearbook (2004-2014). 

3.1 Input Indicators  
In our sample, each coastal region has three inputs, which are marine capital stock, 
marine labor force and energy consumption. Firstly, the calculation of capital investment 
is the key to measuring the green efficiency of the marine industry and an important part 
of the research reported here. Currently, there are no statistical data on ocean capital 
stock or marine investment in fixed assets. These data can only be obtained based on 
capital formation in coastal areas and annual fixed capital investment. First, we adopt 
the latest estimates on marine capital stock in coastal areas by Li et al. (2015) and then 
refer to the estimation method for capital stock of the three industries by Chen et al. 
(2010) to calculate the weight of the marine industry in the cumulative total of new fixed 
assets of the marine society in coastal areas (which represents the proportion of the 
marine industry in the total marine assets in the entire society). Furthermore, we multiply 
this weight by the marine capital stock to ultimately obtain the capital stock of the marine 
industry. With respect to the labor force, we consider the number of employees in the 
marine industry in various regions as the labor input. For the resource consumption, this 
study adopts a “comprehensive index of resource consumption” as the resource input 
of the marine industry. According to the availability of statistical data, we use “marine 
catches”, “sea salt production” and “shipbuilding (tons)” to reflect resource consumption 
in the development of fisheries, the marine salt industry and the marine shipbuilding 
industry, respectively. The literature does not consider the consumption of marine oil 
and gas as well as marine mining (Yu et al., 2007; Cheng, 2012). Because the 
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consumption of these resources resembles their production, this study uses “energy 
consumption of the marine industry” to replace the consumption of such resources to 
measure the depletion degree of oil, gas, and mining in the process of creating GOP. 
Because the DEA method limits the number of input and output indicators and to avoid 
magnitude difference due to different statistical units of each index, we integrate the four 
resource input indicators (i.e., “marine catches”, “sea salt production”, “shipbuilding 
capacity (tons)” and “energy consumption of the marine industry”) into a comprehensive 
resource consumption index with the improved entropy method. 

3.2 Output Indicators  
There are two outputs in our sample. For the desired output, we adopt GOP in coastal 
areas as the desired output. To maintain consistency with the capital stock prices of the 
marine industry, we conduct the conversion in alignment with the 2001 constant prices. 
Different from the original studies (Yu et al., 2007; Cheng, 2012; Huang et al., 2013), 
we adopt the “comprehensive index of environmental pollution” as the indicator of 
undesired output, specifically including “industrial wastewater emission from marine 
output of every 10,000 RMB Yuan”, “emission of chemical oxygen demand (COD) in 
industrial wastewater from marine output of every 100,000,000 RMB Yuan”, and 
“industrial solid waste emission from marine output of every 10,000 RMB Yuan”. As 
before, we integrate the three environmental pollution indicators into a comprehensive 
index of environmental pollution with the improved entropy method. 

3.3 Environmental Variables  
This paper chooses external environmental variables based on their definition (see 
details in Fried et al., 2002). These external environmental factors have an important 
influence on the green efficiency of the ocean economy in coastal regions. However, 
unlike the various types of environmental pollution emission, they are not in the 
subjective manageable range of the regions. In addition, by considering the marine 
industry’s characteristics, we select the following external environmental variables: 
marine industrial structure, regional economic development, marine professional skill 
level, and investment in environmental pollution control. Marine industrial structure is 
measured with the proportion of output value of the tertiary marine industry accounting 
for GOP. The reason to include it as one of the variables is that the tertiary marine 
industry’s low-consumption and low-pollution characteristics have a positive meaning 
for the development of marine green industry. Regional economic development is 
measured with the GOP of each coastal region. Because the ocean economy is a 
subsystem of the national economy, it is inevitably affected by economic development. 
Marine professional skill level is measured by the number of technical personnel per 
10,000 employees. The reason to include it as a variable is that marine science and 
technology personnel are the factor that most directly advances technology. Investment 
in environmental pollution control is represented by the marine industry’s total 
investment in environmental pollution control. This variable examines the intensity of 
financial support from each regional government for the green development of the 
ocean economy. 
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4. Results and Discussion 

4.1The Results before the Inputs Are Adjusted 
This paper calculates the annual productivity index of the ocean economy in 11 coastal 
regions and its decomposition value in two cases. First, we do not introduce the marine 
resource and environmental factors into the TFP analytical framework, which uses the 
MPI to calculate the traditional TFP of the marine industry (MTFP), the traditional 
efficiency change denoted by MEFFCH, and the traditional technological change 
denoted by MTECH after decomposition. Then, we introduce the marine resource and 
environmental factors into the TFP analysis framework using the ML index based on the 
directional distance function to calculate the green TFP of the marine industry, denoted 
by MLTFP, the green efficiency change denoted by MLEFFCH, and green technological 
change denoted by MLTECH.  

Table 1  
Comparison of MPI and MLPI together with Their Decompositions  

(2004-2014) 
Regions MPI  MLPI 

MEFFCH MTECH MTFP Ranking MLEFFCH MLTECH MLTFP Ranking 
Tianjin 0.936  1.141 1.058 9 0.980 1.165 1.138 4 
Hebei 1.094  1.221 1.374 1 1.002 1.071 1.078 7 

Liaoning 0.927  1.173 1.068 8 0.982 1.043 1.024 10 
Shanghai 1.001  1.213 1.217 3 1.000 1.260 1.260 1 
Jiangsu 1.069  1.221 1.278 2 1.029 1.127 1.149 3 
Zhejiang 0.939  1.181 1.080 6 0.963 1.132 1.086 6 
Fujian 0.919  1.089 0.984 11 0.962 1.124 1.077 8 

Shandong 0.929  1.199 1.081 5 0.975 1.061 1.033 9 
Guangdong 0.958  1.133 1.074 7 1.000 1.227 1.227 2 

Guangxi 1.006  1.188 1.192 4 1.001 1.016 1.017 11 
Hainan 0.973  1.086 1.048 10 0.995 1.136 1.130 5 
Coastal 
Regions 

0.964 1.163 1.109  0.987 1.118 1.103  

 
Table 1 shows the following results. When resource and environmental factors are not 
considered, the MTFP of the ocean economy in all coastal areas is increased by 10.9% 
in 2004-2014. This derives from MTECH’s positive effects (16.3%> 3.6%). After 
consideration of resource and environmental factors, MLTFP’s average growth rate was 
lower than the MTFP index, and its average annual growth rate decreased to 10.3%. In 
addition to MLEFFCH’s negative effects, other reasons include the declining trend of 
MLTHCH (11.8%<16.3%). As a result, the traditional efficiency of ocean economy is 
overestimated. Thus, to a certain extent, policy proposals based on it are biased and 
misleading. According to the MTFP and MLTFP rankings of the marine industry in 
various coastal areas, all regions exhibited a large difference in ranks, including a 
decrease in the MLTFP ranks of Hebei, Liaoning, Jiangsu, Shandong, and Guangxi. It 
is safe to conclude that these regions did not demonstrate adequate technical efficiency 
in resource consumption or sufficient intensity with respect to pollution control. In 
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contrast, Tianjin, Shanghai, Fujian, Guangdong, and Hainan rose in the rankings. For 
example, the MLEFFCHs of Shanghai and Guangdong were 1, which indicates that 
these regions were at the efficiency frontier with high capability to utilize resources and 
control pollution. The high change rate of green technology of Tianjin, Fujian and Hainan 
revealed that the growth of the marine industry in these provinces did not rely on 
excessive resource consumption or environmental destruction as costs. The preceding 
analysis reveals that compared with MTFP, MLTFP can more reasonably reflect the 
index of the actual efficiency of the marine industry in various coastal regions.   
The preceding measurement results may be subject to the combined effects of external 
environmental, random, and internal management factors. The effects of external 
environmental factors on the green efficiency of the ocean economy must be eliminated. 
If not, all ineffective decision-making would be attributed to internal mismanagement, 
which is not an objective assessment of each DMU.  
4.2 The Results of Stochastic Frontier Analysis 
Based on the analysis of the MLPI of China’s ocean economy in the first stage and with 
the slack variables of desired output and undesired output from the first stage, we use 
the slack variables of each output as the dependent variables and the four previously 
described environmental variables as explanatory variables to perform a SFA 
regression using the STATA13.1 software program. The results are shown in Table 2. 

Table 2  
SFA Estimation Results 

Independent  
Variable 

 
 

Dependent 
Variable 

Consta
nt Term 

Marine 
Industrial 
Structure 

Level of 
Economic 
Developm

ent 

Level of 
Marine 

Professio
nal Skills

Intensity 
of 

Environm
ental 

Pollution 
Control 

2
n  

  

Log 
Likelihoo

d 
Function 

LR 

Slack 
Variables of 

Desired 
Output 

288.46 
*** 

(0.73） 

-0.0599 
*** 

（-2.58） 

-0.0220
** 

（-2.27）

-0.0004
*** 

（-2.77）

2.4777
（0.61）

35476.58
*** 

（4.69）

0.9694
*** 

（3.46）

-814.56 21.54 
*** 

Slack 
Variables of 
Undesired 

Output 

0.1070 
*** 

(17.39) 

-6.99E-07 
* 

(-1.85) 

4.09 
** 

(2.34) 

-5.13E-10
(-0.17) 

-0.0006
*** 

(-4.61) 

0.0060
*** 

(3.99) 

0.9835
*** 

(4.08) 

-271.16 36.08 
*** 

Note: *, **, and *** represent “significant” at significance levels of 10%, 5% and 1%, respectively; 
the t-statistics of the corresponding estimations are provided in parentheses. 

Table 2 shows two phenomena. The test statistic likelihood ratio (LR) values of the SFA 
model and the unilateral relaxation LR values that correspond to the slack variables of 
two types of output pass the 1% significance test. This outcome indicates that there is 
technical inefficiency in mixed errors and that the selected external environmental 
variables have a significant impact on efficiency, which requires SFA analysis. In both 
regression equations,   is close to 1, and the significance level reaches 1%, which 
indicates that management inefficiency has a substantial influence on the creation of 
slack variables and that random factors have relatively small effects. In the regression 
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of the external environmental variables onto the output’s slack variables, the negative 
coefficient indicates that increased external environmental variables can help reduce 
slack output variables. That is, an increased number of such variables are conducive to 
increasing the green efficiency of the marine industry and vice versa. First, the 
regression coefficients of the marine industrial structure’s variables in both equations 
are negative, and the variables pass the significance test, which indicates that the 
optimization and upgrading of the marine industrial structure is an important way to 
achieve green development of the ocean economy. Second, of the regression 
coefficients of the economic development variables in the two equations, one is positive 
and one is negative. This outcome indicates that during the pursuit of economic 
development in coastal regions, the regions over-emphasize the goal of development 
speed but ignore damage to the marine environment. Third, the regression coefficients 
of the variable of marine professional skill level in the two equations are both negative 
and the coefficient of the slack variables of undesired output does not pass the 
significance test. This outcome indicates that the efficiency increase of the ocean 
economy must rely on marine technological progress. Differently, marine professional 
skill level does not share a significant necessary link with undesired output. Thus, we 
could choose not to consider it while adjusting undesired output. Fourth, the regression 
coefficient of the variable of environmental pollution control with respect to the slack 
variables of desired output is not significant. That is, it could be excluded when desired 
output is adjusted. The regression coefficient of the variable of environmental pollution 
control with respect to the slack variables of undesired output is negative, which 
indicates that the government may enhance the green efficiency of the marine industry 
by measures such as increasing environmental protection and improving pollution 
control facilities. 

4.3 The Results after the Inputs Are Adjusted 
As can be concluded from the preceding analysis, external environmental factors 
generate different degrees of impact on the two types of output, resulting in the coastal 
regions being placed in different environments. Therefore, it is necessary to eliminate 
these environmental factors, adjust the desired output and undesired output according 
to Equations (10) and (11), and then introduce the adjusted output values and the initial 
investment into the directional distance function to re-calculate the marine industry 
MLTFP index. Figure 1 shows the decomposition and trend changes of the ocean 
economy’s MLTFP index before and after adjustment under the condition of a time 
series. Table 3 displays the estimation results and the before-and-after-adjustment 
comparison. 
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Figure 1 
Decomposition and Evolution Trend of the Green Efficiency of the Ocean 

Economy before and after Adjustment over 2004-2014Page: 16 
 

 
 

The trend change curves in Figure 1 indicate that from the time-series perspective, 
MLTFP and MLTECH appeared to decrease over time based on a before-and-after-
adjustment comparison. That is, the influence of good external environment and luck 
during the studied period was overestimated. However, in fact, mismanagement 
occurred. In 2006-2007, 2008-2010, and 2012-2014, MLEFFCH increased after 
adjustment, which indicates that the low MLTECH in these years could be attributed to 
poor external environment or luck but that of the other years could be partially attributed 
to mismanagement. By specifically analyzing the annual difference after adjustment, we 
obtain the following four results. Since the 2003 promulgation and implementation of the 
Outline of China’s Marine Economy Development Plan, the ocean economy in China 
has exhibited rapid development. During 2005-2007, the MLTFP of the industry started 
to decrease, falling from 1.078 in 2005 to 0.957 in early 2007. The decrease was mainly 
due to the decrease in MLTECH, which began to reveal the substantial environmental 
costs of ocean economic development. The introduction of the “Eleventh Five-year” 
Development Plan for National Marine Environmental Monitoring System in 2007 
indicated that China had started to pay increasingly more attention to environmental 
pollution and to increase the intensity of pollution control in the development of the 
marine industry. During 2007-2009, the MLTFP of the marine industry exhibited 
relatively stable growth. To recover from the effect of the US subprime mortgage crisis 
in 2008 on the growth of China’s marine industry, China enhanced resource exploitation. 
After 2009, marine output exhibited a rapid upward trend. However, the MLTFP of the 
ocean economy decreased and again exhibited negative growth, which did not revert to 
positive growth until 2012. The trend of MLEFFCH over 2011-2014 indicated a decline 
in the marine industry’s economic growth rate. Coastal areas accelerated the 
optimization of the marine industrial structure, implemented the strategy for sustainable 
marine development, and achieved a good start to the “twelfth five-year” period. 
The discussion about MLTFP of the ocean economy in 11 coastal regions after 
adjustment is provided as follows. To compare the differences among the dynamic 
changes of the MLTFP index in the coastal regions, we provide the average level of 
MLTFP index for the different coastal regions during the sample periods and conduct 
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comparative analysis using the MLTFP index before adjustment in the first stage (Table 
3). 

Table 3  
Green Efficiencies in China’s 11 Coastal Regions before and after Adjustment 

and a Comparison of Their Decomposition (2004-2014) 

Regions 
MLEFFCH MLTECH MLTFP 

Before 
Adjustment 

After 
Adjustment 

Before 
Adjustment

After 
Adjustment

Before 
Adjustment Ranking After 

Adjustment Ranking 

Tianjin 0.980 0.944 1.165 1.038 1.138 4 0.966 11 
Hebei 1.002 1.002 1.071 1.158 1.078 7 1.161 4 

Liaoning 0.982 0.972 1.043 1.047 1.024 10 1.020 8 
Shanghai 1.000 1.009 1.260 1.003 1.260 1 1.012 9 
Jiangsu 1.029 1.036 1.127 1.021 1.149 3 1.058 6 
Zhejiang 0.963 1.021 1.132 1.033 1.086 6 1.050 7 

Fujian 0.962 1.063 1.124 1.090 1.077 8 1.166 3 
Shandong 0.975 1.050 1.061 1.012 1.033 9 1.063 5 

Guangdong 1.000 0.953 1.227 1.033 1.227 2 0.976 10 
Guangxi 1.001 1.045 1.016 1.127 1.017 11 1.183 2 
Hainan 0.995 1.043 1.136 1.185 1.130 5 1.231 1 
Coastal 
Regions 

0.988 0.974 1.119 1.059 1.103  1.028  

 
Table 3 demonstrates the following phenomena. After the impacts of external 
environmental variables and random factors were removed, the MLTFP of the entire 
coastal regions decreased from 1.103 to 1.028 because green efficiency and 
technological change decreased. Overall, the MLTFP of China’s ocean economy was 
less desirable after external environmental factors and random factors were removed. 
Regionally, the following regions saw a lower marine industry MLTFP rank after 
adjustment: Tianjin (-7), Shanghai (-8), Jiangsu (-3), Zhejiang (-1), and Guangdong (-
8). These changes reveal that the previous good marine industry MLTFP index of these 
regions was closely related to a favorable external environment and good luck. Certain 
provinces, such as Tianjin, Shanghai, and Guangdong, benefited from early capital 
accumulation and favorable geographical conditions before adjustment, resulting in 
their leading marine industry MLTFP levels. However, the study results for the third 
stage indicate that after the external environmental factors were removed, the MLTFP 
in these regions decreased significantly. Tianjin and Guangdong even experienced 
negative growth. This development was attributed to the lowering role played by the 
deterioration of green efficiency (i.e., MLEFFCH less than 1), which indicates that with 
the rapid development of the marine industry in Tianjin and Guangdong problems, such 
as low resource utilization and environmental mismanagement, emerged. Compared 
with the first-stage MLTFP, Hebei, Liaoning, Fujian, Shandong, Guangxi and Hainan 
exhibited an increase in the MLTFP in the third stage, which indicates that the previous 
low MLTFP of these regions was partly attributable to a poor external environment or 
bad luck and not fully attributable to mismanagement. Tianjin, Shanghai, Jiangsu, 
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Zhejiang, Fujian, Shandong, and Guangdong exhibited a decrease in MLTECH after 
adjustment, which indicates that their technological change rate was overrated because 
of the impact of the local external environment or luck. A low technological change rate 
after adjustment can more accurately reveal that strong dependence on resources and 
heavy pollution forced producers to focus more on resource exploitation and pollution 
control rather than increasing the level of production technology. Therefore, 
environmental pollution control temporarily lowered the level of technology progress. 

4.4 A Clustering Matrix of Green Efficiency of the Coastal Regions 
after Adjustment 

To further analyze the composition of the green efficiency of the coastal ocean 
economy, we considered the MLTFP index, the resource consumption index, and the 
environmental pollution emission index after the removal of external environmental 
factors to construct a three-dimensional clustering matrix of the ocean economy’s green 
efficiency. In this approach, the green efficiency of the ocean economy in different 
coastal regions is divided into four categories, and a comprehensive analysis of the 
green efficiency structure of the marine industry in the different areas is conducted. The 
spatial refraction is shown in Figure 2. 

Figure 2 
Spatial Refraction Graph of the Green Efficiency Model of China’s Ocean 

Economy  

 
 
The first category is “low consumption—low pollution—high green”, that is, the regions 
that perform well in marine resource consumption, marine environmental protection, and 
green efficiency. Only Hainan and Fujian appear in this category. The second category 
is “high consumption—low pollution—medium green”. This category’s prominent feature 
is that development of ocean economy primarily depends on the consumption of large 
quantities of marine resources. Liaoning, Shanghai, Zhejiang, and Shandong belong to 
this category. The green efficiency of the ocean economy in these regions is distinctly 
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average, and the intensity of environmental emissions is relatively low compared with 
the intensity of resource consumption. Liaoning has a relatively large proportion of 
marine fisheries and shipbuilding. However, its marine industry is in the low tier and 
exhibits resource waste. Zhejiang enjoys rich resources with respect to its marine 
fisheries and sea salt industry. Its marine industry includes more resource-dependent 
sub-industries. This secondary marine industry exhibits excessive consumption of 
resources due to technology constraints. Shanghai possesses a developed shipbuilding 
industry, and Shandong possesses an increasing proportion of the offshore oil and gas 
industry. The marine resources consumed by these marine sub-industries that generate 
continuous stimuli for ocean economic development do not demonstrate significant 
impacts on the marine environment in the short term. However, in the long term, the 
excessive consumption of resources is bound to cause a decrease in green efficiency. 
The third category is “low consumption—high pollution—medium green”. This 
category’s prominent feature is that ocean economic development occurs at the 
expense of environmental pollution and high emissions. The category primarily includes 
Hebei, Jiangsu, and Guangxi. Hebei and Jiangsu exhibit average marine industry green 
efficiency. These regions do not possess rich marine resources, which results in a lower 
intensity of resource consumption and a high proportion of secondary marine industry. 
Because Hebei borders on Beijing, it performs many polluting sub-industrial tasks for 
Beijing, which increases Hebei’s environmental pollution. It should be noted that in 
Guangxi, high pollution emissions and high green efficiency coexist. This phenomenon 
reveals that the poor environmental emission level in Guangxi is caused by its poor 
external environment, such as a low level of regional economic development, lagging 
marine scientific research, and inadequate investment in environmental pollution 
control, rather than by poor management. The fourth category is “high consumption—
high pollution—low green”. The regions in this category perform poorly in marine 
resource consumption, marine environmental protection, and the ocean economic 
green efficiency. Only Tianjin and Guangdong belong to this category, which should 
encourage those two regions not only to rely on a favorable external environment but 
also to focus on improving green technology management while developing the ocean 
economy in the future and thus to make green efficiency the engine for marine output 
growth.  

5 Conclusions and Policy Implications 
This paper first estimates the MLPI of the marine industry in 2004-2014 for 11 coastal 
regions. Then, it performs a comparative analysis with the traditional MPI. Finally, it 
revises the overestimation of marine industry efficiency due to the neglect of resource 
and environmental factors. To further study the impact of external environmental factors 
on the marine industry’s green efficiency after adjustment, we use a three-stage DEA 
method to comparatively analyze the differences between the initial ocean economic 
green efficiency and the green efficiency obtained after the removal of the impacts of 
external environmental factors and statistical noise. The conclusions and implications 
are as follows. 
Marine industrial structure, level of economic development, and level of marine 
professional skills have a significant negative impact on the slack variables of desired 
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output. Marine industrial structure and environmental pollution control efforts have a 
significant negative impact on the slack variables of undesired output. In addition, the 
level of economic development has a significant positive impact on the slack variables 
of undesired output. The green efficiency of the ocean economy relies on the 
optimization of the marine industrial structure and government support for the marine 
industry’s green development. Our results also reveal that the economic development 
in coastal areas affects the resources and the environment of coastal waters. Therefore, 
China should transform its traditional marine industry, cultivate a new marine industry, 
plan its future marine industry, further optimize the structure of marine personnel, and 
enhance the ability of marine scientific support while focusing on reducing land-based 
pollutant emissions and stabilizing the support role of the marine environment. 
After the removal of the influence of external environmental factors and random errors, 
the green TFP of China’s ocean economy, including decomposition efficiency and 
technological progress rate, decreases. Technical efficiency remains the primary factor 
restricting the improvement of the green efficiency of China’s ocean economy. This 
result suggests that ignoring external environmental factors and random errors result in 
overestimation of the green efficiency of China’s ocean economy. In addition, it implies 
that China must balance technical efficiency and technological progress under the dual 
restriction of resources and the environment while developing the marine industry. On 
the one hand, we must foster new elements of the ocean economic development while 
emphasizing the use of high technology and improving the technological level and 
capability of industrial development. On the other hand, during the process of 
introducing advanced technology for ocean economic development, we must focus on 
the improvement of technical efficiency, which represents an important element of the 
comprehensive improvement of ocean economic green efficiency. 
When we placed the coastal regions in the same external operating environment, their 
ranks for marine industry green efficiency underwent substantial changes. Tianjin, 
Shanghai, Jiangsu, Zhejiang, and Guangdong exhibited a decrease in their marine 
industry green TFP, which indicated that the previous high marine industry green 
efficiency of these regions was caused by a favorable external environment and good 
opportunities for development. In fact, a degree of mismanagement of green 
technologies occurred. We should not fully attribute the low green efficiency of the 
ocean economy in the remaining six regions to the lagging green technology 
management of these regions. The impact of a poor external environment resulted in 
the underestimation of their green efficiency.      
Based on the green efficiency of the ocean economy in different coastal regions, 
regional marine resource consumption, and environmental pollution, this study divides 
the green development structure of the ocean economy in the different regions into four 
categories: “low consumption—low pollution—high green”, “high consumption—low 
pollution—medium green”, “low consumption—high pollution—medium green”, and 
“high consumption—high pollution—low green”. Each region can examine its marine 
industry development model and accordingly adjust and optimize its marine industrial 
structure to comprehensively enhance the industry’s green efficiency. 
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