
 

Romanian Journal of Economic Forecasting – XIX (3) 2016 19

STATISTICAL ANALYSIS OF KEMIRA 

TYPE WEIGHTS BALANCING METHODS 

Aleksandras KRYLOVAS1 
Natalja KOSAREVA2 

Edmundas Kazimieras ZAVADSKAS3 

Abstract 
The article analyzes Multiple Criteria Decision Making (MCDM) problem when there are 
two different groups of evaluating criteria. It was shown how criteria weights can be 
calculated according to weights balancing method by formulating optimization task. 
Case study of the small dimensions problem was solved by Kemeny Median Indicator 
Ranks Accordance (KEMIRA) method with options re-selection. Next, 8 various 
candidates sorting algorithms – 6 based on voting theory methods and 2 algorithms 
based on Kemeny median – were compared with each other. Monte Carlo experiments 
were conducted for the cases of 3-10 experts, 3-5 candidates and probability values of 
correct decision p=0.4-0.8. The highest percent of correct decisions and the lowest 
percent of failed voting procedures were demonstrated by algorithms based on Kemeny 
median. 
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I. Introduction 
In application of MCDM methods it is important to establish priorities of the assessment 
criteria, since the quality of further application of the method (criteria weighting and 
alternatives ranking) depends on this. Generally, criteria priorities are determined with 
respect to experts opinion. However, expert evaluation has shortcomings. Morselli 
(2015)  analyzed the role of intuition in decision-making, as well as the effect of 
emotions, explaining the failures of human decision making processes. 
A comparative analysis of group decision methods was carried out by Fishburn (1971). 
The paper examines some explicit social choice functions that are generalizations of 
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the simple majority decision rule. Two different classes of such functions for choice from 
among two or more alternatives are summation procedures and completions of 
Condorcet's criterion (see Condorcet, 1785). A summation method of Borda (1784) and 
a Condorcet completion method were compared in Fishburn (1971) by computer 
simulation. With the number of voters varied from 3 to 21 and the number of alternatives 
varied from 3 to 9, about 90 percent of the 70,000 cases examined had a common 
winner for the two methods. 
Problem of multidimensional ordinal measurement by applying the well-known Kemeny 
rule from social choice theory was analysed by Athanassoglou (2015) and Muravyov 
(2014).  
The main ideas and contributions of the field of public choice, the properties of different 
voting rules are surveyed by Mueller (1997). A review of the theory of voting in medieval 
Europe is presented by McLean (1990).  Three procedures for elections when there are 
more than two candidates were analyzed. Two of the three propose Borda methods and 
the third a Condorcet method of successive pairwise comparison.  All three medieval 
works discuss problems of manipulation. 
Nurmi and Meskanen (2000)  have noticed that the classic voting paradoxes, viz. 
Borda's and Condorcet's, have obvious implications for certain MCDM situations. It 
implies that the notion of the best alternative, given a set of criteria and information 
about the ordinal ranking of the alternatives on those criteria, can be essentially 
arbitrary. Authors discussed the implications of paradox of multiple elections which is a 
situation where the result of multiple-item election may be a policy alternative that 
nobody voted for. Naamani-Dery et al. (2015)  introduced novel heuristics and showed 
how one can operate under the Borda voting protocol. 
Merlin, Tataru and Valognes (2002) calculated the probability of Condorcet's voting 
paradox in three-candidate elections.  The probability of individual and coalitional 
manipulation of three specific social choice functions (Borda rule, Copeland rule, 
Plurality rule) in three-alternative elections was calculated by Diss (2015). 
Some simple proofs of variations of Arrow's theorem (see Arrow, 1951) with very little 
mathematical knowledge required is presented in the course guide of Lum and Kurtz 
(1975). Approval voting has been investigated by Maniquet and Mongin (2015) in an 
Arrovian framework of collective preference and in connection with Arrow's impossibility 
theorem. Although many axiomatic results concerning aggregation procedures in multi-
criteria decision aiding have been obtained in the framework of social choice theory, 
Marchant (2003) argued that social choice theory, which is helpful for a better 
understanding of some aggregation procedures, is not totally appropriate for multi-
criteria decision aiding. 
Close relation of social choice theory with multiple criteria decision-making (MCDM) 
especially in group decision contexts was revealed in the article by Srdjevic (2007). 
Author investigated two possible contexts in modeling decentralized decision problems 
in water management.  Potthoff (2010) ascertained  that public opinion polls are not 
generally designed to try to identify a Condorcet candidate. Modern social choice theory 
treats voting as a method for aggregating diverse preferences and values unlike 
Condorcet approach, where voting is a method for aggregating information.  
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The paper by Yu  and Hu (2010) develops an integrated MCDM approach that combines 
the voting method and the fuzzy TOPSIS (Technique for Order Preference by Similarity 
to Ideal Solution) method to evaluate the performance of multiple manufacturing plants 
in a fuzzy environment.  The voting method is used in this study to determine the 
appropriate criteria weights. Akhavan et al. (2015) in their paper proposed a systematic 
approach for an effective strategic alliance partner selection. The results are combined 
with the help of the Borda method to choose the best alternative. 
In the study by Kim and Chung (2013) TOPSIS combined with the voting methods 
(Borda count and Copeland’s methods) approach was applied to a water-resource 
system in South Korea. Noticeable that rankings from the voting-based methods did not 
differ much from those from non-voting-based (i.e., average-based) methods. Madani, 
Read and Shalikarian (2014) employed several practical and popular voting methods to 
solve a multi-stakeholder hydro-environmental management problem.  
In Srdjevic et al. (2015) it was shown how the social choice theory (SCT) with its voting 
systems can be efficiently combined with MCDM and AHP (Analytic Hierarchy Process) 
in particular, in various group-decision contexts.  
Dadelo et al. (2014) have proposed a method of balancing criteria weights. The idea of 
this method is to obtain the weights while solving a conditional optimization problem 
formulated for that purpose. Weights were ranked in the order of criteria importance, 
which takes into account the opinion of experts calculating the average of ranks for each 
criterion. In Krylovas et al. (2014)  Kemeny median has been proposed instead of the 
average of ranks and this method was named KEMIRA (KEmeny Median Indicator 
Ranks Accordance). The method has been modified and adapted to solve specific 
problems in Kosareva et al. (2016), Krylovas et al. (2016). 
This article discusses the methods that we call KEMIRA type methods and compare 
them to each other and voting theory methods. For the best option determination in 
various areas voting theory methods are naturally suited. In the article 6 selected widely 
used voting theory methods are compared with two new Kemeny median-based 
methods. The statistical experiment was carried out by the Monte Carlo simulations. 
The average numbers of correct decisions, as well the average numbers of failed voting 
procedures were compared for different methods. 

II. Task formulation 

Suppose we have N objects evaluation results by criteria from two different criteria 
groups X  and Y  (for example, internal and external criteria): 
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Evaluation results 
)( j

ix , 
)( j

iy gain values from 0 to 1 and the best object assessment 

is )1,...,1,1();( YX , the worst evaluation – )0,...,0,0();( YX .  

Criteria 
)( j

ix and  
)( j

iy have different importance, which is identified by expert 

established criteria preferences: 
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.  (1) 

Our goal is to create the criterion function which enables selection of the "best" objects 
according to criteria groups X  and Y evaluations.  
Write down weighted averages 
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were coefficients 
jxiw , 

kyiw  satisfy the conditions agreed with preferences (1): 
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Let’s denote 
yx

YX  , subsets of the set  NJ ,...,2,1 , which elements satisfy   

respective inequalities 

 .,)(;)( )()( JjYWXW y
j

Wx
j

W yx
   (4) 

Subsequently, 
x

X and 
y

Y are the sets of "good" objects according to criteria X  and 

Y  respectively with thresholds x and  y . Notice, that and   YX , when 

1 . Consider the sets 

   AYXBYXA
yxyx

\,    (5) 

and denote the number of their elements: ., nBBnAA   

Therefore, the set A  contains objects satisfying both criteria (4),  the so-called "good" 
objects, and the set B - satisfying only one of the mentioned criteria (the "doubtful" 

objects). At higher parameters x and  y values, in general, the number of elements 

nA  of the set A  decreases. Good balancing of weights yx ww ,  provides creating of 

the weighted averages (2), which will allow to construct the set A  with sufficient number 
of elements nA  (for example, 15 or 20% of N ) and the set B  containing minimum 
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number of items nB .  Optimal weights allow to distinguish the biggest set of "good" 
objects (according to both criteria) and the smallest set of "doubtful" objects (according 
to one criterion). Let’s construct two weights balancing quality assessing functions 
(metrics): 

 
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and solve optimization problems 
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when weights yx ww , satisfy (3). We'll maximize the agreement between two criteria 

groups X  and Y  by minimizing the values of distance functions (8).  
In this article, we will not examine algorithms for solution of problems (8), (3) (see 
Dadelo (2014). We'll show, how problem of small dimensions Nnn yx ,,  can be solved 

by options re-selection. 

 III. Example 

Consider 20N objects evaluations: 

 
Object 

1x  2x  3x  1y  2y  3y  4y  

1 0.3 0.5 0.6 0.3 0.5 0.6 0.4 

2 0.4 0.9 0.5 0.9 0.5 0.6 0.6 

3 0.6 0.6 0.2 0.2 0.2 0.6 0.3 

4 0.2 0.6 0.3 0.3 0.4 0.7 0.4 

5 0.3 0.4 0.7 0.3 0.8 0.6 0.4 

6 0.4 0.3 0.8 0.5 0.1 0.2 0.7 

7 0.6 0.4 0.5 0.4 0.8 0.6 0.2 

8 0.1 0.2 0.7 0.3 0.8 0.5 0.2 

9 0.4 0.8 0.6 0.6 0.6 0.1 0.7 

10 0.2 0.3 0.8 0.4 0.2 0.9 0.6 

11 0.5 0.2 0.6 0.7 0.3 0.5 0.1 

12 0.6 0.1 0.7 0.9 0.5 0.2 0.9 

13 0.4 0.2 0.9 0.4 0.1 0.8 0.6 

14 0.6 0.7 0.3 0.4 0.5 0.5 0.8 

15 0.5 0.1 0.9 0.4 0.1 0.5 0.9 
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Object 
1x  2x  3x  1y  2y  3y  4y  

16 0.5 0.2 0.9 0.4 0.8 0.3 0.2 

17 0.4 0.1 0.8 0.3 0.3 0.8 0.6 

18 0.6 0.4 0.5 0.2 0.2 0.9 0.4 

19 0.5 0.8 0.4 0.8 0.7 0.4 0.1 

20 0.1 0.5 0.9 0.9 0.8 0.3 0.3 

 
Here 4,3  yx nn . Suppose, that experts assigned the following criteria priorities of 

the form (1): 

 312 xxx  ; 1243 yyyy  .   (9) 

Let i
xW , 

i
yW  be non-negative integers. Make the weights xw  and yw  so: 

 
 

,10

,0,,,
10

1

321

312321





xxx

xxxxxxx

WWW

WWWWWWw
,  (10) 

 
 

.10

,0,,...,
10

1

4321

124341





yyyy

yyyyyyy

WWWW

WWWWWWw
 (11) 

So, there are 14i  weights i
xw combinations satisfying conditions (10): 

i  1 2 3 4 5 
i
xw  (1.0,0.0,0.0) (0.9,0.1,0.0) (0.8,0.2,0.0) (0.8,0.1,0.1) (0.7,0.3,0.0) 

i  6 7 8 9 10 
i
xw  (0.7,0.2,0.1) (0.6,0.4,0.0) (0.6,0.3,0.1) (0.6,0.2,0.2) (0.5,0.5,0.0) 

i  11 12 13 14  
i
xw  (0.5,0.4,0.1) (0.5,0.3,0.2) (0.4,0.4,0.2) (0.4,0.3,0.3)  

 

and 23i  weights 
i
yw , satisfying conditions (11): 

i  1 2 3 4 

i
yw  

(1.0,0.0,0.0,0.0) (0.9,0.1,0.0,0.0) (0.8,0.2,0.0,0.0) (0.8,0.1,0.1,0.0) 

i  5 6 7 8 

i
yw  

(0.7,0.3,0.0,0.0) (0.7,0.2,0.1,0.0) (0.7,0.1,0.1,0.1) (0.6,0.4,0.0,0.0) 

i  9 10 11 12 

i
yw  

(0.6,0.3,0.1,0.0) (0.6,0.2,0.2,0.0) (0.6,0.2,0.1,0.1) (0.5,0.5,0.0,0.0) 
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i  13 14 15 16 

i
yw  

(0.5,0.4,0.1,0.0) (0.5,0.3,0.2,0.0) (0.5,0.3,0.1,0.1) (0.5,0.2,0.2,0.1) 

i  17 18 19 20 

i
yw  

(0.4,0.4,0.2,0.0) (0.4,0.4,0.1,0.1) (0.4,0.3,0.3,0.0) (0.4,0.3,0.2,0.1) 

i  21 22 23  

i
yw  

(0.4,0.2,0.2,0.2) (0.3,0.3,0.3,0.1) (0.3,0.3,0.2,0.2)  

 
Calculate tabular data weighted averages (2) bearing in mind the constraints (9). For 
example, 

.55.03.01.08.01.04.02.06.06.0)4.0,6.0,8.0,3.0()(

,47.06.01.03.02.05.07.0)6.0,5.0,3.0()(
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Calculate functions 1W  and 2W  values according to the formulas (6) and (7) for each 

xw  and yw  pair by summing through all N  objects. Write the calculated values in the 

Table 1 (each cell the top number is the value 1W , the bottom number – 2W ). 

 
Table 1 

Values of functions 1W  (the top number) and 2W  (the bottom number) 
for all 3222314   weights combinations 

i  
1
xw  

2
xw  

3
xw  

4
xw  

5
xw  

6
xw  

7
xw  

1
yw  

2.800 
0.721 

2.590 
0.670 

2.380 
0.642 

2.720 
0.699 

2.410 
0.640 

2.690 
0.696 

2.480 
0.665 

2
yw  

2.640 
0.676 

2.410 
0.618 

2.200 
0.584 

2.540 
0.644 

2.230 
0.578 

2.510 
0.637 

2.300 
0.601 

3
yw  

2.480 
0.644 

2.250 
0.578 

2.060 
0.537 

2.360 
0.599 

2.050 
0.526 

2.330 
0.588 

2.120 
0.547 

4
yw  

2.360 
0.643 

2.050 
0.558 

1.780 
0.494 

2.040 
0.512 

1.590 
0.459 

1.870 
0.477 

1.640 
0.461 

5
yw  

2.360 
0.625 

2.090 
0.553 

1.940 
0.505 

2.220 
0.569 

1.890 
0.489 

2.190 
0.553 

1.940 
0.507 

6
yw  

2.260 
0.621 

1.930 
0.529 

1.660 
0.456 

1.860 
0.473 

1.490 
0.413 

1.690 
0.430 

1.520 
0.409 

7
yw  

2.560 
0.715 

2.190 
0.615 

1.840 
0.528 

1.700 
0.485 

1.650 
0.462 

1.450 
0.410 

1.500 
0.427 

8
yw  

2.280 
0.621 

2.030 
0.544 

1.820 
0.491 

2.080 
0.554 

1.790 
0.469 

2.050 
0.534 

1.800 
0.483 

9
yw  

2.220 
0.615 

1.870 
0.518 

1.600 
0.437 

1.740 
0.452 

1.410 
0.386 

1.530 
0.401 

1.420 
0.375 
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i  
1
xw  

2
xw  

3
xw  

4
xw  

5
xw  

6
xw  

7
xw  

10
yw  

2.440 
0.684 

2.070 
0.580 

1.700 
0.488 

1.600 
0.445 

1.470 
0.417 

1.330 
0.364 

1.320 
0.381 

11
yw  

2.560 
0.708 

2.190 
0.603 

1.820 
0.509 

1.640 
0.462 

1.590 
0.435 

1.350 
0.376 

1.400 
0.392 

12
yw  

2.200 
0.632 

2.010 
0.553 

1.820 
0.496 

2.000 
0.557 

1.730 
0.470 

1.950 
0.532 

1.700 
0.479 

13
yw  

2.200 
0.625 

1.870 
0.524 

1.600 
0.440 

1.660 
0.452 

1.410 
0.383 

1.490 
0.395 

1.360 
0.366 

14
yw  

2.440 
0.691 

2.070 
0.583 

1.700 
0.487 

1.580 
0.442 

1.450 
0.411 

1.290 
0.354 

1.360 
0.368 

15
yw  

2.560 
0.714 

2.190 
0.606 

1.820 
0.509 

1.620 
0.458 

1.570 
0.429 

1.330 
0.366 

1.400 
0.379 

16
yw  

3.060 
0.837 

2.670 
0.733 

2.380 
0.638 

1.980 
0.553 

2.090 
0.558 

1.650 
0.456 

1.800 
0.499 

17
yw  

2.520 
0.710 

2.150 
0.603 

1.780 
0.506 

1.600 
0.460 

1.530 
0.428 

1.290 
0.370 

1.480 
0.381 

18
yw  

2.520 
0.710 

2.150 
0.603 

1.780 
0.506 

1.600 
0.460 

1.530 
0.428 

1.290 
0.370 

1.480 
0.381 

19
yw  

3.040 
0.828 

2.650 
0.723 

2.360 
0.628 

1.900 
0.544 

2.070 
0.547 

1.570 
0.447 

1.780 
0.489 

20
yw  

3.220 
0.852 

2.810 
0.747 

2.480 
0.650 

2.040 
0.565 

2.190 
0.568 

1.690 
0.466 

1.900 
0.506 

21
yw  

4.040 
1.035 

3.670 
0.935 

3.300 
0.844 

2.840 
0.741 

2.930 
0.764 

2.470 
0.648 

2.680 
0.700 

22
yw  

4.020 
1.026 

3.650 
0.926 

3.280 
0.835 

2.820 
0.733 

2.910 
0.756 

2.450 
0.640 

2.600 
0.692 

23
yw  

4.200 
1.055 

3.830 
0.955 

3.460 
0.863 

3.000 
0.761 

3.090 
0.782 

2.630 
0.667 

2.780 
0.717 

 

i  8
xw  

9
xw  

10
xw  

11
xw  

12
xw  

13
xw  

14
xw  

1
yw  

2.760 
0.717 

3.120 
0.803 

2.550 
0.712 

2.910 
0.761 

3.330 
0.841 

3.580 
0.897 

4.000 
0.995 

2
yw  

2.600 
0.657 

2.960 
0.748 

2.390 
0.650 

2.750 
0.701 

3.170 
0.786 

3.380 
0.843 

3.840 
0.945 

3
yw  

2.440 
0.606 

2.800 
0.702 

2.230 
0.597 

2.590 
0.650 

3.010 
0.739 

3.220 
0.797 

3.760 
0.903 

4
yw  

1.820 
0.477 

2.120 
0.547 

1.790 
0.497 

1.890 
0.511 

2.230 
0.576 

2.420 
0.631 

2.860 
0.725 

5
yw  

2.280 
0.568 

2.640 
0.668 

2.090 
0.552 

2.430 
0.611 

2.890 
0.703 

3.140 
0.761 

3.680 
0.869 
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i  8
xw  

9
xw  

10
xw  

11
xw  

12
xw  

13
xw  

14
xw  

6
yw  

1.640 
0.424 

1.940 
0.499 

1.670 
0.445 

1.710 
0.457 

2.070 
0.527 

2.220 
0.583 

2.760 
0.681 

7
yw  

1.260 
0.369 

1.480 
0.383 

1.650 
0.430 

1.370 
0.371 

1.430 
0.383 

1.540 
0.426 

1.900 
0.497 

8
yw  

2.120 
0.545 

2.560 
0.646 

1.970 
0.530 

2.290 
0.586 

2.810 
0.680 

3.060 
0.736 

3.600 
0.846 

9
yw  

1.500 
0.389 

1.820 
0.468 

1.550 
0.409 

1.570 
0.419 

1.950 
0.492 

2.140 
0.547 

2.680 
0.649 

10
yw  

1.140 
0.319 

1.360 
0.341 

1.430 
0.387 

1.170 
0.324 

1.250 
0.343 

1.380 
0.392 

1.820 
0.472 

11
yw  

1.140 
0.323 

1.300 
0.336 

1.470 
0.390 

1.170 
0.319 

1.190 
0.330 

1.340 
0.372 

1.720 
0.449 

12
yw  

2.040 
0.539 

2.520 
0.639 

1.850 
0.522 

2.210 
0.576 

2.730 
0.670 

2.980 
0.723 

3.520 
0.834 

13
yw  

1.400 
0.377 

1.780 
0.455 

1.430 
0.395 

1.470 
0.403 

1.870 
0.475 

2.060 
0.528 

2.600 
0.631 

14
yw  

1.080 
0.300 

1.220 
0.319 

1.370 
0.368 

1.090 
0.297 

1.170 
0.314 

1.300 
0.361 

1.720 
0.443 

15
yw  

1.060 
0.304 

1.160 
0.314 

1.390 
0.371 

1.090 
0.292 

1.070 
0.299 

1.200 
0.339 

1.600 
0.419 

16
yw  

1.360 
0.381 

1.080 
0.313 

1.630 
0.471 

1.250 
0.341 

0.950 
0.260 

1.020 
0.267 

1.040 
0.280 

17
yw  

1.100 
0.311 

1.240 
0.326 

1.490 
0.375 

1.110 
0.302 

1.210 
0.315 

1.260 
0.355 

1.660 
0.436 

18
yw  

1.080 
0.316 

1.160 
0.322 

1.510 
0.378 

1.090 
0.296 

1.090 
0.300 

1.160 
0.333 

1.540 
0.411 

19
yw  

1.300 
0.372 

1.020 
0.308 

1.630 
0.462 

1.190 
0.333 

0.930 
0.257 

0.960 
0.267 

1.040 
0.286 

20
yw  

1.400 
0.387 

1.080 
0.316 

1.650 
0.473 

1.230 
0.340 

0.890 
0.255 

0.920 
0.253 

0.960 
0.263 

21
yw  

2.180 
0.570 

1.680 
0.465 

2.470 
0.656 

1.950 
0.513 

1.430 
0.392 

1.260 
0.354 

0.960 
0.266 

22
yw  

2.100 
0.562 

1.620 
0.459 

2.430 
0.648 

1.850 
0.507 

1.350 
0.387 

1.300 
0.351 

0.980 
0.269 

23
yw  

2.280 
0.588 

1.800 
0.484 

2.530 
0.670 

2.030 
0.529 

1.530 
0.409 

1.340 
0.367 

1.040 
0.279 

 
So, we get solutions of two optimization problems (8): 

 
.1.02.03.04.0)(

,2.03.05.0)(:890.0min

1243

312
1

yyyyYW

xxxXWW

y

x




 (12) 



Institute for Economic Forecasting 
 

 Romanian Journal of Economic Forecasting – XIX (3) 2016 28

 
.1.02.03.04.0)(

,2.04.04.0)(:253.0min

1243

312
2

yyyyYW

xxxXWW

y

x




 (13) 

Designed criteria (12) and (13) will be compared applying the sets A  and B  (5).  We'll 
take different parameter yx    values and look for elements of the sets A  and 

B . In the first row of each cell of the Table 2 there are sets obtained according to the 
formula (12), in the second row –  according to the formula (13). 

Table 2 

Sets A  and B  obtained with different values   and functions 1W  (the 

top set), 2W  (the bottom set) 

  A  nA  B  nB  

0.40 
{ 2,3,4,5,6,7,9,13,14,18,19,20 } 

{ 2,3,5,6,7,9,13,14,15,18,19,20 } 
12 
12 

{ 1,15,16,17 } 
{ 1,4,11,12,16,17 } 

4 
6 

0.45 
{ 2,3,9,14,19,20 } 

{ 2,3,9,14,19 } 
6 
5 

{ 1,5,6,7,15,17,18  } 
{ 5,6,7,15,16,17,18,20 } 

7 
8 

0.50 
{ 2,3,9,14,19 } 
{ 2,3,9,14,19 } 

5 
5 

  
{ 7,18  } 

0 
2 

0.55 
{ 2,9,14,19 } 
{ 2,9,14,19 } 

4 
4 

  

  

0 
0 

0.60 
{ 9 } 
{ 9 } 

1 
1 

{ 2,19 } 
{ 2,19 } 

2 
2 

 
We see that both criteria (12) and (13) determine the same "best" objects  
{ 2,3,9,14,19 } belonging to the set A . However, lower values nB  (the number of 

"doubtful" objects) can be interpreted in favour of the criterion 1W , i. e. (12). 

IV. Voting theory methods 

One of the most important assumptions for the weights balancing method is 
determination of criteria priority (1). Usually, in practice  criteria preferences are 
determined from expert opinions. When expert opinions are different, preferences can 
be determined by various methods. 
In Krylovas et al. (2014) authors presented and in Kosareva et al. (2016) and Krylovas 
et al. (2016) expanded the KEmeny Median Indicator Rank Accordance (KEMIRA) 
method, where criteria priority set by constructing Kemeny median (see Kemeny 
(1959)). In the current article the priority preferences are established by different voting 
theory methods and they are compared with the median methods. 
First, show how the winner and an outsider are determined by voting theory methods, 
dealing with such layouts (priorities) of 5 candidates determined by 10 voters: 
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 (14) 

It is convenient to assign each of the 5 candidates rank 1 for the last place, 2 – for the 
penultimate and so on. Write down the grades, as this matrix columns and in the last 
column write down the total amount of received grades: 

 

312515334512

373244545451

395453253345

191122122233

2443314 11 124
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2

1

x

x

x

x

x

 (15) 

A simple and often used method – declare the winner (the leader), the candidate having 
the highest score and the defeated (outsider) –  the candidate having the least score. 
In the literature, this method is sometimes called the Borda method (see Borda, 1784). 
So in the investigating example the winner with respect to the Borda method is third 
candidate, and the defeated – the second candidate. Create another table, where type 
the number of places taken by each candidate: 
 

Candidate 1 place 2 place 3 place 4 place 5 place 

1 cand. 0 3 2 1 4 

2 cand. 0 0 2 5 3 

3 cand. 4 2 3 1 0 

4 cand. 3 4 1 1 1 

5 cand. 3 1 2 2 2 

 
Having this information, a leader and outsider can be provided even easier –  by the 
number of the first places  (majority method) and last places (minority method). So the 
winner by the majority method will be the third candidate, but an outsider is not the only 
one (first or second candidate). Minority method finds the same leader –  the third 
candidate, and an outsider –  the first one.   
We see that different methods differently set leaders and outsiders and sometimes do 
not allow to identify them unambiguously.  In voting theory is well known Condorcet 
principle –  compare each candidate to each (see Condorcet, 1785). Count the number 
of times the first candidate had an advantage (won duels) against the other: 
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21 xx   31 xx   41 xx   51 xx   

5 1 3 5 
 
The first candidate is not stronger in Condorcet principle sense than any other 
candidate. Similarly calculate the second and third candidates duels achievements: 

12 xx   32 xx   42 xx   52 xx   

5 0 1 3 

13 xx   23 xx   43 xx   53 xx   

9 10 5 5 
 
The third candidate won against the first and the second by Condorcet method. He 
receives 2 points (the number of duels won). Calculate how many duels won the fourth 
and fifth candidates: 
 

14 xx   24 xx   34 xx   54 xx   

7 9 5 6 

15 xx   25 xx   35 xx   45 xx   

5 7 5 4 
 
The fourth candidate gets 3 points, and the fifth – one point. The winner in this case is 
the fourth candidate, and outsiders are two – first and second candidates. Notice that 
the "best" method to set leader or outsider does not exist. This is the fundamental voting 
theory result known as Arrow theorem for which author in 1972 granted the Nobel Prize 
in economics.  
 

V. Candidates sorting algorithms 

Our goal is to provide candidates with places (ranks), depending on priorities set by 
voters (14). Consider 6 sorting algorithms based on Condorcet, Borda, the majority and 
minority methods presented in Table 3. In all cases, the algorithm terminates if the 
leader or the outsider are determined ambiguously. In addition, we examine two more 
sorting algorithms on the basis of Kemeny median. To each priority 
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For example, the priority  
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Kemeny distance between priorities 
 1rX  and 

 2rX  is defined as:  
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Kemeny median of the priorities set 
      rXXX ,...,, 21

 is called the priority KM  for 

which the sum   


r

i
K

i
K MX

1

,  gains it's minimum value between all possible 

priorities. So, when constructing a median of priorities set, we have one more candidate 
sorting algorithm denoted by K . 

Consider the other distance between the different priorities 
 1rX  and 

 2rX . Treat the 
relevant  permutations as vectors: 

         



n

i

r
i

r
i

rr
P xxXX

1

2121 , . (17) 

For example,   .4133221, 132321 xxxxxxP   Similarly, 

define the median PM  and we have the additional sorting algorithm denoted by P . As 

in the case of Kemeny median this permutations median can be not the only one. It will 
be treated that the algorithm does not perform sorting, since it terminates. 
 

Table 3 
Description of 8 sorting algorithms 

Number Method Algorithm 
1 C  Condorcet method determines the outsider and it is removed from 

the list of candidates. Again outsider determined of the remaining 
candidates, and so on. 

2 C  Condorcet method determines the leader and it is removed from 
the list of candidates. Again leader determined of the remaining 
candidates, and so on. 

3 D  Majority method determines the leader and it is removed from the 
list of candidates. Again leader determined of the remaining 
candidates, and so on. 

4 M  Minority method determines the outsider and it is removed from the 
list of candidates. Again outsider determined of the remaining 
candidates, and so on. 
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Number Method Algorithm 
5 B  Borda method determines the outsider and it is removed from the 

list of candidates. Again outsider determined of the remaining 
candidates, and so on. 

6 B  Borda method determines the leader and it is removed from the list 
of candidates. Again leader determined of the remaining 
candidates, and so on. 

7 K  Kemeny median based method when distance function determined 
by  formula (16). 

8 P  Permutations median based method when distance function 
determined by  formula (17). 

VI. The conditions and results of the experiments 

In this article, a statistical test to compare 8 provided priority setting algorithms was 
conducted using the Monte Carlo method. We considered the cases where r experts 
(voters) are ranking 3, 4 or 5 candidates and sorting (voting) results are processed by 

each algorithm PKBBMDCC ,,,,,,,  . The number of experts varied from 3 

to 10. The set of priorities (voting result) is generated as follows. Each expert with a 
certain probability p  ( 8.03.0 p ) can select only one fixed combination, which we 

treat as a "right" or, with a probability of p1  any of "wrong" combinations. The 

numbers of "wrong" combinations are 5, 23 or 119 depending on the number of 
candidates (3, 4, 5). Suppose that all "wrong" combinations probabilities are equal. Each 
algorithm may lead to T –  sorting result coincided with the "true" combination, F – 
false, the result does not match the "true" combination, N  –  sorting algorithm failed.   

Tables 4-5 present the results of experiments in which every vote was randomly 
generated 1000 times and values of NFT ,, are written in the columns in the 

appropriate cell of the table. Another computer voting result is written in another column 
cell. Every group of 1000 voting experiments was repeated by 10 times. 

Table 4 
Voting results of 8 sorting algorithms for 3 candidates, 3 experts, 5.0p  

1 C  T 
F 
N 

569 
399 
32 

597 
362 
41 

588 
373 
39 

573 
394 
33 

572 
395 
33 

589 
376 
35 

578 
384 
38 

591 
370 
39 

577 
380 
43 

600 
364 
36 

2 C  T 
F 
N 

569 
399 
32 

597 
362 
41 

588 
373 
39 

573 
394 
33 

572 
395 
33 

589 
376 
35 

578 
384 
38 

591 
370 
39 

577 
380 
43 

600 
364 
36 

3 D  T 
F 
N 

546 
315 
139 

569 
304 
127 

564 
291 
145 

553 
309 
138 

544 
319 
137 

558 
307 
135 

544 
294 
162 

560 
287 
153 

539 
309 
152 

570 
281 
149 

4 M  T 
F 
N 

536 
308 
156 

572 
288 
140 

555 
289 
156 

534 
318 
148 

538 
313 
149 

559 
288 
153 

553 
308 
139 

556 
292 
152 

551 
297 
152 

576 
301 
123 
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5 B  T 
F 
N 

487 
360 
153 

524 
324 
152 

519 
354 
127 

505 
375 
120 

506 
357 
137 

514 
353 
133 

509 
352 
139 

523 
338 
139 

505 
349 
146 

535 
332 
133 

6 B  T 
F 
N 

493 
367 
140 

524 
336 
140 

514 
348 
138 

522 
362 
116 

508 
363 
129 

515 
341 
144 

512 
360 
128 

516 
338 
146 

520 
351 
129 

518 
338 
144 

7 K  T 
F 
N 

569 
399 
32 

597 
362 
41 

588 
373 
39 

573 
394 
33 

572 
395 
33 

589 
376 
35 

578 
384 
38 

591 
370 
39 

577 
380 
43 

600 
364 
36 

8 P  T 
F 
N 

513 
224 
263 

544 
230 
226 

531 
207 
262 

514 
233 
253 

510 
237 
253 

528 
219 
253 

519 
218 
263 

525 
209 
266 

513 
226 
261 

546 
218 
236 

 
Table 5 

Voting results of 8 sorting algorithms for 5 candidates, 10 experts, 
5.0p  

1 C  T 
F 
N 

749 
27 
224 

762 
34 

204 

735 
27 

238 

731 
32 
237 

738 
36 
226 

749 
40 
211 

786 
21 
193 

757 
31 
212 

769 
34 

197 

758 
33 
209 

2 C  
T 
F 
N 

677 
12 
311 

668 
13 

319 

642 
11 

347 

657 
16 
327 

659 
9 

332 

666 
8 

326 

686 
4 

310 

665 
8 

327 

681 
10 

309 

665 
13 
322 

3 D  T 
F 
N 

829 
32 
139 

830 
26 

144 

825 
25 

150 

812 
35 
153 

818 
37 
145 

833 
28 
139 

848 
34 
118 

836 
26 
138 

837 
27 

136 

828 
36 
136 

4 M  T 
F 
N 

842 
20 
138 

843 
31 

126 

823 
28 

149 

828 
29 
143 

814 
42 
144 

828 
29 
143 

865 
22 
113 

833 
30 
137 

833 
34 

133 

832 
20 
148 

5 B  
T 
F 
N 

579 
190 
231 

596 
180 
224 

557 
195 
248 

562 
187 
251 

559 
195 
246 

571 
176 
253 

601 
182 
217 

574 
200 
226 

600 
162 
238 

543 
203 
254 

6 B  T 
F 
N 

577 
183 
240 

565 
176 
259 

578 
192 
230 

549 
187 
264 

568 
176 
256 

579 
189 
232 

609 
163 
228 

588 
186 
226 

600 
178 
222 

578 
192 
230 

7 K  T 
F 
N 

756 
30 
214 

762 
36 

202 

739 
30 

231 

738 
35 
227 

742 
37 
221 

753 
42 
205 

788 
23 
189 

757 
39 
204 

772 
37 

191 

760 
36 
204 

8 P  T 
F 
N 

874 
46 
80 

883 
38 
79 

866 
42 
92 

862 
54 
84 

857 
53 
90 

881 
42 
77 

888 
45 
67 

871 
40 
89 

879 
48 
73 

869 
50 
81 

 
For the statistical analysis 100 experiments were performed with various values of 
experts number, probability of the correct decision and the number of candidates. Then 
average values of the numbers of correct decision, wrong decision and failed voting 
procedures were calculated for 8 sorting algorithms. 
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In Figure 1 the average numbers of correct decisions subject to number of experts is 
presented in the case of 5 candidates, 3, 5, 7, 10 experts and 6.0p . In the Figure 2 

we see the average numbers of failed voting procedures depending on the number of 
experts for the same experiment. With the growing number of experts P  (8) method 
gives the highest percentage of correct decisions. In addition, the growing number of 
experts in all methods lead to the increasing percent of correct solutions. The number 
of failed voting procedures decreases with the growing number of experts, except the 
both Condorcet (1), (2) and K  (7) methods for 10 experts. The best results demonstrate 
P  (8) and K  (7) methods. In Figure 3 the dependence of the average number of 
correct decisions on the probability p  value is depicted for 4 candidates, 5 experts and 

8.0,7.0,6.0,5.0,4.0p  and in Figure 4 – the average number of failed voting 

procedures depending on the probability p  value. As the p  value (expert qualification) 

increases, for all methods probability of obtaining the correct decision also increases. 
The best method is Kemeny (7) –  it has the highest number of correct decisions and 
the lowest number of terminated procedures. The minimum number of erroneous 
decisions have the majority (3) and minority (4) approaches. The number of erroneous 
decisions can be calculated by subtracting from 100 the average number of correct 
decisions and the average number of failed voting procedures. Both Condorcet methods 
(1), (2) give identical results. The dependence of the number of correct decisions and 
terminated procedures on the number of candidates presented in Figures 5 - 6. With the 
growing number of candidates right decisions percent decline for all methods. For three 
candidates the largest number of correct decision derived by Kemeny (7) and both 
Condorcet methods, in other cases –  by Kemeny (7) method. The average number of 
failed voting procedures grows when the number of candidates increases for all 
methods, Kemeny (7) method shows the lowest percentage of the terminated 
procedures. The minimum number of erroneous decisions in all cases gives the 
permutations (8) method. 
 

VII. Conclusions 

The article shows how certain MCDM problems could be solved by KEMIRA method, 
which allows to formulate optimization task. When there is small number of evaluating 
criteria, the problem can be solved by options re-selection as shown in the article when 
dealing with the simple example. The cornerstone moment of KEMIRA method is 
procedure of sorting criteria according to their importance by applying Kemeny median. 
Such sorting can be also performed in other ways. In this article KEMIRA type methods 
have been constructed using the principles of priority voting and they were compared 
with each other. The results of Monte Carlo statistical experiment show that KEMIRA 
type methods (7) and (8) are in most cases superior than voting theory methods. They 
give higher average number of correct decisions and lower number of failed voting 
procedures. 
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Figure 1 
The average numbers of correct decisions subject to experts, 5 

candidates, 3, 5, 7, 10 experts, 6.0p  

 
 

Figure 2 
The average numbers of of failed voting procedures subject to experts, 5 

candidates, 3, 5, 7, 10 experts, 6.0p  
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Figure 3 
The average numbers of correct decisions subject to probability

8.0,7.0,6.0,5.0,4.0p , 4 candidates, 5 experts  

 
 

Figure 4 
The average numbers of of failed voting procedures subject to 

probability 8.0,7.0,6.0,5.0,4.0p , 4 candidates, 5 experts  
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Figure 5 
The average numbers of correct decisions subject to candidates,  

3 experts, 3, 4, 5 candidates, 7.0p  

 
 

Figure 6 
The average numbers of of failed voting procedures subject to 

candidates, 3 experts, 3, 4, 5 candidates, 7.0p  
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