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Abstract  This paper shows that, in case of an econometric model with a high sensitivity to 
data, using stochastic optimization algorithms is better than using classical gradient 
techniques. 
                    In addition, we showed that the Repetitive Stochastic Guesstimation (RSG) 
algorithm –invented by Charemza-is closer to Simulated Annealing (SA) than to Genetic 
Algorithms (GAs), so we produced hybrids between RSG and SA to study their joint 
behavior. 
                 The evaluation of all algorithms involved was performed on a short form of the 
Romanian macro model, derived from Dobrescu (1996). The subject of optimization was 
the model’s solution, as function of the initial values (in the first stage) and of the objective 
functions (in the second stage). We proved that a priori information help “elitist “ 
algorithms (like RSG and SA) to obtain best results; on the other hand, when one has equal 
believe concerning the choice among different objective functions, GA gives a straight 
answer. 
             Analyzing the average related bias of the model’s solution proved the efficiency of 
the stochastic optimization methods presented. 
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Adriana Agapie1 
 

Stochastic Optimization in Econometric Models – A 

Comparison of GA, SA and RSG 
 

Introduction 

This paper is a study on the initial values’ influence on finding the optimal solution for the 

Romanian macromodel. Empirical trials showed the high sensitivity of the model’s output 

to small variations of the input values required to run the model. A second goal of our 

approach is rising some questions on the adequacy of different objective functions for the 

same economic model. 

We will present a comparison between gradient techniques and stochastic search 

techniques, namely: Genetic Algorithms (GA), Simulated Annealing (SA) and Repetitive 

Stochastic Guesstimation (RSG). The analysis of the suitable optimisation techniques is 

depicted in Section 1. Besides the gradient-based methods (with their well-known advantage 

of good local search precision), we also gave credit to modern, probabilistic optimization 

techniques. The evolutionary algorithms are devoted to multi-modale optimization (GA – 

population based and SA – individual based) showed good performance on global search 

and search space exploration). RSG – individual based, was also devoted to multi-modale 

problems, yet paying more attention to the expert choice of the initial values. 

The numerical results of applying the above techniques for finding the global extremum 

of the Romanian macromodel, including a comparative discussion on the several objective 

functions that one can associate to the macromodel, are presented in Section 2. A criticism 

of the whole analysis completes the paper. The short form of the Romanian macromodel, 

together with the mathematical considerations involved is presented in the Appendix. 

 

                                                           
1 The research was undertaken with support from the European Union’s Phare ACE Programme 1996. A 
special debt is owed to Woijciech Charemza for providing a consistent stream of encouragemnets and 
suggestions. 
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1 Stochastic Techniques for Function Optimisation 

This section introduces the optimisation techniques used in the Romanian macromodel 

analysis, while the experimental results of applying these tools are presented in Section 2. 

When initiating a numerical analysis of some economic model, one has to face a 

difficult problem: What optimisation algorithm should he/she use? Let us take a brief 

moment to explain how this question could be answered. 

Usually, this problem is solved by a reduction mechanism: classical algorithms from 

Operation Research (SIMPLEX, e.g.) are excluded, as they are limited to convex regular 

functions. Gradient techniques (Gauss-Seidel, e.g.) are the first candidates, as their speed 

and precision on problems with a single local optima is highly appreciated. Probabilistic 

search algorithms (like Genetic Algorithms or Simulated Annealing) come next: they are 

easy to implement and they do not require supplementary information about the objective 

function; besides, they showed good performance on multi-modale problems, where 

gradient techniques usually fail. Another potential candidate should be the recent Repetitive 

Stochastic Guesstimation, which mimics the way a real economist solves a parameter 

approximation problem. 

How should an econometrician choose among these different methods (and we have 

mentioned just a few of them)? Are there some mathematical guidelines supporting this 

decision? Generally speaking, the answer to this question is negative. As Wolpert and 

Macready have recently proved, there is no free lunch theorem for optimization Wolpert et 

al. (1997). That is, for each optimisation algorithm, the number of function classes on which 

it performs well is equal to the number of function classes on which it performs badly. In 

light of these results, the mathematician’s advice would be the following: ‘Concern about 

the particular function you want to optimise’. Summing up, one has to take into account the 

existing experimental evidence (or convergence results, when available) for the particular 

class of problems he/she tackles. Any algorithm is welcomed, and even the hybrid 

techniques deserve careful attention. 

This is the way we approached the problem of macromodel extremum analysis. Section 

1.1 concerns Genetic Algorithms, Section 1.2 introduces the Simulated Annealing method, 
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while Section 1.3 refers to Repetitive Stochastic Guesstimation (including its hybridisation 

with Simulated Annealing). 

1.1. Genetic Algorithms 

Genetic Algorithms (GA) – as presented by Goldberg (1989) or Michalewicz (1994) - are 

probabilistic search algorithms, which start with an initial population of likely problem 

solutions and then evolve towards better solutions. They are based on the mechanics of 

natural genetics and natural selection. 

GA combines survival of the fittest among string structures (in most cases) with a 

structured yet randomised information exchanges to form a robust (meaning efficient and 

efficacious) search algorithm. 

A simple GA requires the definition of five components: a genetic representation of 

potential problem solutions, a method for creating an initial population of solutions, a 

function verifying the fitness of the solution (called "objective function", or "fitness 

function"), genetic operators and some constant values for parameters used by the algorithm 

(such as population size, probability of applying an operator etc.). 

The natural parameters of the optimisation problem, which represent a potential 

solution, have to be coded as a finite-length string over some finite alphabet. This string is 

called chromosome and its components are called genes. A population consists in a set of 

chromosomes. 

The mechanics of a GA are surprisingly simple, involving only copying strings and 

swapping partial strings. Simplicity of operation and power of effect are two of the main 

attractions of the GA approach. A simple GA that yields well results in many practical 

problems is composed of three operators: reproduction (selection), crossover and mutation. 

Reproduction is a process in which individual strings are copied according to their 

objective function values. This fact means that strings with a higher value have a higher 

probability of contributing one or more offspring in the next generation. This operator is an 

artificial version of natural selection. 

The simple crossover is a two-step operator. First, members of the newly reproduced 

strings are mated at random and second, each pair of strings undergoes crossing over by 
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swapping some segments of genes with same size and position.  

The last operator, mutation, is performed on a bit by bit basis, by complementing (in the 

binary logic sense) a single bit position of a string 

 Some of the parameters of the GA are the population size (mostly fixed from a 

generation to another), the probabilities of applying each operator which can vary during the 

algorithm, the STOP conditions which can be determine by some time requirements or, 

when time is not critical, by precision and efficiency needs. 

 The GA can be simply represented in the following form: 

 

Simple Genetic Algorithm 

1. Set the iteration index to zero: j=0 

2. Generate the initial population P(0) 

3. Evaluate the chromosomes from P(0) 

4. Sort P(0) by the objective function values 

 5. j=j+1 

 6. Select the chromosomes for the next iteration 

 7. Apply genetic operators: crossover, mutation 

 8. Evaluate the offspring 

 9. Generate a new population P(j) 

10. Repeat 5-9, until some STOP conditions 

 

Let us make a brief discussion on the theoretical analysis of GA: extrapolating the simulated 

annealing theory onto GAs, Davis provided a complete formalisation of the genetic 

operators, including both the homogeneous and inhomogeneous case – Davis (1991). The 

results made use of the Perron-Frobenius and ergodicity theorems associated to non-

negative matrices and finite Markov chains, but they could not avoid the primitive form for 

the transition matrix, yielding non-convergence results only. Fogel independently drew this 

conclusion by proving the absorption of the canonical algorithm into the set of uniform 

populations – Fogel (1995). However, the matrix analysis of GAs came to a head when 
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Rudolph pointed out clearly that a canonical GA does not converge, but its elitist* variant 

does  -Rudolph (1994). 

Despite their indubitable correctness, we can not omit two major weaknesses of the 

convergence results proved up to this moment. First, they are too general: practically, these 

theorems make no difference between elitist GA and elitist random walk, for example. Both 

are convergent under the circumstances; but this does not correspond to the real case, where 

GA performs better (at least on some problem classes, in the light of the recent no free lunch 

theorems for optimization – Wolpert et al. (1997)). Second, the Markovian models designed 

up to this moment were not handling the premature convergence** of the algorithm, which 

still remains unsolved for common GA applications. Actually, this is the main problem in 

practice: at some moment in the GA evolution (depending on specific factors as problem 

difficulty, population size, mutation probability etc.) the current population is filled with 

instances of the same chromosome. Only accidentally improvements should be expected 

from that point further. 

Finally, we must mention that GAs are extensively used in all areas of applications, 

including the economic analysis and forecasting – see e.g. Goonatilake et al. (1995), 

Przechlewski et  al. (1996) or Agapie et. al. (1997), to mention only a few papers. 

1.2. Simulated Annealing 

Simulated Annealing (SA) is a stochastic relaxation technique introduced in 1983 by 

Kirkpatrick et al. (1983) and Laarhoven et al. (1987) for solving nonconvex optimisation 

problems. Its development was encouraged by good results on a large application area and 

also by a complete convergence theory (which is not the case in Genetic Algorithms, e.g.. 

We will briefly present in the following the SA algorithm, together with its theoretical 

properties.  

SA is so named by analogy to the annealing of solids, in which a crystalline solid is 

heated to its melting point and then allowed to cool gradually until it is again in the solid 

phase at some nominal temperature. At the absolute zero final temperature, the resulting 

                                                           
* The algorithm maintaining the best solution from a generation to another. 
** The GA stagnation in local optima, with all the chromosomes of the current population instances of a single 
individual.  
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solid achieves its most regular crystal configuration - corresponding to a (global) minimal 

value of the system's energy. Based on this natural methapor, SA provides a stochastic 

search algorithm, by identifying: 

- the energy function to the objective function; 

- the temperature to a non-negative control parameter, tending to zero as the iteration 

number increases; 

- the minimisation of the energy (objective) function to the optimisation task. 

Following Davis (1991), we introduce the SA algorithm in the following manner: Let a 

random variable be the system's (thermal) energy; at thermal equilibrium the probability 

distribution is completely determined by the system temperature. This distribution is called 

the Boltzman distribution (or the Gibbs distribution), and is given by: 

Pr{E E(i)}
exp E(i)

kT
Z(T)

                                          (1)= =
−⎧

⎨
⎩

⎫
⎬
⎭  

where:  E = the system energy (a random variable); 

  E(i) = the energy corresponding to state i (for readability, we consider only a 

   finite state space - denoted S); 

  k = Boltzman's constant; 

  T = the system temperature; 

  Z(T) = the partition function, that is a normalisation function of the form: 

Z(T) exp E(h)
kTh= −⎧

⎨
⎩

⎫
⎬
⎭

∑  

The main idea of the SA usage relies on the interpretation of formula (1), that is: "At 

elevated temperatures, the system occupies all states in its state space with nearly uniform 

probability, while at low temperatures, states having low energy are favoured. When the 

temperature approaches absolute zero, only states corresponding to the minimum value of 

energy have non-zero probability. Thus, the system's energy function can be effectively 

searched for its minimum value by starting the system at an elevated temperature and 

allowing it to cool gradually to absolute zero, at which point one of its minimum energy 

states is occupied with probability one" – Davis (1991). We must notice that the success of 
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the SA method is constrained by the requirement that the system achieves equilibrium at 

each temperature; just in this case the system energy distribution follows the Boltzman 

form, (1). This is the fundamental limitation of the method: if this requirement is not 

satisfied, one can notice the algorithm's stagnation in local optimal points, instead of 

converging to the global optima. 

Two more components must be defined for a complete picture of SA, namely: 

- the (stochastic) next state generation (i.e., the transition rule from a solution to another - 

the analogous of the "guess" from Repetitive Stochastic Guestimation (RSG), or of the 

"crossover + mutation" operation in Genetic Algorithms(GA)); 

- the (stochastic) acceptance mechanism (deciding whether a new candidate solution is 

maintained, or not - this decision is deterministic in RSG, by the requirement of 

improvement in both objective functions, while in GA it corresponds to the "selection 

operator", which may be elitist, roulette, disruptive etc.). 

The acceptance and generation operators are defined by matrices A=(Aih)ih, res. 

B=(Bih)ih,, usually given by the following transition probabilities from state i to state h: 

A (T) min 1,exp E(i) E(h)
T

      -  the Metropolis criterionih =
−⎡

⎣⎢
⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

    

 

G (T) G G
1/ N          h S

0      otherwise
(2)ih ih hi

i i= = =
∈⎧

⎨
⎩

                      

where Si ⊂ S is the set of states accessible from state i in one transition, and Ni = card (Si). 

Note that matrix G defined above is symmetric and independent of T. 

Summing up, the SA algorithm can be described by the following schema: 

 

Procedure Simulated Annealing 

1. Choose some initial solution 

2. Choose some initial value for the control parameter T=T0  (corresponding to n=0) 

3. j = 0 

4. Generate (at random) a new candidate solution 

5. Examine the candidate solution and decide: accept or reject 
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6. If accepted, it becomes the current solution; otherwise, keep the old one; j = j+1 

7. IF an approximate equilibrium is achieved, THEN put T=Tn+1  and go to 3 

8. Until some stopping criterion applies. 

 

Note 1. {T0, T1, T2, ...} must be some pre-defined, decreasing string of positive real numbers. 

Note 2. The stopping criterion is actually two-folded, including a maximal number of 

iterations, j, and also a maximal number of control parameters Tn. 

Note 3. The SA procedure resembles with the RSG procedure (see Section 1.3), by 

identifying the control parameter T with the "learning rate λ", the generation operator with a 

(uniform) random draw in some neighbourhood of the current solution, and the acceptance 

policy with an improvement achievement in the objective function(s). The goal is 

minimisation of some objective function (energy/error) in both algorithms. The only step 

from RSG apparently missing from the SA procedure is the modification of the searching 

intervals while passing from iteration to another (res., from a control parameter to another). 

Nevertheless, some kind of searching area restriction from iteration to another could be 

assumed in SA as well, by decreasing the number of accessible states, involved in (2). 

 

It is worth noting that a mathematically complete convergence theory (i.e., sufficient 

conditions for asymptotic convergence to global optima) exists for SA - see e.g., Aarts et al. 

(1989). The evolution of the search sequence of a SA algorithm as outlined, in which each 

succeeding solution in the sequence is stochastically determined from the current solution, 

suggests the Markov chain modelling of the SA. One may distinguish two different 

approaches: the first one involving only homogeneous Markov chains, while the second one 

involves an inhomogeneous chain. In the first modelling, our SA appears as a sequence of 

distinct Markov chains, where each chain corresponds to a fixed control parameter (and 

hence is homogeneous) and each succeeding Markov chain corresponds to a lower 

parameter value. Note that each Markov chain in the sequence must achieve its stationary 

distribution, in order to achieve the global convergence. In the second case, the SA appears 

as a sequence of solutions evolving as a single inhomogeneous Markov chain (as the 

transition matrix is dependent of the control parameter, T).  
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We summarise the existing SA convergence results by pointing out: 

- the existence of a unique stationary distribution for the Markov chain corresponding to 

each strictly positive value of the control parameter; 

- the existence of a stationary distribution limit as the control parameter approaches zero; 

- the desired behaviour of the stationary distribution limit (i.e., optimal solution with 

probability one); 

- sufficient conditions on the algorithm control parameter (i.e., a control parameter sequence 

bound) to ensure that the nonstationary algorithm achieves the limiting distribution. 

1.3. Repetitive Stochastic Guesstimation 

A stochastic sampling method somehow similar to Simulated Annealing has been 

independently proposed by Charemza (1996), inspired from (and originally devoted to) the 

usual guessing of the parameters involved in a complex, generally large, empirically 

oriented macroeconomic model. The method was called Repetitive Stochastic 

Guesstimation (RSG) and it showed good results on non-linear optimisation tasks, even 

competing with 'older' stochastic relatives, like Genetic Algorithms (GA)  - Przechlewski et 

al. (1996). 

Actually, there are three points where RSG takes advantage on other stochastic 

algorithms: 

1. At the initial stage, by making use of the prior beliefs concerning the parameters to be 

guessed - according to the economist's expertise and intuition. 

2. By successively restricting the search space from iteration to another, providing an 

asymptotic convergence of the algorithm in some extreme point. 

3. By using two objective functions, instead of one.  

Let us briefly discuss these main features of RSG. The first seems to be restrictive for 

general optimisation purposes, by limiting the application area of the method to a relatively 

well-known problem (that is, assuming that the user - guesstimator - makes mistakes, but 

not exceeding 40% of the true values of the parameters, e.g. Przechlewski et al. (1996), 

p.23). This assumption makes the comparison against evolutionary algorithms (like GA, 

Evolution Strategies or SA) somehow improper, as the last ones are commonly used in the 



 

 

 

12

so-called Black Box Optimisation problems - where no information on the objective 

function is supporting the search. However, a basis for the comparison exists: many authors 

in the evolutionary computation field recommend the insertion of additional information 

into the initial population (of a GA, e.g.), whenever this information is available. As for the 

individual-based algorithms (SA, e.g.) the choice of initial values according to the user's 

expertise or intuition is welcomed and easy to implement. 

The second feature makes the connection to the heuristics of "learning algorithms", 

namely by retrieving the common sense expectation of ‘increasing the guesstimator's 

confidence by narrowing the interval from which the parameters are to be guessed, as time 

goes on’, Charemza (1996). This is definitely an important difference against GA, with its 

immutable searching space all over the algorithm. Theoretically speaking, the possibility of 

limiting the searching area from an iteration to another is specific to individual-based 

algorithms only (notice that RSG enters this category), thus not to population-based 

methods (like GA). 

Regarding the two criterions, namely the unweighted and weighted objective functions, 

the (penalty) weights in the last one are normally distributed according to the difference 

between the currently guessed and the previous best guess, Przechlewski et al. (1996). This 

makes RSG a dynamical optimisation method, by making the objective function time 

dependent. 

In short, the RSG can be presented as follows: 

 

Procedure Repetitive Stochastic Guesstimation 

1. Set the iteration index to zero: j=0 

2. Choose some initial values and intervals for the parameters to be optimised 

3. Choose/compute the initial value for the learning rate λ0   

4.Randomly generate (guess) a new candidate solution, inside the current intervals 

5.Compare the candidate solution vs. the current one - w.r.t. both criterions - and 

decide: accept or reject 

6.  If accepted, it becomes the current solution; otherwise, keep the old one 

7. Repeat 4-6, several times, until a better solution is obtained 
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8.  j = j+1, decrease the learning rate, decrease the intervals' lengths and go to 4 

9. Repeat 8, until some STOP conditions. 

 

One must notice some common points between the procedure above and the 

Procedure_Simulated_Annealing, presented in the previous section. Namely: 

- RSG, as well as SA, makes random extractions (by uniform probability distribution, 

commonly) in order to achieve new candidate solutions. 

- they both depend on a strictly decreasing parameter (called temperature - in SA, and 

learning rate - in RSG). 

This resemblance inspired us in defining a hybrid algorithm, using in combination the 

interval decreasing technique (borrowed from RSG) and the Metropolis acceptance 

criterion, from SA - see Section 2.1 for details. The new algorithm (referred in the 

remainder of the paper as RSG-SA) proved encouraging results on our macroeconomic 

modelling problem, outrunning both his parents - as one will see in Section 2. 

It is also worth noting the resemblance between RSG and some specific types of GA. A 

confirmation of the existing relationship between RSG and GA came from Przechlewski et 

al. (1996), by introducing a hybrid algorithm, called RSG-GA. They concluded the 

experimental comparison by stating: “There is no big difference in the efficiency of both the 

compared methods (i.e. RSG and RSG-GA). The RSG-GA is better with respect to 

improvement over initial guesses… but is inferior to RSG when looking at the parameter 

accuracy measured by RSME.” 

From a theoretical point of view, RSG can be compared to the Contractive Mapping 

GA, as introduced in Michalewicz (1994). Both algorithms share the same ‘elitist’ 

acceptance criterion (different from the acceptance criterion presented for SA, e.g.); namely, 

the Contractive Mapping GA passes from a iteration to another only if an improvement in 

the objective function was achieved (see Step 7 from the RSG procedure above, for 

comparison). But this improvement may not occur for a long, long time. What should the 

practitioner do in that case? According to Charemza, “if there is no improvement in both of 

the objective functions it is assumed that some kind of optimum is reached. Sometimes, if we 

have doubts whether this is a global or local optimum we repeat the process with different 
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starting values and see, whether we have a similar solution.” This certainly works for most 

problems, but still remains a theoretical bottleneck in the analysis of GA (and in RSG as 

well). Some steps in surpassing this lack have been already made in literature, by improving 

the exploration capabilities of the algorithm using additional statistical information. 

Second, one must notice about the RSG paradigm that the expert’s “guess” is applied 

(using the prior economic information) at the beginning of the algorithm only: by the initial 

setting of the parameters’ intervals (mean + length) and by defining the objective and 

learning functions. Afterwards, the “guess” is actually a random (uniform) draw inside the 

current interval. In this light, the RSG would resemble to an adaptive GA (that is, a GA with 

directed mutation) which, in addition, incorporates some information about the parameters 

in his initial stage. 

Concluding, the comparison among the algorithms above may be summed up in the 

following table: 

 

Table 1. Comparison of stochastic optimization methods 

 Type of 

algorithm 

Initial  

point(s) 

Operators Acceptance of 

a new 

solution 

Avoid 

stagnation 

GA population

-based 

random crossover, 

mutation 

roulette/elitist/ 

disruptiv 

yes/ no 

SA individual

-based 

random/ 

fixed 

mutation Metropolis 

criterion 

no 

RSG individual

-based 

random/ 

fixed 

mutation, 

interval 

decreasing 

elitist no 

RSG-SA individual

-based 

random/ 

fixed 

mutation, 

interval 

decreasing 

Metropolis 

criterion 

no 
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2. Numerical Results 

This chapter is divided into two sections. The first one focus on finding the global optimum 

of the Romanian macromodel using four different optimization techniques, namely: 

• Gradient technique for non-linear systems (as included in EXCEL 7.0 - Solver, referred 

as EXCEL); 

• Genetic Algorithm with real-valued chromosomes (GA, implemented in Visual Basic); 

• Simulated Annealing (SA, two different programms, implemented in C++ and T 

Pascal); 

• Repetitive Stochastic Guesstimation - Simulated Annealing (RSG-SA, a hybrid 

technique, implemented in C++ and T Pascal). 

Section 2.2 presents an analysis of the adequacy of the three different objective functions to 

the considered system. One will see how the second objective function is preferred, both by 

theoretical and empirical reasons.  

2.1. Finding the Global Optimum of the Romanian Macromodel 

We start this section mentioning that all the calculus below is restricted to the 1995-1996 

anual data of the economic indicators, as they appear in Dobrescu (1996). 

We considered some fixed intervals for each initial value of the endogeneus variable 

(required at start, for each solving procedure). These intervals are large enough for 

enssuring a good exploration of potential solutions, yet appropriate to the specific economic 

data in study. As mentioned in Appendix, we used 30 endogeneus variables, but for 

readability reasons we selected the following, most representative nine variables.  

In Figures 1, 2 and 3, we present comparisons on the three objective functions 

between the four algorithms, namely: 

• RSG-SA with randomly starting points drawn from the fixed intervals considered above; 

• SA with randomly starting points; 

• GA with randomly starting points; 

• EXCEL with fixed starting points. 

The subject for comparison is, as in Przechlewski et al. (1996), the average bias, computed 
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for each endogeneus variable, as follows: 

BIASi=⏐(1/m)*Σk=1,m(bi
(k) - Bi)⏐=bi- - Bi, 

where Bi denotes the recorded statistical value for endogeneus variable i, bi
(k) stands for the 

endogeneus variable value i obtained in the k-th run, m is the number of runs (m=10) and bi 

is the mean value of the endogeneus variable i across the m runs. Let us take a brief moment 

to explain the experimental assumptions on each of the algorithms involved. 

First, the RSG-SA: despite the theoretical considerations on RSG (see Section 1), we made 

an exception - for the sake of a fair comparison - by giving randomly starting points to this 

algorithm. Besides the technical details for SA presented in Section 1.3, we make the 

connection to RSG by defining the following objects: 

• the objective function is the sum of square errors between estimated and recorded 

statistical values; we didn't use a second objective function (as introduced in Charemza's 

paper on RSG) due to the particular requirements of the problem we tackled: we are not 

looking for some coefficients involved in a forecasting equation (as in Charemza (1996) 

or in Przechlewski et al. (1996) ), but for the initial values corresponding to solving the 

model for a single year; 

• the learning function - λ - is assimilated to the "temperature" from SA, and computed 

by: 

λ(t)=T(t) =Tmax/(1+ln(t)) 

where Tmax is a constant value set up at 10,000, and t is the iteration index. 

• the set of admissible parameter intervals is modified by the application of the learning 

function λ, as follows: 

Θ(t)=θ(t-1)ml(Θ(t-1))/((ln((10-λ(t)/1000))+1)) 

where Θ(t) is the interval at iteration t, θ(t-1) is the mean value of that parameter (i.e., 

center of the interval) at iteration t-1, and l(Θ(t-1)) stands for the interval's length. 

On ten different runs (corresponding to ten uniform random draws for the initial values of 

the endogeneus variables) the number of RSG iterations was between 5 and 50, with 50 

replications per iteration. This corresponded to a final value of T between 2,100 and 4,200 

(note that we used an error-threshold termination criterion for the algorithm, not a maximal 
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number of iterations). 

Second, the SA: the maximal number of cycles was 350, with 50 uniform random 

draws on each cycle. The temperature (arameter T, from Section1.2) decreased from 10,000 

down to 1390 (on the longest run).  As in the previous experiment, the results are averaged 

on 10 different runs. One must notice that the values obtained by SA are closer to the 

reference values (stat_val) than those obtained by GA - see below. Referring, e.g., to the 

domestic aggregate demand (dad) and gross domestic product (gdp), the differences for the 

second objective function between GA and SA are obviously favourable to SA. 

Next, we present the results obtained by applying a GA with real-valued 

chromosomes, uniform mutation - mutation rate: 0.03 - shuffle (i.e., multi-point) crossover - 

crossover probability: 0.8 - disruptive selection (i.e., the "worst" chromosome is maintained 

from a generatio to another, in order to improve the information exchange in case of GA 

stagnation with the current population filled up with samples of the same individual), up to 

100 chromosomes in a generation, and up to 1000 generations in one run. The initial 

population was randomly generated (within the fixed mentioned intervals), and the results 

have been averaged on 10 different runs. 

As for the results obtained by EXCEL, the starting points were the statistical values 

corresponding to year 1996. In case of the first objective function (see Appendix), as the 

model is proved to have a unique solution, the results can be obtained with different starting 

points, located "close" to the initial (statistical) values. It is worth noting that for extremal 

starting points, the Gradient Technique needs two succesive runs (vs. one run, in case of 

"close" points) for reaching the desired solution. Going deeper in the Gradient algorithm 

procedure, one can explain this two-step behaviour by succesively missing and finding the 

correct search direction. Concerning the second objective function, the system solution is 

strongly depending on the initial values (due to the existence of multiple solutions, in this 

case). We stress that the choice of recorded statistical values as starting points is justified by 

our intention to give Gradient technique the best possible start. The third objective function 

was introduced for comparison purposes, since it appeared in the first version of the model 

(see Appendix). 
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Fig. 1. Average BIAS - Objective Function 1 
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Fig. 2. Average BIAS - Objective Function 2 
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Fig. 3. Average BIAS - Objective Function 3 
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2.2. Finding the Best Objective Function for the Romanian Macromodel 

In this section, as in the previous one, all the calculus is restricted to the 1995-1996 anual 

data of the economic indicators, as they appear in Dobrescu (1996). 

Choosing a certain objective function is more often a subjective matter. In our case, 

choosing the first objective function (i.e., min [GDP-EXTDR]2) could be explained by the 

intention to "hang" the system to the nominal side due to the presence of high inflationary 

expectations. This choice is supported, easily than others, because potential users of that 

model can "feel" easier what are supposed to be for the next period the total disposable 

revenues, rather than the ratio between GDP and its gross domestic deflator (GDPD). On the 

other hand, the model is supposed to have a unique solution level for the deflator, when the 

GDP equals the EXTDR, and this means determined value for all the endogeneus variables 

involved. The disadvantadge would be that endogeneus variables expressed in constant 

prices are not so well "catched", because of the inertial behaviour which makes these 

variables to have the solution level closer to the previous than to the current year. Another 

lack is the solution level for the GDPD differing from the recorded statistical one with 

+0.06, which makes some rates (including this one) to take negative values, instead of 
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positive ones - similar to the recorded statistical values. 

The second objective function (i.e., min [GDP*EXGDPD/(GDPD*EXTDR)-1]2) 

expresses the model connection to the real terms endogeneus variables. In our case, the 

number of variables expressed in constant prices is higher than the number of variables 

expressed in curent prices. Also, the first ones can be put in forms which underline the ratio 

GDP/GDPD. In this case, two major disadvantadges occur: 

• oposite to the previous situation, the nominal variables are less "catched", so one may 

assume that, choosing the second objective function, the user is concerned in real terms 

variables; 

• the model has not unique solution, which makes it very sensitive to the initial start of the 

endogeneus variables. In fact, this makes the second objective function to be out of use if 

the model is solved by EXCEL only, as in this case - even starting with "perfect" values for 

the endogeneus variables - the Gradient technique trappes the systems in a solution point 

with inacceptable GDPD, GDP, DAD, ER. 

If, in case of first objectiv function, the usage of optimization alternative techniques 

was not so obvious, now the need of several altenatives is quite ncessary. The key of the 

problem would be the correct chose of admissible intervals for each endogeneus variables 

involved. It is worth noting that, when applying stochastic search algorithms the fixing of 

initial intervals (i.e., defining the searching space) is not such a crucial matter, as these types 

of algorithms (GA, SA, RSG) are not so easily fooled up by local optima. 

In Figure 4, the compared (absolute value of) average bias for the four algorithms 

(RSG, RSG-SA, SA, EXCEL) is depicted, w.r.t. the second objective function. The starting 

points were fixed at the recorded statistical values corresponding to the endogeneus 

variables of 1996. As one can easily notice through this comparison, the best performs RSG, 

followed by SA and RSG-SA. As expected, all the three stochastic techniques are 

outperforming EXCEL. 
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Fig. 4. Average BIAS with statistical starting points - Objective Function 2 
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The third objective function (i.e., min {[GDP*EXGDPD/(GDPD*EXTDR)-

1]2+[GDP/EXTDR -1]2} )is supposed to be a connection between the model and his both 

nominal and real term sides. This was considered for comparison reasons, as it occured in 

the first version of the Romanian macromodel (see Dobrescu (1996) ). The results obtained 

in this regard are weaker than the previous ones, perhaps due to the fact that the minimul 

value on this function is not achieved when (1) GDP/GDPD=EXTDR/EXGDPD and (2) 

GDPD=EXGDPD, but somewhere in a middle point, placed in the convex set generated by 

the extremal points, resulting in achieveing (1) or (2). 

Hence, a new objective function (Ob.F. 1+2+3) was introduced, as a linear convex 

combination of the three previous ones, with three weights which are subject to 

optimization. Figure 5 depicts the weights (averaged on ten different runs), on the aggregate 

objective function, respectively by RSG-SA, SA and GA, with randomly starting points 

from the fixed intervals. 
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Fig. 5. The weights for the aggregate objective function 

RSG-SA SA GA

Weight 1

Weight 2

Weight 3

0

0.2

0.4

0.6

0.8

1

 
 

As one can observe in the histogram, Objective Function 2 (corresponding to Weight 2) 

proved to be preferred by each optimization algorithm. Yet, the GA made the difference 

between objective functions really striking, followed by RSG-SA and SA. For this reason, 

we find of interest to present the evolution of error versus objective functions' weights, over 

a single run, 2,000 iteration GA run - see Figure 6. One will see the progressive disjunction 

between the three objective functions as the error goes to zero. 

Fig. 6. Error vs. objective functions' weights 
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3 Concluding Remarks 

When one deals with a multi-modale optimization problem the gradient techniques are 

inefficient, so stochastic optimization techniques should be used. 

Choosing the variation boundaries for each endogeneus variables can be done in a 

permissible manner than when applying fixed starting points algorithms. In this case, the 

advantage of RSG-SA over SA and GA can be explained by the mergere between the ideas 

of decreasing intervals (borowed from RSG) and the Metropolis acceptance crterion 

(specific to SA), which made the hybrid algorithm not "elitist", thus assuring a necessary 

diversity evolution. 

When starting with fixed points, in the case of a multi-modale problem, comparing over 

the best starting points, RSG is proved to be the best, closely followed by SA. Both these 

two algorithms are proved to be more precise than RSG-SA, all of them being far superior 

to EXCEL Gradient method. 

In Przechlewski et al. (1996), an interesting problem was raised: "What is more 

important from the point of view of the prospective forecast accuracy - it is obtaining better 

parameter values, or, maybe, not so good parameter values but smaller forecast errors?" In 

our paper, the second objective function (the one measuring the forecasting errors - specific 

to RSG) was not considered, due to the particular requirements of the problem we tackled: 

we are not looking for some coefficients involved in a forecasting equation (as in Charemza 

(1996) or Przechlewski et al. (1996) ), but for the initial values corresponding to solving the 

model for a single year. Even so, an equivalent form of the above question may be 

addressed in our case, also. This is: “When dealing with small-size economic model, are we 

more interested in obtaining solutions close to the statistical records (expecting a similar 

behaviour on forecasting tasks), or to find a small error model solution but accepting 

systematic deviations of the endogeneus variable as being inherent?” 

This may be an open question, generating several subjective opinions - this is the 

reason for performing a large empirical evidence, comparing to each other different 

optimization methods, as well as different objective functions. 
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The main goal of our approach consists in raising questions on the utility of different 

objective functions for a macromodel - a problem usually disconsidered by the a priori (and 

sometimes missleading) assumption that a certain objective function is proper to several 

years. 
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APPENDIX - The Short Form of the Romanian Macromodel 

The equations are: 

GVAICA90=GVAICA90(-1)*(1+RICA90) 

RICA90=C(1)*RID90+C(20*RIX+C(3)*RIM+C(4)*DRGCBE 

RID90=DAD/(GDPD90*DAD90(-1))-1 

GDPD90=GDPD*GDPD90(-1) 

RIX=XGSD/XGSD(-1)-1 

RIM=M2(-1)*GDPD/M2-1 

DRGCBE=gcbe-gcbe(-1) 

GVATO90=GVATO90(-1)*(1+RITO90) 

RITO90=C(7)*RID90+C(8)*RIX 

GVAPS=GVAPS/GDPD90 

GVAPS=RPSBE*GCBE 

GCBE=gcbe*gdp 

RPSBE=RPSBE(-10+DRPSBE 

DRPSBE=C(12)*RIBE90 

RIBE90=GCBE/(GCBE(-1)*GDPD)-1 

GVA90=GVAICA90+GVATO90+GVAPS90 

DGDP90=C(15)*(GVA90-GVA90(-1)) 

GDP90=GDP90(-1)+DGDP90 

GDP=GDP90*GDPD90 
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DAD=GDP-ER*(XGSD-MGSD) 

ER=ER (-1)*GDPD*(1+RIERG) 

RIERG=C (16)*DIR 

DIR=IR+1-GDPD 

XGSD=xgdp90*GDP90/ER90 

xgdp90=C(20)+C(21)*RIG90(-1)+C(12)*DMX(-1) 

MGSD=XGSD-rnx*GDP/ER 

rnx=gcbb+DRNXBB 

DRNXBB=C(24)*DERG90+C(25) 

DREG90=ER/(GDPD90*ER90)-1, 

where all the symbols reffer to the annual data, as follows: 

 GDP Gross domestic product, current prices, trillion ROL 

 GDPD Current gross domestic product deflator 

GDPD90 GDP price index, 1990 = 1 

 GDP90=GDP/GDPD90 
DGDP GDP GDP90 90 90 1= − −( )  

RIG IGDP90 90 1= −  

GVAICA Gross value added in industry , construction and agriculture, 

current prices, trillion ROL 

 GVAICA90=GVAICA/GDPD90 

 RICA90=GVAICA90/GVAICA90-1 

GVATO Gross value added in transport, post and communications, 

trade, financial, banking and insurance activities, real estate 

and other services, current prices, trillion ROL 

GVATO GVATO
GDPD

90
90

=  

RITO90=GVATO90/GVATO90(-1)-1 

GVAPS Gross value added in public services, current prices, trillion ROL 

GVAPS90=GVAPS/GDPD90 

GVA Total gross value added, current prices, trillion ROL 
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GVA90=GVA/GDPD90 

GCBE Expenditures of the general consolidated budget (state budget, 

local budgets, social  insurance budget and similar funds), 

trillion ROL 

gcbe=GCBE/GDP 

GCBE90=GCBE/GDPD90 

DRGCBE=gcbe-gcbe(-1)      

RPSBE=GVAPS/GCBE 

DRPSBE=RPSBE-RPSBE(-1) 

RIBE90=GCBE90/GCBE90(-1)-1 

GCBB Surplus (+) or deficit (-) of the general consolidated budget, 

trillion ROL 

GCBB GCBR GCBE= −  

gcbb=GCBB/GDP 

DAD Domestic aggregate demand (final consumption of households 

and private nonprofit institutions serving households, final 

consumption of general government, gross capital formation), 

current prices, trillion ROL 

XGSD Exports of goods and services, current prices, billion USD 

xgdp90 Real export to GDP ratio 

MGSD Imports of goods and services, current prices, billion USD 

ER Exchange rate, thousand ROL per USD 

M2 Broad money (currency outside banks, demand deposits of 

economic agents, household deposits, time and restricted 

deposits, forex deposits of residents), trillion ROL 

IR Interest rate 

 dir IR GDPD= + −1  

The exogenous variables of the model are: EXTDR (total disposable revenues), M2, gcbe, 

gcbb, IR and the endogeneous variables corresponding to the previous year. 

The stationarity of the series involved in the econometric equations was tested with 
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the Augmented Dickey Fuller test. 

The econometric functions can be separated into two different groups: the real output 

of the economy (depending on the gross added value) and the gross domestic product’s 

distribution (based on the domestic aggregate demand and exports).  

Considering the 29 equations, with 30 endogenous variables, one will easily notice that 

the system has one degree of freedom, given by variations of the GDPD. This is the reason 

for adding an objective function. The 1996 version of the model [Do] made use of the 

following objective function: 

min { [(GDP/GDPD)*(EXGDPD/EXTDR)-1]2 + [(GDPD/EXGDPD) –1]2} 

where: EXTDR is the expected total disposable revenues and EXGDPD is the expected 

gross domestic product deflator. 

When testing the model on the statistical data, EXTDR and EXGDPD are replaced with 

their statistical values. 

The 1997 version has a simplified form for the objective function, which is: 

min { GDP – EXTDR}2 

For forecasting purposes, estimations for EXTDR are necessary. Due to the fact that 

Romanian economy is characterized by inflationary expectations, estimations of EXTDR 

imply sociological research.  

As in the extended version, the model analyzed below seems to be subject of the 

following remark (see [Do]) : “by a very complicate social and political mechanism, 

sometimes transparent and often invisible, the economy gravitates around the variables 

EXTDR and IR. From these variables, EXGDPD follows by the relation: 

EXGDPD=[EXTDR/GDP(-1)]c1*(EXGDPD+dir)c2 “ 

Analyzing the reduced form of the macromodel equations, one will see that the ratio 

between GDP and GDPD is crucial in determining the real production values. 

The macromodel’s users, as more explicit preferred the new expression of the objective 

function. Also, the nominal indicator EXTDR expresses the inflation expectation. One can 

easily gave a mathematically prove to the fact that the macromodel does not need a special 

econometric function for the GDPD, his level being deduced both on the system and the 

first objective function (min {GDP – EXTDR}2). Usually, the so-called reduced-form 
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equation is one that expresses an endogenously variable solely in terms of pre-determined 

variables and the stochastic distubances. As in this case one has no econometric 

determination for GDPD, the reduced-form equation is an implicit function, depending on 

GDP and GDPD: 

GDP=τ(1)*GDPD+τ(2)*GDPD2+τ(3)*GDP2/GDPD+τ(4)*GDP*GDPD 

where τ(i), i=1,4 are constant coefficients, their values correspondind to the year 1996 

beeing equal to: τ(1)=91.05252/70.70547; τ(2)=-6.8612/-4.63907;τ(3)=-0.--167/-0.00315; 

τ(4)=0.00435/0.00560 

Based on elementary calculus, all the endogenous variables can be express as functions 

of GDP and GDPD.For example, the expressions of the few main economic indicators in 

terms of GDP and GDPD are the following: 

GVAPS90=α(12)*GDP/GDPD+α(13)* (GDP/GDPD)2 

XGSD=ξ(1)+ ξ(2)*GDP/GDPD+ξ(3)*(GDP/GDPD)2+GDPD*(ξ(4)*GDP/GDPD+ξ(5)) 

DAD=ζ(1)*GDP+ζ(2)*GDP*GDPD 

GDP=a1+a2*GDP/GDPD+a3*(GDP/GDPD)2+a4*GDP+a5*GDPD 

ER=a6*GDPD+a7*GDPD2 

RNX=a8-a9*GDPD 

Basically, economic variables expressed in real terms are dependent on ratio 

GDP/GDPD, while economic variables expressed in nominal terms appear as functions on 

ratio GDP/GDPD and the deflator GDPD. 

Even if the system is proved to have a single solution, one can not be satisfied with the 

"inertial" values for the economic indicators in real terms. So comes the idea of replacing 

the former objective function with: 

Min  [(GDP/GDPD)*(EXGDPD/EXTDR)-1]2 

for better connections in real terms. But in this case, there are infinitely combinations of 

GDP and GDPD with constant ratio, so the system is strongly dependent on the starting 

values for the endogenously variables. 


