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PRICING CDSS AND CDS OPTIONS UNDER A 

REGIME-SWITCHING CEV PROCESS WITH JUMP TO DEFAULT 

 

 

Abstract. This paper studies the valuation of credit default swaps 

(CDSs) and CDS options of European and Bermudan styles under a regime-

switching constant elasticity of variance (CEV) process with jump to default. 

Based on the empirical evidence that the changes of macroeconomic 

conditions such as business cycle impact on the values of credit products, 

we assume that the interest rate, the volatility parameter of the CEV process, 

and the parameters of default intensity function have switching dynamics 

governed by a continuous-time finite state Markov chain, whose states are 

deemed to represent the states of the underlying economy. We construct a 

recombining trinomial lattice and demonstrate the accuracy of the lattice 

framework. Within the framework, we derive the values of CDSs, European 

and Bermudan CDS options. The numerical results provide insight into the 

impact of regime switching on the behavior of CDS spread rates and the 

values of European and Bermudan CDS options. 

 Keyword: Credit default swap, CDS options, CEV process, Lattice 

model, Regime switching 
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1. Introduction 

In recent years, we have witnessed an explosive growth in the credit 

derivative market. By far CDSs and CDS options are the most popular 

credit derivatives traded in credit markets. In a CDS contract, the protection 

buyer pays a periodic premium, called CDS spread, to the protection seller 

mailto:wudan@cjlu.edu.cn
mailto:yirh@cjlu.edu.cn


Ruxing Xu, Dan Wu, Ronghua Yi  

_________________________________________________________________ 

254 
 

until the maturity of the contract or a default event of a reference entity, 

whichever is earlier. Upon the occurrence of the default event, the buyer 

receives from the seller the difference between the par value and the 

recovery value of the reference entity as compensation. A forward CDS 

contract is the obligation to buy or sell a CDS on a specific reference entity 

for a specified spread at a specified future time. A CDS option is an option 

that gives its holder the right, but not the obligation, to enter into a CDS 

with a specified spread before or at option expiration date. 

There are several recent academic studies on the valuation of CDSs 

and CDS options. Hull and White (2000, 2001) provide a methodology for 

valuing CDSs when the payoff is contingent on default by a single reference 

entity with and without counterparty risk. Hull and White (2003) explain the 

derivation of the Black-Scholes pricing formula for European CDS options. 

Campi et al. (2009) value CDSs in a model where the CEV process is killed 

at the first jump time of an independent Poisson process with constant 

intensity. However, this assumption is not consistent with the empirical 

evidence that indicates a close relation between the default probability and 

the equity price, as well as the equity volatility. To overcome this 

shortcoming, Carr and Linetsky (2006) generalize the reduced-form 

approach to include a process for equity, and take the equity price to follow 

a CEV diffusion, punctuated by a possible jump to zero. To capture the 

possible positive link between default and volatility, they specify the default 

intensity as an affine function of the instantaneous variance of the 

underlying equity. Thus, the CEV model extended with jump to default 

demonstrates both the volatility skew and the relation between default 

probability and equity price as well as equity volatility. Following the 

model setup of Carr and Linetsky (2006), Mendoza-Arriaga and Linetsky 

(2011) develop an analytical solution to the equity default swaps pricing 

problem under the jump-to-default extended CEV.  

However, there are substantial empirical evidences in support of the 

existence of regime switching effects on stock market returns and default 

probabilities. Using the CRSP stock market returns over the period 1929-

1989, Schaller and Norden (1997) demonstrate that there is compelling 

evidence of regime switching in US stock market returns and the evidence 

for switching is robust to different specifications such as switching in means, 

switching in variances, and switching in both means and variances. Based 

on a database of issuer-level default probabilities covering the period 1987-

2000, Das et al. (2006) observe that default probabilities vary with the state 

of the economy and find strong support for regime-dependent default 
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intensity model. Alexander and Kaeck (2008) also find empirical evidence 

that determinants of credit spreads are regime-dependent. Ang and 

Timmermann (2012) show that regime-switching models can capture the 

stylized behavior of many asset returns such as fat tails, heteroskedasticity, 

and skewness. All these results show that it is necessary to react the effects 

of regime switching in modelling equity price and default risk.  

In this article, we extend the work of Carr and Linetsky (2006) by 

allowing for a switching regime structure in the dynamics of equity price 

and default intensity, and propose a lattice-based approach for pricing CDSs, 

European and Bermudan CDS options. The intuition behind the regime-

switching model given here is to incorporate the impact of the changes of 

macroeconomic condition such as business cycle on the CDSs and CDS 

options. There is substantial empirical evidence supporting the existence of 

the switching behavior of interest rate. For example, Ang and Bekaert (2002) 

provide empirical evidence supporting the presence of regime switches and 

show that the regimes of interest rate might be ascribed to business cycle. 

Yao et al. (2006, p.281) mention that it is important to allow the model 

parameters to react to the market movement since the trend of the market is 

a key factor that governs the movement of equity price. The regime-

switching version of the CEV model with jump to default could provide a 

more realistic way to react random market environment. Under the regime-

switching CEV model with jump to default, we derive the values of CDSs 

and CDS options The results provide insight into the impact of regime 

switching on the behavior of CDS spread rates and CDS options.  

The rest of this paper is organized as follows. Section 2 develops a 

regime-switching CEV model with jump to default. Section 3 constructs a 

trinomial lattice for the regime-switching CEV process and shows the 

convergence of the lattice. Section 4 shows how to use the lattice method to 

determine the valuation of CDSs and forward CDSs. Section 5 presents the 

pricing of European and Bermudan CDS options based on the lattice 

method. Section 6 presents the numerical results that explain the impact of 

regime switching and model parameters on the spread rates and the values 

of the CDS options. Conclusions are given in Section 7. 

2. Regime-switching CEV model with jump to default 

In this section we present the price dynamics under the regime-

switching CEV model with jump to default. We start with a complete 

probability space ( )F P  , upon which all stochastic processes are defined. 
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We assume that the market is frictionless, there is no arbitrage and an 

equivalent martingale measure (EMM) P  is given.  

Let tX  be a continuous-time, G -state, Markov chain on ( )F P  , 

where G  is the total number of states considered in the economy. Each state 

represents a particular regime and is labeled by an integer i  between 1 and 

G . Hence the state space of tX  is given by {1 2 }M G    . tX  is assumed to 

be observable and serve as a proxy for some observable exogenous 

economic factors such as business cycle and stock price index.  

To obtain the transition probabilities of the Markov chain tX , we 

need to specify its generator matrix Q . For easy exposition, we assume that 

a constant generator ( )ij G GQ q   is given, whose elements ( )ij G Gq   satisfy:  

1) 0ijq   if i j ;  

2) 0iiq   and ii ijj i
q q


   for each 1i G   .  

Assume that the Markov chain tX  at any time 0t   is in regime i M . Then 

after a period of time t , t tX   may stay in regime i  with probability 
X

i ip   or 

jump to any other regime j M  with probability 
X

i jp  , where the one-step 

transition probabilities 
X

i jp   of the Markov chain tX  are given by  

 { }
(1 )

ii

ijii

ii

q t

X

i j t t t qq t

q

e j i
p P X j X i

e j i



  



   
     

   
                                (1) 

Independent of the Markov chain tX , a standard Brownian motion 

tW  is defined on the probability space ( )F P  . We suppose that the pre-

default equity price process tS  under the measure P  evolves over time 

according to the following regime-switching CEV process:  

 0[ ( )] 0
t t tt X X t t X t tdS r S S dt S dW S s                                   (2) 

where 0 1   is the constant elasticity parameter. tXr , tX , and ( )
tX tS  are 

risk free interest rate, instantaneous volatility, and time- and equity-price-

dependent default intensity respectively, all of which are modulated by the 

Markov chain tX , indicating that they can take different values in different 

regimes, where we assume that ir  and i  are positive and ( )i tS  remains 

uniformly bounded as tS   for each i M . The addition of the default 

intensity in the drift rate in the pre-default equity price process (2) 

compensates for the default jump to insure that the total expected rate of 

return to the equityholder is equal to the risk-free rate in the risk-neutral 

economy and the discounted gain process is a martingale under EMM.  

Default is represented by the equity price dropping to zero and 
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remaining thereafter frozen at that level, which can occur in one of two 

ways: the equity price tS  either hits zero via diffusion or jumps to zero from 

some positive value, whichever occurs first. Formally, we assume 

1 inf{ 0 0}tt S      is the first hitting time of zero for the diffusion process 

(2), and 2
0

inf{ 0 ( ) }
u

t

X ut S du e      is the jump-to-default time with default 

intensity ( )
tX tS , i.e., the first jump time of a doubly stochastic Poisson 

process with intensity ( )
tX tS , where e  is an exponential random variable 

with unit parameter and independent of tX  and tW . Thus the time of default 

  can be given as 1 2min{ }    .  

To capture the possible positive link between default intensity and 

equity volatility, we incorporate regime switching parameters in the default 

intensity and specify as  

 
2 2( 1)( )

t t t tX t X X XS a b S                                        (3) 

where tXa  and tXb  are modulated by the Markov chain tX  and ia  and ib  are 

positive for each i M . Then the default probability ( )tX

tp S  during the 

interval t  is given  

 
( )

( ) 1 X tt t
S tX

tp S e
 

                                               (4) 

3. Recombining trinomial lattice for the regime- switching CEV 

proess with jump to default 

3.1. Construction of recombining trinomial lattice 

We next present the details of our lattice construction for the regime-

switching CEV diffusion with jump to default. Suppose at the current time 

the process (2) stays in regime i M . Since the process (2) has nonconstant 

volatility, following Nelson and Ramaswamy (1990), we use   transform 

such that the stochastic process has constant volatility, which is given by  

 
1

0

1

1

tS
t

t

S
du

u










  
                                                    (5) 

By taking the inverse of the above equation, the equity price is given as  

 
1

1(1 )t tS    
  

                                                   (6) 

Applying Ito’s lemma to (5), the transformed equation becomes  

 ( )t i t i td dt dW                                                          (7) 

where 
2 (2 )

( ) ( )(1 )
2(1 )

i i
i t i i t

t

b
r a

 
   

 


    


                                          (8) 
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We consider a continuous-time financial model where 0T   denotes 

the maturity of a reference entity such as a defaultable zero coupon bond. 

To construct the lattice, we divide the interval [0 ]T  into N  steps, 

 0   2   ( 1)  t t N t N t                                                      (9) 

where T
N

t   is the size of time step. Because the   process in different 

regime has different volatility, to keep the trinomial lattice as a recombined 

one with regime switching, we choose the same space step size t     

in all regimes, where   is to be determined below. Then   may be equal to  

 0 1 0 0 0 0 2      i iM M                                        (10) 

where 1iM  and 2iM  are regime-dependent positive integers. 0  is related to 

the initial equity price 0S  through the transform (5)  

 
1

0
0

1

S 






 


                                                  (11) 

The following notations are used: nt  denotes n t , for 0n  ,1,2, , N , 

and k  denotes 0 k   , for 0 1 2 3k      . Then at time nt , the node of 

the lattice can be denoted as ( )n i k  : n  for the time nt , i  for the regime i , 

and k  for the transform k . Assuming that default occures only at the nodes 

of the lattice and the regime does not change during the period 1[ )n nt t  .  

We specify the trinomial branching process on this new three 

dimensional grid in the ( )t X   -space. The value of   is restricted to move 

only to points on this grid, which ensures computational efficiency as the 

trinomial lattice will recombine properly. Suppose that the current node of 

the lattice is ( )n i k  . We now show how this state evolves in the ( 1)n  th 

step. First, 1nt
X

  may stay at the regime i  with probability 
X

i ip   or jump to 

any other regime j i  with probability 
X

i jp   which are defined in (1). Next, 
  takes three different values depending on the values of ( )i k   and i , 

resulting in three branches emanating from the current node. Since   

increases rapidly when   is high or low enough according to Equation (7) 

and i  takes different value in different regime, at the ( 1)n  th step   takes 

three values: i k ig l
  , i kg  , and i k ig l

  , where i kg   is an integer depending on 

regime i  and k , and il  is a positive integer depending on regime i , both of 

which will be discussed later in this section. Let ( )i

i k ip k g l  , ( )i

i kp k g  , and 

( )i

i k ip k g l   denote the probabilities of moving from k  to i k ig l
  , i kg  , and 

i k ig l
   respectively conditional on regime i  during time t . k  may jump to 

zero with the default probability ( )i

kp S  given in (1), here denoted by 
i

kp  for 

convenience, resulting in the fourth branch added to the node. Thus 
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emanating from the node ( )n i k  , for 1 2j G    , there are 4G  nodes with 

appropriate probabilities in square brackets shown in Figure 1. 
 

Figure 1. The nodes emanating from the node ( n i k  ) 

 
To achieve consistency with the continuous-time dynamics (7), it is 

required that the mean and variance implied by this trinomial lattice to that 

implied by the diffusion should be matched, and that the branching 

probabilities add up to one:  

( )( ) ( )( ) ( )( ) ( )i i i

i k i i k i i k i k i k i i k i i kp k g l g l k p k g g k p k g l g l k t                           (12) 
2 2 2 2

2 2 2 2 2

( )( ) ( )( )

                                                     ( )( ) ( )

i i

i k i i k i i k i k

i
i k i i k i i i k

p k g l g l k p k g g k

p k g l g l k t t

 

   

   

 

        

          
    (13) 

 ( ) ( ) ( ) 1i i i

i k i i k i k ip k g l p k g p k g l                        (14) 

Solving the equations (12) to (14), the probabilities are given by  

 

2
2

22

( )1 1 1
( )

2 2 4

i ki i k i
i k i

i ii

g k t
p k g l

l ll

  

 





   
             

                       (15) 

 

2
2

22

( )
( ) 1

i ki i i k
i k

ii i

g k t
p k g

ll l

  







  
       

 
                             (16) 

 

2
2

22

( )1 1 1
( )

2 2 4

i ki i k i
i k i

i ii

g k t
p k g l

l ll

  

 





   
             

                      (17) 

It can be seen that the probabilities ( )i

i k ip k g l   and ( )i

i k ip k g l   are 

nonnegative if 
2

2 2

1
4

i

il




 . Also, the probability ( )i

i kp k g   must be nonnegative, 

which implies that i kg   should satisfy the following inequality:  

 
2 2

2 2

2 2

( ) ( )i k i i k i
i i k i

t t
k l g k l

     

  


 
                    (18) 

To ensure that some integer i kg   exists, the value of 
2

2

2 i

il



  should be 

more than or equal to 1
4 , or else no integer value may exist, which would 

satisfy (18). Hence, in order to have the positive probabilities,   and il  

should satisfy the following constraint:  
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2

2 22

1 1
1

4 4

i

ii
ll




                                                 (19) 

It can be shown from (18) that i kg   may not be uniquely determined. 

Under such a condition, a simple solution is to choose i kg   such that the 

central branch of the trinomial tree should be placed as close as possible to 

the expected value of   at the end of the period based on (7), i.e.,  

 
( )

nint i k
i k

t
g k

 




 
    

 
                                       (20) 

where nint( )  is the nearest integer function which returns the integer that is 

closest to a real number.  

3.2. Convergence of the lattice method for European call options 

To demonstrate the accuracy of the lattice framework developed 

above, we price European call option with our lattice method, and 

numerically compare the results with the values calculated by Monte Carlo 

simulation based on the Euler-Maruyama discretization scheme. The 

terminal payoff of the option with strike price K  and expiry date T  is 

( )TS K  , given no default by T , and is zero otherwise. Then at node ( )n i k   

the value of the option ( )nC i k  can be expressed in recursive form as  

1

1 0

( ) (1 ) ( ) ( )i

i i

G
r t i X i

n k i j i k n i k

j m l l

C i k e p p p k g m C j g m
 

   

   

                      (21) 

For ease of illustration, we consider a two-regime Markov chain tX  

with the generator matrix 2 2( )ijQ q  , where the elements are chosen as: 

12 21 0 6q q   . Other parameters are specified as: 0 100S  , 0 5   , 1 0 05r   , 

2 0 03r   , 1 0 3   , 2 0 5   , 1 0 01a   , 2 0 03a   , 1 0 5b   , 2 1b  , the strike prices 
95K  , 100 and 105, and their maturity 1T   year.  

Table 1 presents a comparison of European call prices generated by 

the lattice model and the Monte Carlo method. The numbers in the second 

column to the fourth column show results for assuming we start the first 

regime in regime 1, and in the fifth column to the seventh column assuming 

we start in regime 2. Ten different numbers for the time steps are used to 

illustrate the convergence of the lattice approximation. The results obtained 

from Monte Carlo simulation are reported in the last two rows in Table 1, 

where the numbers in the first row are the estimated option prices (EOP) 

and the numbers within parentheses are the standard deviations (SD), which 

are computed based on 100,000 simulation paths with 1,000 time steps. 
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Table 1. Convergence of European call options 
Steps 

(N) 

Regime 1 Regime 2 

K=95 K=100 K=105 K=95 K=100 K=105 

300 10.5922 5.9493 2.0211 10.7083 6.1896 2.5271 

400 10.5969 5.9540 2.0249 10.7129 6.1941 2.5307 

500 10.5995 5.9568 2.0271 10.7155 6.1967 2.5327 

600 10.6015 5.9588 2.0286 10.7175 6.1986 2.5340 

700 10.6030 5.9603 2.0297 10.7189 6.1999 2.5350 

800 10.6036 5.9611 2.0303 10.7198 6.2008 2.5358 

900 10.6046 5.9620 2.0310 10.7207 6.2261017 2.5364 

1000 10.6052 5.9626 2.0315 10.7214 6.2023 2.5367 

2000 10.6082 5.9656 2.0339 10.7237 6.2048 2.5388 

3000 10.6088 5.9663 2.0346 10.7244 6.2055 2.5394 

EOP 10.6030 5.9558 2.0434 10.7280 6.2183 2.5483 

SD 0.012 0.011 0.008 0.015 0.014 0.018 

For the European options, as shown in Table 1, the trinomial prices 

are stable and converge rapidly for the given strike prices as the number of 

time steps ( N ) increases. The prices generated by the lattice model are very 

close to those obtained by using the Monte-Carlo simulation, which 

supports the convergence of the lattice model.   

4. Valuation of spot CDSs and forward CDSs  

We consider a CDS that gives the holder the right to buy protection 

between times ct  and dt  ( 0 c dt t T   ) on a defaultable zero-coupon bond 

with a face value of 0L   and maturity T . When 0ct   this is a spot CDS, 

and when 0ct   it is a forward CDS. The protection buyer pays a premium 

rate of 0U   per annum at times 1ct  , , 1dt  , and dt  in exchange for a 

protection payment at the default time  , provided that c dt t  . In practice, 

the premium rate U  is also known as the CDS spread rate, which is chosen 

in such a way that the value of the CDS for the protection buyer, i.e., the 

present value of the protection leg minus the present value of the premium 

leg, is zero.  

Now we price such a CDS with the lattice method proposed above. 

We first compute the value of the defaultable zero-coupon bond, denoted as 

( )nD i k  at any given node ( )n i k  . At default time  , we assume that the 

recovery rate on the reference bond is expressed as an exogenous fraction   

( 0 1  ) of the market value of the bond just before default, which is 

proposed by Duffie and singleton (1999). Then at maturity T  the bond’s 

value ( )ND i k  at node ( )N i k   is equal to L  when default happens or equal 
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to L  when there is no default. Thus we can get ( )nD i k  by discounting the 

probability weighted average of all its children under the recovery of market 

value condition  

1

1 0

( ) (1 ) ( ) ( )i

i i

G
r t i i X i

n k k i j i k n i k

j m l l

D i k e p p p p k g m D j g m 

   

   

            (22) 

Next we compute the expected value of the protection leg denoted as 
( )n i kV   at node ( )n i k   conditional on no default occurring. At the maturity 

date dt , we have ( ) 0d i kV    if there is no default and ( ) (1 ) ( )d di k D i kV      if 

default happens at node ( )d i k  . Then lattice-based recursive expression for 
( )n i kV   at node ( n i k  ) during the protection period ( c n dt t t  ) is as follows:  

1

1 0

( ) (1 ) ( ) ( ) (1 ) ( )i

i i

G
r t i X i i

n nk i j i k i k k n

j m l l

i k e p p p k g m j g m p D i kV V  

  

   

  
           

  
   (23) 

Since the forward CDS ceases to exist if the bond defaults before 

time ct , the recursive expression for ( )n i kV   ( n ct t ) is given  

 1

1 0

( ) (1 ) ( ) ( )i

i i

G
r t i X i

n nk i j i k i k

j m l l

i k e p p p k g m j g mV V
 

  

   

                  (24) 

Now we compute the value of $1 payment per annum denoted as 
( )n i kV   at node ( )n i k  , conditional on no default occurring. At node ( )d i k   

we have ( ) 0d i kV   . The lattice-based recursive expression for ( )n i kV   at 

node ( n i k  ) is  

1

1 0

( ) (1 ) ( ) ( )i

i i

G
r t i X i

n nk i j i k i k

j m l l

i k e p p p k g m j g m tV V
 

  

   

  
          

  
       (25) 

Because there is no premium payment before time 1ct  , the recursive 

expression for ( )n i jV   ( n ct t ) is  

 1

1 0

( ) (1 ) ( ) ( )i

i i

G
r t i X i

n nk i j i k i k

j m l l

i k e p p p k g m j g mV V
 

  

   

                 (26) 

The CDS spread is the specified spread that causes the contract to 

have a value of zero at inception. If the CDS contract is incepted at node 
( )n i k  , by equating the present value of the premium leg to the present 

value of the protection leg, the fairprice of CDS at that node can be given  

 
( )

( )
( )

n
n

n

i kV
U i k

L i kV


  


                                            (27) 

Thus, the fair CDS spread at time zero with initial regime 0X i  can be 

computed as  

 
0

0

0

( 0)
( 0)

( 0)

iV
U i

L iV


  


                                           (28) 
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5. Pricing European and Bermudan CDS options 

European and Bermudan CDS options are traded actively in the 

Over-the-Counter (OTC) market. A European CDS option is an option on a 

CDS that gives its holder the right to enter into a CDS only at option 

maturity with a specified spread, i.e., the underlying CDS protection period 

starts at the option maturity. A Bermudan CDS option is an option on a 

CDS with a finite number of exercise opportunities. Note that a European 

CDS option is a particular Bermudan CDS option that only be exercised at 

the expiration date. Both types of options considered here are knocked out if 

the reference entity (the defaultable bond described above) defaults before 

the option maturity.  

In this section we price European and Bermudan CDS options with 

maturity 0 a dt t   and strike spread 0K   on the spot CDS in Section 2. For 

simplicity, the values of European and Bermudan CDS options are denoted 

as ( )e

nV i k  and ( )b

nV i k  at node ( )n i k   respectively.      

5.1. Pricing a European CDS option 

Now we focus on valuing a European CDS Option and then deal 

with its Bermuda counterpart in the next subsection. Suppose at  is the 

maturity of a European CDS option with a specified spread K . Given that 

the bond does not default during the life of the option, the option’s terminal 

value at node ( )a i k   is as follows:  

  ( ) max 0 [ ( ) ] ( )e

aa aV i k U i k K L i kV                                        (29) 

Then the lattice-based recursive expression for the option value at 

node ( )n i k   is  

 1

1 0

( ) (1 ) ( ) ( )i

i i

G
r te i X i e

n k i j i k n i k

j m l l

V i k e p p p k g m V j g m
 

   

   

                  (30) 

Let 0nt  , the value of European CDS option can be obtained.  

5.2. Pricing a Bermudan CDS option 

Different from the European CDS option above, a Bermudan CDS 

option is an option on a CDS with a finite number of exercise opportunities 

that are a subset of the CDS payment schedule 1t , 2t , , at .  

At maturity date at , the value of the Bermudan CDS option is the 

same as that of the European CDS option, i.e., ( ) ( )b e

a aV i k V i k    at node 

( )a i k  . If n at t  is an exercise date of the Bermudan option, the lattice-based 

recursive expression for the option value is  
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 ( ) max ( ) (1 )[ ( ) ] ( )b i

nn n j nV i k g i k p U i k K L i kV                           (31) 

and if not, the lattice-based recursive expression for the option value is  

 ( ) ( )b

n nV i k g i k                                              (32) 

where  

 1

1 0

( ) (1 ) ( ) ( )i

i i

G
r t i X i b

n k i j i k n i k

j m l l

g i k e p p p k g m V j g m
 

   

   

                   (33) 

is the holding value of the option at node ( )n i k  .  

Note that if the Bermudan CDS option can be exercised at CDS 

payment time 1t , 2t , , at , the option becomes American. Its value can be 

easily obtained with the above approach.  

6. Numerical results 

In this section we provide a numerical study of the effect of regime 

switching on the CDS spreads and the values of European and Bermudan 

CDS options. For ease of illustration, we consider a Markov chain with two 

regimes, where regime 1 represents a “good” economy and regime 2 

represents a “bad” economy. We suppose that the elements of the generator 

matrix are chosen as: 12 21 0q q    . Then the matrix of the Markov chain 

has the following form:  

 Q
 

 

 
  

 
                                                     (34) 

which is also adopted in Boyle and Draviam (2007). 

We consider two situations, i.e., one for the economy starting in 

regime 1 (the “good” regime) and the other for the economy starting in 

regime 2 (the “bad” regime). In this section,   is set to 0, 0.2, 0.6, and 1.0. 

When 0  , there isonly one regime, namely, the economy starting in 

regime 1 (2) will always stay in regime 1 (2). Since firms in the “good” 

regime is less likely to default than those in the “bad” regime, we choose 

1 0 01a   , 2 0 03a   , 1 0 5b   , and 2 1 0b   . 1  and 2  are set to be 0.3 and 0.5. 

respectively, which is consistent with the fact that volatility is lower in 

“good” economy than in “bad” economy. Since higher interest rate leads to 

higher expected growth rate of the equity price according to (2), the interest 

rate in the “good” regime 1r  is set to be 0.05 and the interest rate in the 

“bad” regime 2r  is set to be 0.03, which ensures that the interest rate in the 

“good” economy is higher than that in the “bad” one. Other parameters for 

computation are as follows: 0 005t    (year), 0 100S  , 100L  , 0 5   , 

0 1   , 0 3   , 0ct  , 50K   bps, the maturities of defaultable zero-coupon 

bonds and CDSs 1dt T  , 1.25, 1.5, , 4.5,4.75, 5 years, the maturities of 
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European and Bermudan CDS options 1at   year. Bermudan CDS 

options’exercise dates are 0.25, 0.5, 0.75, 1 year. 

 

Case 1: The impact of regime switching  
Figure 2 depicts the spot CDS spread rates with maturities ranging 

from 1 to 5 years for varying value of the parameter  . One can find that 

the spread rates implied by the regime-switching model are higher than 

those obtained in “good” regime in one regime model ( 0  ) and lower 

than those obtained in “bad” regime in one regime model ( 0  ). For the 

same  , an assumption of starting in the “good” regime initially in the 

regime-switching model leads to lower spread rates compared to the 

assumption of starting in the “bad” regime initially, which reveals that a 

lower risk premium is required if the economy starts at the “good” state 

initially, and higher risk premiums are required to make up for higher 

default risk due to the possibility of switching to the “bad” regime in the 

regime-switching model.   

Here it is evident that the parameter   has a significant effect on the spread 

rates. If the economy starts at the “good” regime, the spread rates increase 

as   increases, which may be caused by the fact that a higher risk premium 

is required to compensate for the higher risk of switching to the “bad” 

regime when   increases. On the other hand, if we start at the “bad” regime, 

the spread rates decrease as   increases. The reason may be that as   

increases it is more likely that the “bad” regime will switch to the “good” 

regime later. Because there is a lower probability of default in the “good” 

regime, the switching from the “bad” regime to the “good” regime results in 

a reduction of default risk, and thus results in a lower spread rate.  
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Figure 2. CDS spread rates for varying value of   

 

 

Figure 3 displays the impacts of regime-switching on the values of 

European and Bermudan CDS options with maturity 1at   year for varying 

value of the parameter   when the maturities of CDSs are 1, 1.25, 1.5, , 

4.5, 4.75, 5 years. We can observe that the values of European and 

Bermudan CDS options in the regime-switching model are higher than 

those obtained in “good” regime in one regime model and lower than those 

obtained in “bad” regime in one regime model. For the same   , the 

options’ values when the economy starts in the “bad” regime at time 0 are 

higher than those when the economy starts in the “good” regime at time 0. 

This may be attributed to a higher spread rate when we start at the “bad” 

regime as shown by Figure 2.  

The parameter   has a strike effect on the values of European and 

Bermudan CDS options. When the economy starts in the “good” regime, the 

options’ values increase as   increases, for the spread rates increase with  . 

On the other side, when we start at the “bad” regime, the options’ values 

decrease as   increases, for the reason that the spread rates decrease with 

an increase of  . For the following results we set the parameter in the  

generator matrix 0 6   .  
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Figure 3. Values of CDS options for varying value of   

   

                 a. European options                          b. Bermudan options    

Case  2: The impact of the volatility parameter i   

Figure 4 depicts the plots of the spread rates with different values of 

2  in the regime-switching model. The spread rates increase as 2  increases 

when the economy starts in the “good” regime or starts in the “bad” regime, 

which reflects that as the volatility parameter 2  of the equity price 

becomes higher, the default probabilities will become higher, and thus a 

higher risk premium is required to compensate for the higher default risk.    

 

Figure 4. CDS spread rates for varying value of 2  

 

In Figure 5 a sensitivity analysis for the values of European and 

Bermudan CDS options as 2  varies from 0.3 to 0.5 is shown. It is observed 



Ruxing Xu, Dan Wu, Ronghua Yi  

_________________________________________________________________ 

268 
 

that the values of European and Bermudan CDS options increase while 2  

increases, when the economy starts in the “good” regime or starts in the 

“bad” regime, which may be ascribed to a higher spread rate with an 

increase of 2a  shown by Figure 4.   

Figure 5. Values of European and Bermudan options for varying value 

of 2  

   

          a. European options                       b.Bermudan options    

Case 3: The impact of the default intensity parameters ia  and ib   

Figure 6 depicts the plots of the spread rates with different values of 

2a  and 2b  while 1a , 1b  take constant values 0.01 and 0.5 in the regime-

switching model. The spread rates increase as 2a  and 2b  increase when the 

economy starts in the “good” regime or starts in the “bad” regime, which 

reflects that, as 2a  and 2b  increase the default probabilities will become 

higher, and thus a higher risk premium is required to compensate for the 

higher default risk.   

Figure 6. CDS spread rates for varying value of 2a  and 2b  

   

                     a. The impact of 2a                           b. The impact of 2b     
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Figure 7 shows the values of European and Bermudan CDS options 

as 2a  varies from 0.3 to 0.5 and 2b  varies from 0.5 to 1.5 respectively, and 

1a , 1b  take constant values 0.01 and 0.5. It is observed that the values of 

European and Bermudan CDS options increase while 2a  and 2b  increase, 

when the economy starts in the “good” regime or starts in the “bad” regime, 

which is due to a higher spread rate with an increase of 2a  and 2b  shown by 

Figure 6.   

 

Figure 7. Values of European and Bermudan options for varying value 

of 2a  and 2b  

   

 a. Impact of 2a  on European options   b. Impact of 2a  on Bermudan options 

   

  c. Impact of 2b  on European options               d. Impact of 2b  on Bermudan  options 

7. Conclusions 

We studied the pricing of defaultable bonds, CDSs, and CDS options 

under a regime-switching CEV process with jump to default. Our findings 
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based on the numerical experiment implied that: (1) the presence of a “bad” 

economic regime increases the spread rates of CDSs and the values of CDS 

options substantially; (2) the inclusion of the Markovian regime-switching 

effect is a possible way to explain and improve the underestimation of the 

empirical probability of default. We also performed various sensitivity 

analyses for the spread rates and CDS options when the elements of the 

generator matrix and other model parameters varied. We found that an 

increase in the value of   leads to an increase in bonds’ values, spread rates, 

and CDS options assuming we start at the “good” regime, and with a 

decreasing effect otherwise. The effects of model parameters on bonds’ 

values, spread rates, and CDS options are significant, which should be taken 

into account when estimating the values of such products.  

For further research it would be worth extending our model to 

include a regime-switching CEV process for modeling short rate dynamics 

or volatility dynamics. In this case how to develop lattice-based techniques 

to model the correlation of two processes and price credit derivatives such 

as equity default swaps and variance swaps is an interesting topic. 
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