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GARCH DIFFUSION MODEL, iVIX, AND VOLATILITY RISK 

PREMIUM 
 

 

Abstract. This paper investigates the volatility risk premium in the non-affine 

GARCH diffusion model of stochastic volatility using the Chinese Volatility Index 

(iVIX). Firstly, we derive the corresponding implied iVIX formula under the 

GARCH diffusion model. Then, using joint data on the Shanghai 50ETF and iVIX 

index, we develop an efficient importance sampling (EIS)-based joint maximum 

likelihood (ML) estimation method for the objective and risk-neutral parameters of 

the GARCH diffusion model. Furthermore, a particle filter-based estimation 

method is developed for extracting the latent volatility. Finally, we apply our 

proposed approach to the actual data on the Shanghai 50ETF and iVIX index. 

Empirical results show that the volatility risk is priced by the market, and the 

volatility risk premium is negative, implying that investors act risk averse in the 

Shanghai stock market. 

Keywords: GARCH diffusion model, iVIX, volatility risk premium, efficient 

importance sampling, particle filter. 
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1.  Introduction 

Finance literature has put much effort on studying the volatility risk premium. 

According to modern asset pricing theory, the value of any contingent claim can be 

computed as the conditional expectation under the risk-neutral measure of the 

discounted future cash lows. Thus, the valuation of any contingent claim, like a 

European option, involves a change of the measure, from the objective or 

real-world measure to the risk-neutral measure. However, the characterization of 

the risk-neutral measure is intimately related to the volatility risk premium, which 

in turn are determined by the model one adopts to describe the dynamics of the 

underlying asset returns. 

In continuous-time modelling in finance, stochastic volatility (SV) models, 

such as the models of Hull and White (1987), Heston (1993), and many others, 

have attracted a great deal of attention, as they have captured successfully many of 
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the stylized facts of financial asset returns, such as time-varying volatility, 

volatility clustering, and leverage effect. Among these models, the square-root SV 

model of Heston (1993) which belongs to the general class of affine models seems 

to be the most popular model. The main reason behind that is because the affine 

SV model of Heston (1993) provide computational tractability that leads to 

closed-form solutions for option pricing. Unfortunately, there is a growing 

literature that provides empirical evidence against affine SV models (see e.g., 

Chernov et al., 2003; Jones, 2003; Aït-Sahalia and Kimmel, 2007, among many 

others). 

Recently, non-affine SV models, such as GARCH or general constant 

elasticity of variance (CEV)-type diffusion models, have been found to capture the 

dynamics of the underlying asset returns much better than the affine SV model of 

Heston (1993) (Aït-Sahalia and Kimmel, 2007; Jones, 2003). Particularly, the 

GARCH diffusion model of non-affine specification has attracted a great deal of 

attention in recent years in the finance literature. A number of papers have provide 

strong evidence for the GARCH diffusion model not only for underlying asset but 

also for option data (e.g., Christoffersen et al., 2010; Chourdakis and Dotsis, 2011; 

Wu et al., 2012; Kaeck and Alexander, 2012, 2013).  

Several estimation strategies for inferring the volatility risk premium have 

been proposed under the affine/non-affine SV models in the literature. One 

estimation strategy for inferring the volatility risk premium relies on the options 

data (see e.g., Chernov and Ghysels, 2000; Pan, 2002; Polson and Stroud, 2003; 

Eraker, 2004; Cheng et al., 2008; Garcia et al., 2011; Ferriani and Pastorello, 2012). 

However, using options data in estimation will no doubt create an unmanageable 

computational burden, as it inevitably involves option valuation for SV option 

pricing models. Instead of dealing with options data that will complicate the 

estimation procedure, some authors proposed alternative approach for inferring the 

volatility risk premium using the CBOE Volatility Index (VIX), a volatility index 

for the S&P500 return (see e.g., Jone, 2003; Duan and Yeh, 2010; Chourdakis and 

Dotsis, 2011; Bollerslev et al., 2011). The fundamental advantage of this approach 

is that the value for the volatility risk premium can be inferred without directly 

using option prices in estimation, thus avoids costly numerical option valuations 

and significantly reduces the computational burden. 

In this paper, we study the volatility risk premium under the non-affine 

GARCH diffusion model of stochastic volatility, using the Chinese Volatility 

Index (iVIX), a volatility index similar to the CBOE VIX, which calculated based 

on the Shanghai 50ETF options data. We derive the corresponding implied iVIX 

formula under the GARCH diffusion model, and develop an efficient importance 

sampling (EIS)-based joint maximum likelihood (ML) estimation method for the 

objective and risk-neutral parameters of the GARCH diffusion model, using joint 

data on the Shanghai 50ETF and iVIX index. The EIS-ML method is easy to 

implement and enables us to estimate the parameters of the GARCH diffusion 
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model precisely. Since the knowledge of the estimated model parameters is not 

sufficient to compute the volatility risk premium, we also have to know the latent 

spot volatility as well. We further develop in this paper a particle filter algorithm 

for extracting latent volatility using joint data. Then, it allows us to infer the 

volatility risk premium implied by the iVIX. 

To illustrate our estimation approach empirically, we apply the approach to 

estimate the volatility risk premium using actual data on the Shanghai 50ETF and 

iVIX index. We find that the volatility risk is priced by the market, and the 

volatility risk premium is negative, implying that investors act risk averse in the 

Shanghai stock market. 

The rest of the paper is organized as follows. In Section 2, we propose under 

the objective probability measure the GARCH diffusion model, and proceed to 

derive the corresponding system under the risk-neutral measure and the volatility 

risk premium. Moreover, the corresponding implied iVIX formula under the 

GARCH diffusion model is derived. In Section 3, we detail the EIS-ML method 

and the particle filter method for the parameter and latent state variable estimation 

of the model. The empirical results are reported in Section 4, and we conclude in 

Section 5. 

 

2.  The model 

We adopt the non-affine GARCH diffusion model to characterize the 

dynamics of the underlying asset returns, and serves the basis of volatility risk 

premium estimation. We describe the model under the objective probability 

measure in Section 2.1, and derive the corresponding system under the risk-neutral 

measure and volatility risk premium in Section 2.2. A derivation of the iVIX 

formula under the GARCH diffusion model is presented in Section 2.3. 

 

2.1  The GARCH diffusion model 

In the GARCH diffusion model, the dynamics under the objective probability 

measure of the underlying asset price tS , and the associated volatility, tV , are 

assumed to be given by 

1t t t t tdS S dt V S dW                     (1) 

2

1 2( ) [ 1 ]t t t t tdV V dt V dW dW                (2) 

where   is the mean of the underlying asset returns, /   is the long-run 

mean of volatility,   is the mean reversion rate of volatility,   is the volatility 

of volatility, and 1tW  and 2tW  are two standard Brownian motions. 

 

2.2  Risk-neutral measure and volatility risk premium 

To change the objective measure to the risk-neutral one, we need to apply the 
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Girsanov's theorem. Specifically, let us consider the Radon-Nikodym derivative of 

the objective probability measure with respect to the risk-neutral one, which is 

2 2

1 2 1 1 2 2
0 0 0

1
exp ( )

2

t t t

t u u u u u udu dW dW    
 

     
 

          (3) 

where 1 2( , )t t t     is the vector of the market prices of risks, return and 

volatility risks, respectively. 

Define
*

1 1 1t t tdW dt dW  and
*

2 2 2t t tdW dt dW  , such that 
*

1tW  and 
*

2tW  

are two standard Brownian motions under the risk-neutral measure. Then, we can 

proceed to determine the risk-neutral dynamics of tS  and tV , which can be 

calculated as follows: 

1t t t t tdS S dt V S dW  *

1 1[ ]t t t t t tV S dt V S dW     

Note that the discounted asset price process is a martingale under the 

risk-neutral measure, we have 

1 ( ) /t tr V    

where r  is the risk-free interest rate. Thus, 
*

1t t t t tdS rS dt V S dW                      (4) 

and 

* 2 *

1 2[ ( )] [ 1 ]t t t t t tdV V V dt V dW dW             

where 
2

1 2( ) 1t t t t tV V V       , represents the volatility risk premium. We 

assume that the volatility risk premium is a linear function of tV , which 

is 0 1( )t tV V    . 

Then the market price of volatility risk is given by 

0 1 1
2

21

t t t
t

t

V V

V

  


 

 



 

such that the risk-neutral volatility dynamics can be expressed as 

* * * 2 *

1 2( ) [ 1 ]t t t t tdV V dt V dW dW                 (5) 

where
* *

0 1,         .  

Given the parameter values under both the objective and risk-neutral measures 

and the latent volatility, the volatility risk premium can be obtained: 
* *( ) ( ) ( )t tV V                          (6) 

 

2.3  GARCH diffusion implied iVIX formula 

As the iVIX index is similar to the CBOE VIX index, according to Duan and 
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Yeh (2010), we have 

2 2
iVIX ( ) lnQ t

t t

t

S
r E

S

 



  

    
  

               (7) 

where 30 / 365  , 
Q

t
E  is the risk-neutral conditional expectation at time t . 

Eq. (4) can be used to obtain 

1
ln ( )

2

t
Q Qt
t t s

t
t

S
E r E V ds

S


 




 
  

 
               (8) 

and from Eq. (5), for any 
* 0   and 0  , we have 

* **

* * *

1 1
( )

t
Q

t s t
t

e e
E V ds V

   
 


  

 
   

    
 

           (9) 

and for 
* 0  , we have 

* 21
( )

2

t
Q

t s t
t

E V ds V


  


                    (10) 

Combining Eqs. (7)-(10) gives rise to a theoretical link 
2iVIX ( ) ( ) ( )t tA B V                        (11) 

where 

*

*

*

*

1
, 0

( )

1, 0

e

B

 


  



 


 




 and 

 
*

*

*

* *

1 ( ) , 0

( )
1

, 0
2

B

A


 




  


 


 
 


 

The above result shows that the iVIX index can be linked in closed-form to 

the latent volatility, tV , for the GARCH diffusion model, thus provides a simple 

way to deal with the estimation challenge.  

 

3.  Estimation methodology 

In this section, we focus on how to estimate the objective and risk-neutral 

parameters and latent state variables of the GARCH diffusion model using the 

Shanghai 50ETF and iVIX index. First, we describe how to estimate jointly the 

objective and risk-neutral parameters using the EIS-ML method. Then we illustrate 

how to estimate the latent state variables using the particle filter algorithm. 

 

3.1  Joint ML estimation 

Let lnt ts S  and lnt th V . By Itô's lemma, we have 
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/2

1

1
( )

2
t th h

t tds e dt e dW                    (12) 

2 2

1 2

1
( ) [ 1 ]

2
th

t t tdh e dt dW dW     
                (13) 

In the empirical literature, the above continuous-time model must be 

discretized to facilitate the parameter estimation. A simple Euler discretisation 

leads to the following discrete-time stochastic processes 

1 1 /21
( )

2
t th h

t tx e e                       (14) 

1 2 2

1

1
( ) [ (1 ) ]

2
th

t t t th h e      

                  (15) 

where 1t t tx s s    is the continuously compounded return of the underlying 

asset,   is the time interval, t  and t  are independent and identically 

distributed (i.i.d.) standard normal random variables and uncorrelated. 

In order to perform the joint estimation of objective and risk-neutral 

parameters, we consider the additional information provided by the iVIX index. To 

account for possible measurement error in the iVIX index, we assume the observed 

log iVIX index as follows: 

1
ln iVIX ( ) ln[ ( ) ( ) ]

2
t t tA B V                 (16) 

where t  are i.i.d. standard normal random variables and independent of t  and 

t ,   is the parameter corresponding to the measurement error. 

It is clear that Eqs. (14)-(16) constitute a nonlinear and non-Gaussian 

state-space model with log volatility is the latent state variable. To estimate this 

model using ML method, we need to integrate out the latent state variables from 

the joint density of the observations and latent state variables and derive an explicit 

expression for the marginal likelihood of observations. 

Let 1( , , )Tx x  X  be a vector of the observed underlying asset returns 

(50ETF returns), let 1(ln iVIX , , ln iVIX )T
 Y  be a vector of the observed 

log iVIX and let 1( , , )Th h  H  be a vector of the latent state variables which 

are the log volatilities in our case. The likelihood function of the observed samples 

of 50ETF returns and iVIX can in principle be expressed as 

0 0( , ; , ) ( , , ; , )h p h d  X Y X Y H HL             (17) 

where 
* *( , , , , , , , )          , 0h  is the initial log volatility, and we will 

estimate along with parameter vector  , and 0( , , ; , )p hX Y H  is the joint 

density of X , Y  and H , which can be written as 
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0 1 1

1

( , , ; , ) (ln iVIX | , ) ( | , ) ( | , , )
T

t t t t t t t

t

p h p h p x h p h x h 



    X Y H  (18) 

where (ln iVIX | , )t tp h   is the normal density of ln iVIXt
 with the 

conditional mean 
1

ln[ ( ) ( ) ]
2

tA B V   and the conditional variance 
2 , 

1( | , )t tp x h    is the normal density of tx  with the conditional mean 

1
1

( )
2

th
e    and the conditional variance 1th

e    and 
1( | , , )t t tp h x h    is the 

normal density of 
th  with the conditional mean and the conditional variance are 

given by 

1

1

1

2

1 /2

1
( )

1 2( )
2

t

t

t

h

t
h

t t h

x e

h e
e


    











  

               (19) 

2 2 2(1 )t                           (20) 

Given the likelihood function L , the ML estimates of parameters of the 

state-space model in Eqs. (14)-(16) are then given by 

0

0 0
( , )

ˆˆ( , ) arg max ln ( , ; , )
h

h h


  X YL  

 

3.2  EIS to likelihood approximation 

Since a typical financial time series has at least several hundreds of 

observations, the high-dimensional integral in the right hand of Eq. (17) rarely has 

analytical expression. Meanwhile, using the traditional numerical integration 

methods to approximate the integral is also infeasible. In order to overcome this 

problem, we use the Monte Carlo simulation methods. 

From Eq. (18), the likelihood function in Eq. (17) can be rewritten as 

0 1 1

1

( , ; , ) (ln iVIX | , ) ( | , ) ( | , , )
T

t t t t t t t

t

h p h p x h p h x h d 



    X Y HL   (21) 

Let 
( )s

th  is drawn independently from the so-called natural importance sampling 

(NIS) density 
( )

1( | , , )s

t t tp h x h   , then the corresponding NIS-Monte Carlo 

estimate is given by 

( ) ( )

0 1

1 1

1
( , ; , ) (ln iVIX | , ) ( | , )

TS
s s

t t t t

s t

h p h p x h
S



 

 
    

 
 X YL%       (22) 

A primary advantage of the NIS is that it is intuitive and simple to implement. 

However, it turns out that the NIS estimate is highly inefficient since its sampling 

variance rapidly increases with the sample size T . Thus this estimate cannot be 
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relied on practically. To overcome this drawback of the NIS, we adopt the EIS 

proposed by Richard and Zhang (2007). Based upon this Monte Carlo integration 

technique, high-dimensional integral can be evaluated quickly with high numerical 

accuracy. 

The EIS requires an auxiliary parametric importance sampler from which 

samples can be obtained efficiently. Let 
1 1{ ( | , , )}T

t t t t t tm h x h a 
 be an auxiliary 

sampler (i.e., EIS sampler) indexed by the auxiliary parameter 
1{ }T

t ta 
. The 

likelihood function in Eq. (21) is rewritten as 

1 1
0

1 1

(ln iVIX | , ) ( | , ) ( | , , )
( , ; , )

( | , , )

T
t t t t t t t

t t t t t t

p h p x h p h x h
h

m h x h a

 

 

   
  


X YL   

1

1

( | , , )
T

t t t t t

t

m h x h a d




 


 H                        (23) 

The corresponding EIS-Monte Carlo estimate is then given by 
( ) ( ) ( ) ( )

1 1
0 ( ) ( )

1 1 1

(ln iVIX | , ) ( | , ) ( | , , )1ˆ( , ; , )
( | , , )

s s s sTS
t t t t t t t

s s
s t t t t t t

p h p x h p h x h
h

S m h x h a

 

  

   
   

 
 X YL   (24) 

where
( )s

th is drawn independently from the EIS density
( )

1( | , , )s

t t t t tm h x h a . 

Following Richard and Zhang(2007), we write EIS density tm as 

1
1

1

( | , , )
( | , , )

( , , )

t t t t t
t t t t t

t t t t

k h x h a
m h x h a

x h a






               (25) 

1 1( , , ) ( | , , )t t t t t t t t t tx h a k h x h a dh                  (26) 

where 1( | , , )t t t t tk h x h a  is the density kernel. According to the state-space model 

in Eqs. (14)-(16), we set 
2

1 1 1, 2,( | , , ) ( | , , ) exp{ }t t t t t t t t t t t tk h x h a p h x h a h a h            (27) 

where 
1, 2,( , )t t ta a a . 

From Eqs. (25) and (27), we have 

1 1

1 1

(ln iVIX | , ) ( | , ) ( | , , )

( | , , )

T
t t t t t t t

t t t t t t

p h p x h p h x h

m h x h a

 

 

  
  

1 1 1 1
1 0 1 1 0 1 2

1 1, 2,

(ln iVIX | , ) ( | , ) ( , , )
( | , ) ( , , )

exp{ }

T
t t t t t t t t

t t t t t

p h p x h x h a
p x h x h a

a h a h


    



 
  




                                                               (28) 

where 1 1 1 1( | , ) ( , , ) 1T T T T T Tp x h x h a      . Thus, we set up the following 

minimization problem to minimize the EIS-Monte Carlo variance of Eq. (24): 
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( ) ( ) ( )

1 1 1 1
( , )

1

ˆ ˆ ˆ( ( ), ( )) arg min {ln (ln iVIX | , ) ( | , ) ( , , )
t t

S
s s s

t t t t t t t t t t
a c

s

a c p h p x h x h a   



         

( ) ( ) 2 2

1, 2, ( ) }s s

t t t t tc a h a h                               (29) 

where 
tc  is estimated along with the auxiliary parameter 

ta . 

In fact, the minimization problem described in Eq. (29) is equivalent to the 

following auxiliary linear regression 
( ) ( ) ( )

1 1 1 1
ˆln (ln iVIX | , ) ln ( | , ) ln ( , , )s s s

t t t t t t t tp h p x h x h a        

( ) ( ) 2 ( )

1, 2, ( ) , 1, ,s s s

t t t t t tc a h a h u s S                (30) 

where 
( )s

tu  is the error term. Since 
1t 

 depends on 
1ta 
, the coefficients are 

calculated recursively, proceeding from , 1,...,1t T T  . 

In summary, it is possible to compute the likelihood function of the 

state-space model in Eqs. (14)-(16) for given the parameter vector 0( , )h , based 

upon the following EIS algorithm: 

Step 1: Draw initial samples 
( ) ( )

1 1{ , , }s s S

T sh h   from the NIS sampler 

1 1{ ( | , , )}T

t t t tp h x h   . 

Step 2: Calculate ˆ
ta  by estimating the regression model (30), working 

backwards from t T  to 1t  . 

Step 3: Draw new samples 
( ) ( )

1 1{ , , }s s S

T sh h   from the EIS sampler 

1 1{ ( | , , )}T

t t t t t tm h x h a 
. 

Step 4: Repeat Step 2 and Step 3, until a reasonable convergence of the 

parameters ˆta  is obtained. 

Step 5: Calculate the likelihood approximation using 
( ) ( ) ( ) ( )

1 1
0 ( ) ( )

1 1 1

(ln iVIX | , ) ( | , ) ( | , , )1ˆ( , ; , )
ˆ( | , , )

s s s sTS
t t t t t t t

s s
s t t t t t t

p h p x h p h x h
h

S m h x h a

 

  

   
   

 
 X YL  

Following Richard and Zhang (2007), a same set of Common Random 

Numbers (CRNs) is used to obtain the draws from the EIS sampler in order to 

ensure the likelihood approximation L̂  be a smooth function of the parameter 

vector 0( , )h . Typically, a reasonable convergence can be obtained after 3-5 

iterations. 

 

3.3  Particle filter 

Given the parameter vector 0( , )h , we now illustrate how to obtain the 

sequence of filtered estimate of the latent log volatility th . One way to obtain 



 

 

 

 

 

 

 
Xinyu Wu, Hailin Zhou 

______________________________________________________________ 

 

336 
 

 

 

 

these is by means of a particle filter (Gordon et al., 1993). For our practical 

filtering problem, we are interested in the filtered log volatility, [ | ]t tE h F , where 

tF  denotes the information set generated by the observations 
1{ , , }tZ Z , and 

( , ln iVIX )s s sZ x   denotes the joint observations of Shanghai 50ETF return and 

iVIX index at time s . Suppose that 
1 1( | )t tp h  F  is known and we want to 

obtain ( | )t tp h F . First, notice that 

1
1 1 1 1

1 1

( , | )
( | ) ( , | ) ( | )

( | )

t t t
t t t t t t t t

t t

p h h
p h p h h dh dP h

p h


   

 

  
F

F F F
F

    (31) 

Also, from 
1 1 1 1( , ln iVIX , , | ) ( , | ) ( , ln iVIX | )t t t t t t t t t t tp x h h p h h p x   F F F , we get 

1 1
1

1

( , ln iVIX , , | )
( , | )

( , ln iVIX | )

t t t t t
t t t

t t t

p x h h
p h h

p x

 





F

F
F

 

1 1 1

1

( , ln iVIX | , , ) ( , | )

( , ln iVIX | )

t t t t t t t

t t t

p x h h p h h

p x

  






F

F
      

1 1 1 1

1

( l n i V I X | , ) ( | , , ) ( | , ) ( | )

( , l n i V I X | )

t t t t t t t t t

t t t

p h p x h h p h h p h

p x

   



  


F

F
        (32) 

where 1( | , , )t t tp x h h    is the normal density of tx  with the conditional mean 

1 1 1/2 2

1

1 1
( ) [ ( ) ] /

2 2
t t th h h

t te e h h e       

        and the conditional variance 

1 2(1 )th
e     and 1( | , )t tp h h    is the normal density of th  with the 

conditional mean 1 2

1

1
( )

2
th

th e  

      and the conditional variance 

2  . 

Plugging Eq. (32) into Eq. (31), we get 

1 1
1 1

1

(ln iVIX | , ) ( | , , ) ( | , )
( | ) ( | )

( , ln iVIX | )

t t t t t t t
t t t t

t t t

p h p x h h p h h
p h dP h

p x

 
 



  
 F F

F
  (33) 

In summary, the particle filter algorithm for estimating the latent log volatility 

as follows: 

Step 1: Given a set of random samples 
(1) ( )

1 1{ , , }N

t th h   from the probability 

density function 1 1( | )t tp h  F . 

Step 2: Draw samples 
(1*) ( *){ , , }N

t th h  from the probability density function 

1( | , )t tp h h   . 

Step 3: Compute the normalised weight for each sample 
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( *) ( *) ( )

1

( *) ( *) ( )

1

1

(ln iVIX | , ) ( | , , )
, 1, ,

(ln iVIX | , ) ( | , , )

j j j

t t t t t
j N

i i i

t t t t t

i

p h p x h h
q j N

p h p x h h







 
  

 

 

Thus define a discrete distribution over 
(1*) ( *){ , , }N

t th h , with 

probability mass 1{ , , }Nq q . 

Step 4: Resample N  times from the discrete distribution defined above to 

generate samples 
(1) ( ){ , , }N

t th h . 

 

4.  Empirical analysis 

 

4.1  The data 

In the empirical analysis we use daily data on the Shanghai 50ETF returns and 

iVIX index values from February 9, 2015 to February 5, 2016. The 50ETF returns 

computed are logarithmic, i.e., 1log logt t tx p p   , where tp  is the closing 

price. The sample size is 244 for both 50ETF return and iVIX index values. The 

joint time-series is plotted in Figure 1. The data of Shanghai 50ETF is obtained 

from the Wind Database of China. The data of iVIX index is obtained from the 

Shanghai Stock Exchange.  

 

 
Figure 1:  Joint time series of 50ETF returns and iVIX index 
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Summary statistics for the 50ETF returns and iVIX index values are shown in 

Table 1. As can be seen from the table, the 50ETF returns are skewed and 

leptokurtic. Jarque-Bera statistics suggests that the assumption of normality is 

rejected for the 50ETF return series. The summary statistics for iVIX index suggest 

that the 50ETF has about 37.89% annualized volatility, and the volatility ranging 

from 23.33% to 63.79% over the sample period. Furthermore, from Figure 1 we 

can observe that the 50ETF returns exhibit time-varying volatility and volatility 

clustering during the sample period. The results also show that the iVIX index 

exhibits significant characteristic of mean reversion and the behavior of highly 

volatile. 

 

Table 1.  Descriptive statistics of 50ETF returns and iVIX index 

Data Mean Min Max Std. Skew Kurt 
Jarque

-Bera 

50ETF -0.0006    -0.1052     0.0809     0.0258    -0.6184     5.4709 
77.619 

(0.000) 

iVIX 
37.893

2 

23.330

2    

63.788

6     
9.0517     0.7109     3.007 

20.552 

(0.002) 
Note: The number in parenthesis is the P-values of Jarque-Bera tests. 

 

4.2  Estimation results 

Based upon the joint data on the 50ETF returns and iVIX index values, the 

objective and risk-neutral parameters of the GARCH diffusion model are estimated 

by applying the EIS-ML method described in Section 3. Table 2 reports the 

estimation results.  

 

Table 2.  Estimation results 

Objective 

parameter 

    
     Log-lik 

0.0377 

(0.3672) 

1.8293 

(0.8456) 

10.9872 

(6.2433) 

2.0439 

(0.2253) 

0.0073 

(0.0655) 
856.770 

Risk-neutral 

parameter 

*  
*  

     

-0.1757 

(0.0729) 

0.5935 

(0.2481) 

0.0030 

(0.0075) 
   

Note: The EIS-ML method is implemented by using S=32 Monte Carlo draws and 5 EIS 

iterations. The number in parenthesis is the asymptotic (statistical) standard error which is 

obtained from a numerical approximation to the Hessian. Log-lik denotes the log-likelihood 

value. 
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Our results show that the mean of the 50ETF returns is 0.0377  . The 

long-run mean of the volatility is / 0.1665   , with a fast mean-reversion 

speed of 10.9872  . The estimates of the long-run mean of the volatility are 

higher than the unconditional sample variance of 0.1598 (
20.0258 240  ) (see 

Table 1). The estimate of the “leverage effect" parameter   is close to zero and 

not significant. The estimated objective and risk-neutral parameters ( , )   and 

* *( , )   are quite different. It suggests that the volatility risk has mostly likely 

been priced by the market.  

The estimate for  , which is the parameter corresponding to the 

measurement error of iVIX index, closes to zero and is not significant, implying 

that the measurement error in iVIX can be ignored. 

The estimated parameters allow us to estimate the latent volatility, 
t

V , via the 

particle filter algorithm. Figure 2 plots the estimated volatilities based upon the 

joint data. It can be seen from the figure that there is large fluctuations in the 

Shanghai stock market in 2015. 

 

 
Figure 2:  Estimated volatilities 

 

 

As noted in Section 2.2, the estimation of the complete objective and 

risk-neutral parameters and spot volatility based upon the joint data allow us to 
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compute the volatility risk premium. Therefore, we can compute the sample path 

for the volatility risk premium appearing in Eq. (6). The result is reported in Figure 

3. It can be seen from the figure that the volatility risk is priced, and the volatility 

risk premium is negative during the sample period, implying that investors act risk 

averse in the Shanghai stock market. 

 
Figure 3:  Estimated volatility risk premiums 

 

5.  Conclusion 

In this paper, we proposed an estimation procedure for extracting the volatility 

risk premium in the context of the non-affine GARCH diffusion model of 

stochastic volatility, using joint data on the 50ETF returns and iVIX index values. 

The proposed estimation procedure is based on the ML method, where the 

likelihood function of the model is evaluated using the EIS technique. The 

approach is flexible and simple to implement. A theoretical iVIX formula in the 

GARCH diffusion model is derived. It is efficient enough to apply the EIS-ML 

method to the estimation of model (objective and risk-neutral) parameters from the 

joint data. To estimate the latent state variable, we developed a particle filter 

algorithm based upon the joint data. The empirical results show that the volatility 

risk is priced, and the volatility risk premium is negative, implying that investors 

act risk averse in the Shanghai stock market. 
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