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THE MULTI-CRITERIA  FRACTIONAL TRANSPORTATION 

PROBLEM WITH FUZZY "BOTTLENECK" CONDITION   

                                           

Abstract.  The paper proposes a new approach to the multi-criteria 

fractional transportation problem with the same bottleneck denominators, 

additionally criterion for is also time constraint, i.e.  the type bottleneck. We 

propose to study the case when  the bottleneck criterion is not deterministic, but of 

fuzzy type. In this paper I propose an iterative algorithm for solving the model. It 

generates the crowds efficient   model solutions for different types of approaches to 

the time required for transport from optimistic to pessimistic, using for this 

purpose the possible ranges of variation thereof. The algorithm was tested on 

several examples and was found to be quite effective. 
                  Keywords: Fuzzy programming, fractional multi-criteria transportation 

model,   “bottleneck”  criterion, efficient solution, coefficient of optimism. 
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1. Introduction 

                   It’s well known, the increasing of criteria number leads only to increasing 

of solution accuracy for multi-criteria optimization problems. This is why the 

interest of the multi- criteria optimization problem is on the rise, including the 

multi-criteria transportation model, which has numerous practical applications.  

The efficient solutions of the multi-criteria transportation problem of liner type  

can be achieved using various algorithms developed in [8], [11], [13], [21] and 

many others. From practical applicability point of view, imposing of minimal time 

to realise the solution of model appears as a logical condition which would surely 

improve its quality. In the speciality literature the criterion of minimizing the 

maximum time is called a “bottleneck” criterion.  A large variety of algorithms 

have been proposed for different kinds of multi-criteria transportation problems of 

“bottleneck” type. Thus, for solving the three-criteria transportation problem, 

including the “bottleneck” Aneja and Nair in [1] developed an efficient algorithm,  

but Wild and Karwan in [20]  proposed an efficient algorithm for solving the 

generalized r-criteria transportation problem of the same type. It's important  to  

mention, that many of economical decision problems lead to the fractional 

optimization models, because that a lot of important  characteristics  of these  may 

be evaluated really using only some ratio relations. The time-constraining criterion 

is, obviously, one  of conditions so much important  for major optimization 
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problems. A particular case, but quite often meted is of identical denominators 

like the “bottleneck” time function. Moreover, we studied various cases when 

"bottleneck" denominator function is included  as a separate criterion in the 

optimization model. The efficient algorithms for solving these types of models are 

proposed by Sharma and Swarup in [14] for one-criterion fractional transportation 

model of “bottleneck” type and by Tkacenko in [17] for multi-criteria fractional 

transportation model of the same type. Because in real life, often, some parameters 

and coefficients of the optimization models are of indeterminate in [18] 

A.Tkacenko develop a case study when the cost coefficients  of multi-criteria 

fractional transportation “bottleneck” model  are  of fuzzy type. In this paper is 

studied the case when the time characteristics of the of multi-criteria fractional 

transportation “bottleneck” model are  of fuzzy type. 

 

2. Problem formulation 

          Since for any type of mathematical optimization model, the time 

coefficients have greatest influence on both the optimal solution and the value of 

objective function, we propose to investigate the multi-criteria transportation 

model, in which the coefficients are of fuzzy type. We propose to include in the 

model the “bottleneck” criterion separate, which is quite important for any 

decisional situation especially from practical point of view. The mathematical 

model of multi-criteria fractional transportation problem of “bottleneck” type with 

fuzzy time coefficients is the following: 
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       where : 
k

ijc  , k=1,2…r,  i=1,2,…m,  j=1,2,…n  are costs or other amounts 

corresponding to concrete interpretations of those criteria being of deterministic 

type, ijt
~

 - necessary unit transportation time from  source i   to destination j, 

which is of fuzzy type, ia  - disposal at source i, jb  - requirement of 

destination j, ijx  - amount transported from source i   to destination j, that  is 

only positive. 

We can observe, that in model (1)-(7) the first “r” criteria are of linear-

fractional type, moreover, with identical denominators. The denominator function 

appears again as a separate the (r+1)  criterion, being a time-constraining criterion, 

met in special literature as a bottleneck-type criterion. Because this criterion is of a 

non-linear type, obviously,  the model (1)-(7) becomes more complex from the 

solving  point of view, the more it is undetermined type. At first it looks like a 

contradiction between the first r criteria and the (r+1) criterion, but this confusion 

disappears while analysing its practical significance. We can mention that among 

the first r criteria there may be the one of maximum type with the following 

interpretation: the maximization of the total shipping quantity in time unit that is in 

coherence, without any doubt with maximization of entire shipping quantity 

criterion. In fact, this doesn't not make the optimization model more complicated 

as using some elementary transformations the maximum types of criteria can be 

modified into minimal types as they appear in the model  (1)-(7). Particular cases 

of the model (1)-(7) were analysed in the paper [7], [8]. 

 

3. Theoretical analysis of fuzzy time multi-criteria model 

            As we can see, the time parameter has a direct influence on the structure of 

efficient solutions of the  model (1) - (7), and therefore on the objective functions 

of the model. Unfortunately, this characteristic, unlike the characteristics of: price, 

benefit is most at risk. That's why it welcomed the decision maker to be able to 

assess the transport costs on a whole variation interval of time, characteristic of 

each route in order to ensure efficient financial management. Assuming time as a 

continuous variable, each decision maker can assign to each routes a priori a 

corresponding needed interval of time.  Using a coefficient of subjective nature, 

which in fact characterizes the individual risk aversion, we can obtain different 

values of deterministic time for each route. We propose to calculate the route time 
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characteristic ijt  for the model (1) – (7) using the optimistic coefficient p , by 

applying the formula: 

              
ijijijij abbt                                                                                   (8)                               

 where:  ijij ba ,  - are the limit values of variation interval for each  time    

coefficient ijt where: rknjmi ,1,,1,,1  . 

                       We can observe  that   wherekjiforp ,,,]1;0[   

rknjmi ,1,,1,,1  . Moreover, any values of time coefficients according of 

optimistic coefficient p  belongs to its corresponding interval ],[ ijijij bat  .  

                     Agreeing to the formula (8), the parameters p  can be considered as the 

probabilistic   parameters of belonging   for  every  value of time coefficients 

{ ijt } from their corresponding variation intervals [7].  

           Supposing that  the variables { ijt }  wherekjifor ,,  

rknjmi ,1,,1,,1   are  continuous on theirs corresponding intervals, the 

parameters p  appear as  the  distribution functions  of these variable. Therefore 

the functions p  enjoys all properties of distribution functions including the 

monotony and continuity property. 

 

                      Thereby,  with increasing value of the coefficient of optimism of decision 

maker who can be considered a probabilistic size, the  value of time required to 

achieve the route decreases, also belonging to its characteristic time interval.   

                   Analogical, with the decreasing value of the coefficient of optimism 

decision maker who can be considered a probabilistic size, the amount of time 

necessary to achieve the route will increase, also belonging to its characteristic 

time interval. 

      

                         Thus are  true the next relations: 

  

  for      2121 ,1;0,& ppwherefrompp    
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ij                         (9) 
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21
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 By fuzzy linear programming we mean the appliance of the fuzzy set 

theory to linear multi-criteria decision making problems. In multi-criteria decision 
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making problems, the objective functions are represented by fuzzy sets, but  the 

decision set is defined as the intersection of all fuzzy sets and constraints. The 

decision rule is to select the solution having the highest membership of the decision 

set.  Zadeh [2] introduced the basic concepts of fuzzy set theory. Zimmermann in 

[23] made an innovation in the field of multi-criteria decision making. He first 

applied fuzzy set theory concept with suitable choices of membership functions 

and derived a fuzzy linear programming. He shows that obtained solution using the 

fuzzy linear programming is always efficient one, further it  can find   a optimal 

compromise solution.  

Definition 1 An element x  has a degree of membership in a set A, denoted by a 

membership function  xA . The rang of the membership function is [0,1]. 

 According with the definition (1), the coefficient of optimism of the 

decision maker for the model (1) - (7) can be interpreted as a function of 

belonging of the required time to achieve the route to its corresponding interval. 

              

4. The Initialization Procedure 

The basic idea of the algorithm, that we   propose is to transform fuzzy 

type model (1) - (7) into one of deterministic type, based on  determining of the 

whole lot of time characteristic for all model routes for any value of the 

coefficient of optimism of the decision maker. By imposing of   the “bottleneck” 

criterion separate, we will obtain the set of all efficient solutions of model (1) - 

(7), for time value restriction.  

 

1. We  will  suppose, that the set of all routes time variation intervals is given by 

their variation limit values, they are the following:  
njmiijij ba

,1,,1
];[


; 

2. We assume that the decision maker has estimated a certain amount of 

coefficient of optimism,  let it  is 
1p , then we may calculate by applying the 

formula (8) the values of all time  parameters that is the following: 

 
ijijijij abbt  1 , for .,1,,1 njmi   

3. By applying the step 1 and 2 of the procedure we reduce the model (1) - (7) to 

a deterministic models such as: 
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       with the same means of parameters like the (1) - (7)  model just that of 

deterministic type. 

 

5.  Some Reasons and Statements 

             Since the model (10) - (16)  is of multi-criteria type, as we know, these 

rarely admit optimal solutions. For  solving these usually it builds a set of efficient 

solutions, known also as  Pareto-optimal or non-dominated solutions, solutions of 

the “optimal compromise”. In order to investigate the model of multiple criteria, 

we should propose firstly the definition of efficient solution for the deterministic 

type of model. We will consider the next multiple-criteria transportation model of 

“bottleneck” type with deterministic data, without affecting the generality we 

assume that all r criteria are of  minimum type: 
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  with the same significance of the model parameters as in model (10) - (16).  

    Let suppose  that:  ,    is one basic solution for the model  (17),  where:  

                                   =
ji,
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          Analysing the model (10) - (16) and the model (17), it is evident, that  both 

models have the same set of basic solutions, because of the same availability 

domains. The next theorem demonstrates that the model (10) - (16) and (17) have 

also the same set of basic efficient solutions.  

 

Theorem 1.  The set of the basic efficient solutions of the model (10) - (16) and of 

the model (17) coincide. 

 

Proof. We will prove the any basic efficient solution  ,  for the model (17)  is 

also basically efficient  for the model (10) - (16). 

  Let suppose, that  ,   is an basic efficient solution for model (17). 

According the above definition the result is the following: 

  for any other basic solution      ,,  for which the relation 

   
11 jj FF  is true, there immediately exists is at least one index 

 rj ,...12  ,  for which the relation      
22 jj FF  or   is true.  (it is not 
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essential, but for simplicity there will be excluded the case with of multiple 

solutions). 

case a)  TT  ;  

 Let suppose  that  ,  is not the basic efficient solution for model (10) -

(16).  It results, that the following relation is true: 

   
T

XF

T

XF jj
 ,                  for any indexes    rj ,...1 ,                   (18) 

      and,  at least  for one index, let it be
2j , the inequality  (18) is quite strict.             

Multiplying inequalities (18) by T  and supposing 
T

T
k  , we obtain  the 

following  true relations: 

                XFkXF jj   ,          for any  rj ,...1                                    (19) 

   and at least for index
2j , where  rj ,...12   the corresponding relation from (19) 

is  quite strict.   

Because, it is obvious that 1k ,  from the relation (19) immediately results the 

following true relations: 

             )()( XFXF jj                                                                                       (20) 

for any indexes   rj ,...1 ,  and for index
2j ,  the relation is surely strict.  

The obtained relations (20) contradict the supposition, that the solution   ,   is 

basically efficient for the model  (17), resulting  that the basic efficient solution   

 ,  for the model (17) is also basically  efficient for the model (10)-(16), the 

fact  needed to prove. 

case b)  ;TT     

 In this case, because there still exists  one value registration at least for 

one criterion (time criterion), which is  better for the solution   ,  than for the 

solution ),( TX  for the model  (17) and especially for the model (10) - (16), 

resulting that the solution  ,  is basically efficient for the both models, that we 

intended to demonstrate.  

 It can be proved analogously that each efficient solution of the model (10) 

- (16) is also  an efficient solution for the model (17).  

This theorem is proved. 

I’d like to mention that the multi-criteria models with all linear criteria 

were comparatively much more investigated in the specialized literature as in  

[3],[4],[10],[11],[12] . 

            So for each time level allowing placement of the basic solution for the 

model  (17), we can determine its corresponding optimal compromise solution. 
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6. Fuzzy techniques     
         In order to solve the model (17)  by applying the fuzzy technique we 

propose the next 

          Ordering  Algorithm: 

       Step 1  Ordering the time matrix – T( p ) according to cell values in ascending 

order and assigning for each cell a serial number, thus we will get all  nm   

ordered cells. 

      Step 2  Selecting the firsts at least (m + n-1) cells according to  the arrangement 

order,  until  we can place   the initial basic solution for the model (17), supposing  

that the other cells are blocked. 

        Step 3 By applying the algorithm of fuzzy technique for the problem with 

unlocked cells, we get the optimal compromise solution for the model (17) using 

only the unlocked cells, which corresponds to the following 

time:  0maxmin ,,
,

*  jiji
ji

xtt . 

        Step 4  Unlocking iteratively in increasing order of time  the next matrix cell (or 

cells with the same time and cost values), we will return to the step 3 of the 

algorithm and we will find  the next optimal  compromise solution of model with  

time of its realization, obviously, higher than the previous
*t  time. 

         The step 4 is repeated until all of cells in the matrix of time will be unblocked. 

                   Thus, the proposed algorithm will highlight a finite set of optimal 

compromise solutions for the model (17), each of them corresponding to the 

smallest time possible of its realisation. 

 Because the problem has finite dimensions, the algorithm is realized in a finite 

number of steps.  

        We will apply the  fuzzy linear programming technique [3] for solving the 

model (17).  By applying of fuzzy linear programming technique   to the multi-

objective linear transportation model (17),  we will find its optimal compromise 

solution for one certain time level. 

         At the first we assign for each objective function  two values kU  and kL as 

upper and  lower bounds for the objective function kZ : 

kL - aspired level of achievement for objective k; 

kU - highest acceptable level of achievement for objective k;  

kkk LUd   is obviously a degradation allowance for objective k. 

       We build the fuzzy model, because of  aspiration and degradation levels 

for each objective have been specified. On the next step  we will  transform the 

fuzzy model into one of deterministic type model of linear  programming. 
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The solving fuzzy technique is the following: 

 

Step 1   Solving of  r one-criterion transportation problems.  

  Step 2  Building the table of  values, in which are registered values of the all 

objective  functions in the optimal solutions of every objective function. 

Step 3  According to the table of values we may choose the best - kL and the 

worst kU values from the set of solutions.  

          The initial fuzzy model is built keeping the aspirations of each criterion, 

as the follows: 
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Taking into account the relations (21) and the above definition of the 

membership function  Xk , the equivalent linear programming problem for the 

multi-objective transportation problem  (17)  for one available time level is the 

next: 
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  By simplifying the model (23), we will obtain the next linear programming 

optimization  model:     
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           Thus, we can say, that using the fuzzy technique for solving the model (10)-

(16), we easily find a compromise solution for the multi-objective transportation 

model (17) for one available time level. By modifying the time level, we can obtain 

the set of all compromise solutions corresponding to all time levels. 

 Remark 1 The above described algorithm  is applicable to all types of multi-

objective transportation problems as well to the vector minimum as to the vector 

maximum problems.  

 Remark 2  The optimal compromise solution of the model (17) for one certain 

available time level  doesn’t necessarily to be of integer  type. 

Remark 3  Iteratively modifying the decision maker’s coefficient of optimism, we 

get the multitudes of optimal compromise solutions by using the Ordering  

Algorithm, then the Technics Fuzzy. 

                  Thus, the proposed algorithm will highlight a finite set of optimal 

compromise solutions for the model (17), each of them corresponding to the 

smallest time possible of its realisation. 

                    Particular cases of the model (1), without of the “bottleneck” criterion were 

analysed in [4] by Chanas and Kuchta. The authors proposed a method of interval 

for solving one criterion transportation model with fuzzy cost coefficients. The 

idea be applied to multi-criteria problem [5], but it leads to considerable increasing 

of the number of objective functions, which really complicates the solving process 

of the problem. In the papers [6],[9],[10],[12],[15],[16],[18],[19], [22] are proposed 

certain analyses of various points of view about the multiple criteria transportation 

model with fuzzy parameters and are developed different algorithms in order to  its  

solving. It should be noted the practical impossibility of solving these types of 

models using some parametric methods. 

     We can solve the model (10)-(16) also by finding of  a set of efficient 

solutions for each value of decision maker’s coefficient of optimism.  This 

algorithm is more difficult, but for each value of this parameter, it offers  for the 

decider one large set of efficient solutions of integer type, which are very important 

in elaboration of correct managerial strategies. 
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7. The Combinatorial  Algorithm  

Primarily we will perform  the first three steps of the Initialization 

Procedure for a certain value of   decision maker’s coefficient of optimism p , 

then the following procedure will be applied iteratively: 

The first step.  We arrange the values  
ijt  from  the  matrix T in increasing order 

using for this an  ordering  index, let it be h.  We outline that in the model (17) 

there are n  supplies and m  demands and  ( 1r ) objective-functions (including 

time criterion). 

The second step.  We try  to find  an initial basic solution using  one  of the 

criteria, namely the  matrix of this criterion,  from that we will use only the cells 

according to ordering increasing s-index. Obviously,  the initial basic solution will 

be placed   in at least   ( 1 nm  ) cells. Thus, in the matrix in which we placed 

the initial basic solution will be unblocked  0s  cells, where ms 0 + n -1. The 

obtained solution at this iteration will mark   the 0-level of the logical tree of 

efficient solutions. We will consider that   the following cells with ordering 

indexes greater than 0s  are  blocked. For the  0-level we will calculate the 

corresponding 0T  according   to the following formula: 

             0T =    0max ,,
,

jiji
ji

xt                                                                        (25) 

The third step (exploration of the deep branch).  We shall try to improve the 

solution from the  actual level, using for this only the unblocked  cells. For this 

purpose  we shall calculate the values:  
ijjiij cvu  . All configurations of 

basic solutions can be recorded at the next  level l=1. Thus the logical tree will 

contain on level 1 no more than 
1s  branches, where )1(01  nmss . The 

procedure from the 
rd3  step is iterative one and explores the possibility to increase 

the number of logical branches on the next level using every  the branches from the 

previous level. If all possibilities of placement have  been explored as to improve 

at least one of criteria using for this purpose just the  0s   cells ( according the 

described ordering) , then  one can go to  the 
th4   step. 

 The fourth step.  We will  unblock the next ( 0s +1) cell and will obtain  a new 

achievement time for a new efficient solution, which will be  obviously greater or 

equal than  the previous time. I’d like to outline that,  after each unblocking 

iteratively procedure there are again  ( 0snm  ) blocked cells, because after 

every unlocking we consider: 100  ss . If the relation ji , 0  is  true at least 

for one criterion,  for  this cell,  we will repeat the procedure of the 
rd3 step, 

otherwise we shall continue to unblock the next cell, according to the ordering  
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index  h until we will get nms  . After finishing up the 
th4   step, the set of all 

basic solutions of model (1) - (7)  will have been   recorded , out of which we can 

easily select the ones that are basic and efficient. 

One can see, that the logical solving tree iteratively increase its branches 

by exploration of a new configurations of the basic solutions on every level. The 

increasing of both the numerous of  branches of each level as well as  the number 

of levels is constrained by the fact that the problem is of finite dimensions on the 

one  hand and on the other hand by the request that the new solution configuration 

should not be repeated. The correctness of the above algorithm is based from the 

following theorem. 

 

Theorem 2.  The set of all efficient basic solutions for the multiple criteria 

fractional transportation problem with fuzzy “bottleneck” criterion  (1) - (7)  for 

any value of decision maker’s coefficient of optimism is found by applying the 

Combinatorial  Algorithm. 
 

Proof.  We will assume that,  by applying the Initialization Procedure to the 

model (1) - (7) for a certain value of   decision maker’s coefficient of optimism p , 

we reduce it to a deterministic model after (10) - (16), after  that  the model been 

reduced to model (17). 

Let TL  be a list of  basic efficient solutions of model  (1) - (7) being found 

by applying the above Combinatorial  Algorithm for a certain value of   decision 

maker’s coefficient of optimism p . We suppose, that exists one basic efficient 

solution 1jS    for the model (1) – (7), that was found using another algorithm 

different of  the above one, so it results  that Tj LS 1 . Let 1jS  corresponds to 1jT . 

We will fix it on the branch that corresponds to the 1jT  beginning with the level 0. 

Wide exploration of the fixed branch leads to the registration of all basic solutions 

of the branch 1jT . So, all the basic solutions that correspond to time 1jT  belong to  

this set. We will separate in the set 
jlTL  the  efficient basic solutions, that 

correspond to time 1jT . It is obvious that Tj LL 1 . As a result, if 
11 jj TS L , then 

1jS  is a basic efficient solution found by applying the above algorithm or if 

11 jj TS L  , then 1jS  is not a basic solution and moreover, it is not one basic 

efficient. So,  is true  the following: either 1jS  is a basic efficient solution and it 

belongs in the list
TL  or it is not a basic efficient solution. We proved that for a 

certain value of   decision maker’s coefficient of optimism p we obtained the set 
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of all corresponding efficient solutions for the model (1) - (7). Thereby, modifying 

the coefficient of optimism p  by applying the formula (8), we get a lot of new 

efficient solutions for model (1) - (7), which are restricted to a new time By 

building the set of efficient solutions for model (1) - (7) for any value of the 

coefficient of optimism p  in the interval [0,1], in fact, we fully solve the proposed 

model. The theorem is proved. 

 

8. Conclusions 
  In this paper is developed an integrate multistage procedure to solve the multi-

objective fractional transportation problem with fuzzy of “bottleneck” restriction. 

By applying the hypothesis  about the interconnection between the time required for 

transport and coefficient of optimism of decision maker, which of course is of 

subjective type, we reduce the model to one of deterministic type. After, for each of 

possible time level we construct its corresponding set of efficient solutions. I would 

like to emphasize, that at this stage we may apply the fuzzy technique for finding 

the optimal compromise solution, corresponding to the early established time 

level. However, as it’s known, the set of efficient solutions offers several options 

for developing optimal management strategies. By modifying of the time level, 

depending on the decision maker's coefficient of optimism, we can obtain all sets 

of efficient solutions by applying combinatorial algorithm, each of them 

corresponding to its time of realization. In dependence of the economic stability, 

the parameter may following different laws of distribution. Finally, we conclude, 

that these kind of models are very actually and utile  especially from  the 

decisional and managerial point of view. 

 

Example:   
Let be  the 2-criteria fractional transportation problem with fuzzy 

"bottleneck" condition   with 3 supplies and 4 demands. Supposing that we know 

the data of unit costs for the first two criteria of minimum type, which are the next: 
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The third criterion of the problem  is of type “bottleneck” by time, similar to the 

model (1) – (7).  The supply and demand  are the next: 

   .16,14,3,11;17,19,8  BA    

The variation intervals of  fuzzy  time on each route are as follows: 

 15;5];[ 1111 ba ;                73;63];[ 2121 ba ;                42;32];[ 3131 ba ;    

 100;90];[ 1212 ba ;            17;61];[ 2222 ba ;             68;58];[ 3232 ba ;              

 78;68];[ 1313 ba ;              35;25];[ 2323 ba ;                28;18];[ 3333 ba ; 

 57;47];[ 1414 ba ;              62;16];[ 2424 ba ;                22;12];[ 3434 ba ; 

We want to build the set of all efficient solutions for the value of decision 

maker's coefficient of optimism 5.0p .  

Solution procedure:                                                                   

        Knowing the value 5.0p  , we will apply the formula (8):  

 
ijijijij abbt        in order to determine the set of deterministic data  

  .
,1,,1 njmiijt


    We obtain the next data for the time parameters: 

 

 

 

   Time=  

 

 

 

            

By using the above proposed Combinatorial  Algorithm  we have found 

the following 11 efficient basic solutions:  

 16,1,14,2,3,8 343323222111

1  xxxxxxX , ;68,
68

207
,

68

1761








S  

10 95 73 52 8 

68 66 30 21 19 

37 63 19 23 17 

  11 3 14 16 bj\ai 
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 ,3,14,13,3,3,8 343324222111

2  xxxxxxX ;68,
68

276
,

68

1642








S

 14,3,14,5,2,6 343223211411

3  xxxxxxX , ;68,
68

203
,

68

1783








S  

 14,3,2,14,3,8 343224232111

4  xxxxxxX , ;68,
68

213
,

68

1724








S  

 14,3,16,3,8 3332242111

5  xxxxxX , ;68,
68

283
,

68

1585








S  

 16,1,6,2,11,8 343223222113

6  xxxxxxX , ;73,
73

167
,

73

2086








S  

 14,3,8,11,2,6 343223211413

7  xxxxxxX , ;73,
73

173
,

73

2027








S  

 16,1,8,11,6,2 343223211312

8  xxxxxxX , ;95,
95

171
,

95

1868








S  

 16,1,8,11,5,3 343323211312

9  xxxxxxX , ;95,
95

175
,

95

1769








S  

 3,14,13,6,3,5 343324211211

10  xxxxxxX , ;95,
95

265
,

95

14310








S  

 16,1,13,6,3,5 343323211211

11  xxxxxxX , .95,
95

200
,

95

15611








S  

We observe, that the data of the model (1) – (7) for the decision maker's 

coefficient of optimism 5.0p coincide with the data from the example of Aneja 

and Nair from the article [1]. We  can mention that, using  the proposed 

Combinatorial  Algorithm    we obtained   with 2 efficient basic solutions  more    

compared as  the authors’ results from this article. By modifying the decision 

marker’s coefficient of optimism, and therefore for the new time  level of 

achievement for transport routes, we get a lot of new efficient  solutions  for the 

model (1) – (7).  
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