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STABILITY ANALYSIS OF SOME DYNAMICAL MODELS FOR
PRICES WITH DISTRIBUTED DELAYS

Abstract. In the present paper, we study two nonlinear systems which
describe the price dynamics of a single commodity market. The market price is
expressed with the demand and supply functions for the commodity. The distributed
time delay is introduced in the demand and supply prices. It is assumed that the
consumer and producer behavior depends on the weighted function of the past
prices. The demand can take into account the recent price and the past demand
price. The producer can consider the past supply price. Thus, we obtain two
nonlinear mathematical models for the price dynamics. In some conditions, there is
only one positive equilibrium point. The stability of the equilibrium point and the
existence of periodic solutions are investigated. We find the conditions so that the
equilibrium point is locally asymptotically stable. The numerical simulations
illustrate the effectiveness of our results and some conclusions and future research
are provided.
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1. Introduction

Trade cycles, business cycle and fluctuations in the price and supply of various
commodities have attracted the attention of economists [20]. Often the fluctuations
are caused by random factors, e.g. the weather for agricultural commaodities [10].
In this direction, the cobweb model was intensively studied [2], [3], [6], [7], [10],
[1], [11], [12]. Also, the Rayleigh price model with time delay has been considered
in [17], [18], [19].

Mackey (1989) and Belair and Mackey (1989) give a nonlinear price adjustment
model with production delay and rigorously derives a stability switching condition
for which the stability of equilibrium is place and thus the stable equilibrium
bifurcates to a limit cycle after the loss of stability [10]. More recently, this model
was studied by Matsomoto and Nakayama [11] and Matsomoto and Szidarovszky
[12], where two delays were introduced. Huang et al. [7] provided a class of
economic models, where the consumer behavior is influenced not only by the
instantaneous price, but also by the information regarding past prices.

Based on [7] and [1], in this paper we analyze the dynamics of the price for a
single commodity market. The market price p(t)is expressed with the functions

D()and S(:), respectively, denote the demand and supply functions for the
commodity. As in [1], we assume that the consumer and producer behavior
depends on the weighted function of the past prices. The demand for a commodity
can take into account past demand price, p;(t)and recent price, p(t) . The producer
can consider the past supply price, po(t). The demand and supply prices are
described by the functions kq(s)and ko(s), called demand and supply price
kernel, respectively. Thus, we obtain four nonlinear mathematical models for the
price dynamics, where the demand and supply price weak kernels, demand and
supply price Dirac kernels are highlighted.

The paper is structured as follows. In Section 2, the economic models with
demand and supply price kernels are presented. Section 3 investigates the stability
of the equilibrium point and the existence of the Hopf bifurcation for the model
that contains the present price p(t) and the past supply price po(t). In Section 4
we analyze the model with the past demand price pj(t)and the past supply price
p2(t). In Section 5 numerical simulations are given to illustrate the obtained
results. Section 6 gives some conclusions and future researches.

2. Economic models with distributed delays
Considering a single commaodity market, the quantity of supplied and demanded
can be regarded as the function of time, namely, Gq(t)and Dq(t). The inventory

and the level of inventory are recorded, respectively, as S(t) andSq. Let p(t) be

the price at timet, so that the rate of price increases in proportion to the difference
between Sgand S(t) [7]:
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pt) =-a(S([1)-S,), a>0, ©)

wherea is a positive real number depending on the speed of price adjustment,
recording S(t)as:

5(t) =S(0)+ [/ (G, () - Dy (s))ds. 2)

In the traditional cobweb model, demand function is a function of price. In [7],
the demand functions is:

D, (t) =a,—a, p(t) - f (p(1)) (1), ©

wherea; >0, ap >0, ap represents the sensitive degree of consumers to the
increase of commaodity price; f (p(t))is the level of the price relying on the rate of

increase and f :R, — R, is a derivable function with f'(x) >0, xeR,.

Generally, supply function is monotone increasing about price, but it is considered
that as price goes up, the supply could not unlimitedly increase, thus the supply
function is [7]:

Gy () =b,+0,9(p(1)), (4)

where g : R, — R, is given by:

X

9(x) = bs X (®)
and b]_ >0, b2 >0, b3 > 0.
From (1), (2) with (3) and (4), we have:
p(t) =-a(@az p(t) + f (p(t)) p(t) +b29(p(t)) + by —ay). (6)

In specifying how consumer behavior affects commodity demand, we assume
that this behavior is governed by an integration of information regarding past price.
Thus, demand for a commaodity is a weighted function pq (t) of past prices. In [1],

the price pq(t)is called demand price and it is defined by:

pr(t)=['_ ke (t—s)p(s)ds (7)

wherekj is called the demand price kernel.
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The function k1 :[0, + ) — [0, + ) is piecewise continuous and it verifies

([°D:
Jo k1(s)ds=1, [ skq(s)ds <. 8)

In [1], the price p» (t) is called supply price and it is defined by:

po(t) =1 ka(t—s)p(s)ds ©)

wherek, is called the supply price kernel. The function K, :[0, +00) — [0, +)
is piecewise continuous and it verifies ([9]):

Jo k2(s)ds=1, [ sko(s)ds <o, (10)
The demand function with demand price p (t) is given by:
Dy (t) =a3—-ap p1 () — f(p(1) p(t) (11)
and the supply function with supply price p» (t) is given by:
G2 (t) =b1+b29(p2 (1). (12)
Using the functions Dq(t), Dy (t), Gg(t), G2 (t) we obtain:
the first model:
p(t) =a(Sg —So1 (1)), (13)
where
So1(t) =50, (0) + [ (Gy (5) — Dy (5))ds, (14)
and the second model:
p(t) =a(So —S20 (1), (15)

where
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S20(t) =S50(0) + [ (G, ()~ Dy (5))ds, (16)
and the third model

p(t)=a(Sg —S21(1)), (17)

where

S,1(1) =5,,(0) + [ (G, (s) - D;(s))ds. (18)

Using (3), (4), (11), (12), the models (13), (15), (17) are given by the following
equations:

p(t) =-a@az py(t) + f (p(t)) p(t) +bog(p(t)) + by —ag). (19)
p(t) =—a(az p(t) + f (p(t))p(t) +bag(p2 () +by —a). (20)

Pt =-a(azpr(®) + f(pPM)P®) +b2g(p2()) +b1 —a1).  (21)

We analyze the models (19)-(21), for the following kernels:
1. ki(s)= dle_dls, dq > 0, the demand price weak kernel;
2. ko(s)= dze_dzs, do >0, the supply price weak kernel;
3. k1(s)=8(s—11,) 71 >0, the demand price Dirac kernel;

4. ko (s)=6(s—12p,) r2 >0,the supply price Dirac kernel.
The equations (6), (19)-(21), can be rewritten as:

PO =q(0) -
() =-af (P)A() - a2 (1) - abpg(P(V) + alay ~by)
PO =q(0) -
(0 =—af (p)A() -~ aaz py (1) - abpg(P() + a(ay ~by)
p() = q(), -
() =-af (pO)(t) - aaz p(t) — abpg(P2 (1) + alag ~by)
() =), 5

q(t) = —af (p(Y)q(t) —aaz py(t) —abag(p2 (1) +a(a; —by)

139



Nicoleta Sirghi, Gabriela Mircea, Mihaela Neamtu, Laura Cismas, Camelia Hategan

At first, we will show that the systems (22), (23), (24), (25) have only one
positive equilibrium point under some assumptions.
Proposition 1. If aj >by, then systems (22)-(25) have only one positive

equilibrium point(p*, 0), where p*, Is the positive solution of the equation:
azp® +(aghg +bp +by —ay)p+bg(by —a7) =0 (26)

The proof is obtained by vanishing the right parts of the above equations.
The analysis of the local stability of the systems (22)-(25) can be done

analyzing the characteristic equation of the linearized systemin (p , 0).

Systems (22) and (23) are studied in [13]. In the present paper we focus on
systems (24) and (25).

3.Stability analysis and the existence of the Hopf bifurcation for (24)
With the help of the coordinate transformation

x®)=p®-p ., yt)=q(), (@7)
system (24) can be further rewritten as following form:

X(0) = y(v),

« . . (28)
y©) =—af(x®)+ p )y(t) —aax(x(t)+ p ) —abpg(xa(t) + p ) +a(ar —by)

where

Xa(t) = [1__ko(t—s)x(s)ds (29)

The linearized system (28) at (0, 0),is:

u(t) = up (1), o0
Up (t) = —aapuy (t) — abbs B[O ko (=s)uy (t +s)ds —afyuy (1)
where
* 1
pPr=1(p ) B2 =
(b3+p)

The characteristic equation of system (30) is given by:
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22 +apii+aay +abba By [0 Ko (-s)e?Sds. (31)
Then, we have:

Proposition 2.If a; > by, and Kk, is the supply price weak kernel, the equilibrium
point (p”, 0)is locally asymptotically stable for all d, > 0.

Now, let Ko be the supply price Dirac kernel. The characteristic equation of
(30) is given by:

42 +apA +aay +abybg foe 472 =0 (32)

Proposition 3.(i). If a; >bq, ap <bsbgzfo,and 7o =751, then eq. (32) has only
the pure imaginary roots A =+iwoq, Where

2
w5, —aa
21 =i arcco T 72 +2n7z, n=012,... (33)
@1 abybz 2
and w21 is a positive root of the equation:
o* +a®(@pf - 2ap)0” +a° (a3 —bsbZ f2)=0. (34)

(if) For o1 and w»q given by (33) and (34), we have:

=]
Re [MJ >0 (35)

dzo

T,=Ty,A=lwy
Based on the above findings we have:
Theorem 4. Assume the conditions from Proposition 3 hold. Then, we have the

following results:
1. If 75 €[0, ro1]all roots of (32) have negative real part. The equilibrium

point (p*, 0) of system (23) is locally asymptotically stable.
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2. If 79 =751, €q. (32) has a pair of purely imaginary roots tiaw,,, all the
other roots have negative real part. Thus, system (23) undergoes a Hopf
bifurcation at 7o =721 .

4. Stability analysis and the existence of the Hopf bifurcation (25)

With the help of the coordinate transformation
x®) = pM)-p, 1) =q(), (36)

system (25) can be further rewritten in the following form:
X(t) = y(t), -
y(t) =—af (x(t) + p )y —aa (@) + p ) —abpg(xa(t) + p*) +a(ay —by)
with
x(t) =1 kit —s)x(s)ds, xo(t) =[* ko (t—s)x(s)ds. (38)
The linearized system (37) at (0, 0),is:

Uy (t) = U (1), "
Uy (t) = —afua (t) —aag [0 _ky(—s)uy (t+s)ds—abpbaBa O Ko (—s)uy(t+s)ds (

where

* 1
p=1(p ) P2 ="
(b3+p)
The characteristic equation of system (39) is given by:
2 rapavaa[0 ki(-s)e?Sds+abpbyBy[° ko(-s)e’Sds=0. (40)

1.1 Ky is demand price weak kernel, k, is supply price weak kernel

Proposition 5. If a; >bq, k; the demand price weak kernel and k, the supply
price weak kernel, then the characteristic equation (40) is given by:

A+ 03B + 0042 + A+ =0 (41)
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where

gz =ap +dy +dp, qp =ap(dg +dp)+didy,

(42)
1 = a(Bdidp +ady +bobzfrd3), qg = a(ay +bbzB2)d1dy.
The proof follows from (40) for kq(s) = dle_dls, ko(s) = dge_O|2S .
From (42), we have g; >0, i=0,1,2,3, forall d;>0and d, >0.
We define:
_ 2 2
W12 (dy,d2) = 9203 — 4 —d3o- (43)
2 ay —afsf
Proposition 6. Let ap > a4 anddy =dyg <T1. The equation
w12(dio.d2) =0 (44)
has a positive root denoted by dog . For do =dyq, the relation:
2 d,=d o

holds.

Thus, we have the following result:
Theorem 8. If d, < d,,, then the equilibrium point (p~, 0) of system (25) is
locally asymptotically stable. If do =doq , then asdo passes through dog , a Hopf

bifurcation occurs at (p*, 0).
1.2 kyis demand price weak kernel, k, is supply price Dirac kernel

Leta; > by, kg the demand price weak kernel and k, the supply price Dirac
kernel. The characteristic equation of (39) is given by:

p eziz +ed+eg+ (34 + e4)e_’1 =0 (46)
where

ep =di+ap, ep=afdy, eg =aapdy,e3 =abphnfBy, 4 =abpbzfrd;.  (47)
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Proposition 8. If 79 =0, eq. (46) has all roots with negative real part for all
d;>0. If 7, >0and ap <bpbzfrandry =790, then eq. (46) has only a pair of
pure imaginary roots A =ztiwyg,

where
1 €4 (eszZO —€p) + €300 (wgo —e10)
790 =——|arcco 5> +2n7,n=0,12,.. (48)
@20 €y +e3m5

and wo( is a positive root of the equation:

w4 (e% — 2e1)a)4 + (el2 —e§ - 2e0e2)a)2 +eg —ei =0. (49)
Moreover,
. R .
sign % =signG(wyp), (50)
2 A=y, 77Ty
where

G(wp0) = (3e3wg, —eres + 2ep04) (e300, + (€284 — 163) %) —€480) +

+((2ege3 — 3e4) %y +e104)(~(e2 —€4) w5y +e0e3 —€184) — €5

Therefore, using the Hopf bifurcation Theorem ([4], [5], [8]), we have the
following theorem:

Theorem 9. Assume the conditions from Proposition 8 hold. Then, we have the
following results:

1. 1f 7, €[0, 7,,) all roots of (46) have negative real part for alldj >0,i=1,2.

The equilibrium point (p*, 0) of system (25) is locally asymptotically stable.
2. If 79 =719gand G(wyq) , then system (25) undergoes a Hopf bifurcation at

(p,0).
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1.3 kyis demand price Dirac kernel, k5 is supply price Dirac kernel

Leta; > by, ky; the demand price Dirac kernel and ko the supply price Dirac
kernel. The characteristic equation (40) is given by:

22 +afjd+aae * T +abybgfre 2 =0 (51)

Proposition 10. If 71 =0 , eq. (51) is eq. (32). For 7, €[0, 7,,) , where 71 is
given by (33),eq. (51) has all roots with negative real part. If 7, > Oand To = r;,
then eq. (51) has only a pair of pure imaginary roots A = tiwyo , where

2 *
—a COos
T = 1 arcco{ D12 bab3f2 (0)1272} +2nz, n=0,1,2,... (52)

w12 aa
and w2 is a positive root of the equation:

o* + (2578 — 2abyha 7 cOS(w1272))w” — 2a%byb A Sin(wrp) +

21212 p2 2 53

Moreover,

sign{m =signGyz (@12)

1 l’z =1,,, A=,
where

G2 (@12) = (Ranp cos(wyprp) +af sin(wpryp) —abpbz forog —
—abphg B sin(@yp (712 — 72)).
Therefore, we have the following theorem:

Theorem 11.Assume the conditions from Proposition 10 hold. Then, we have the
following results:

1. If 71 €[0, 71 ]all roots of (61) have negative real part for r; €[0, 791]. The

equilibrium point (p*, 0) of system (25) is locally asymptotically stable.
2. If 71 =112and G2 (@q2) # 0, then system (25) undergoes a Hopf bifurcation

at (p*,O).
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From [13], if a; >bjand 79 =0, eq. (51) has all roots with negative real part
for all dq >0and z-f €[0, 711], where 711 is given by:

2
—aph
= arcco{”ﬂ 2 2b3ﬁ2} +2n7,n=0,12,... (54)

@11 aa
and a1 is a positive root of the equation:
o* +a(apf —2abpbgBy)w? +a? (bab2 f2 —a3) =O0. (55)

Proposition 12. If 7o #0and z-lzrf, then eq. (51) has only a pair of pure
imaginary r roots A =ztimo1, where

2 *
W~, —aayn COS(wo1 7T
oy =1 arcco{ 21 — 382 00S(e21 1} +2n7, n=0,12,... (56)

@1 abpbz By

and w21 is a positive root of the equation:

ot + (azﬂl2 —2aay cos(a)rf))a)2 - 2a2a2b3ﬂ_la)sin(a)r§) + az(ag —bzzbg/i’%) =0. (57)

and

sign{%} = signGy (@z1)
2 T,=Ty, A=i®y

where

Go1(@p1) = (2ap1 cos(awp1r21) +ap sin(wp1tp1) —adpry SiN(@p1(r21—171))-

Therefore, we have the following theorem:
Theorem 13. Assume the conditions from Proposition 12 hold. Then, we have the
following results:

1. If 7, €[0, z,,) all roots of (51) have negative real part for z-f €[0, 711]. The
equilibrium point (p*, 0) of system (25) is locally asymptotically stable.
2. If 790 =791 and Go1(w91) # 0, then system (25) undergoes a Hopf bifurcation

at (p*,O).
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If 71 =7 =7, the characteristic equation (51) becomes:
22 +apA+a(ay +bobg B )e A7 =0. (58)

Proposition 14. If 7 # 0, then eq. (58) has only a pair of pure imaginary roots
A=xiwg, where

1 o
TQ =—| arcco —9 ____ll+2n7,n=0,1,2,... (59)
@ a(ap +bobs/r)

where ax is a positive equation of the equation:

o* +a? pla® —a®(ap +by +byfs)? = 0. (60)
Moreover,
sign[M} - signGy (e)
dz 7,=7,, A=i®,
where

Go (@) = (2a cos(arp) +af2 sin(apzg)) /(g (aag +abobz Bo).

The proof is obtained as in Proposition 10.
Theorem 15. Assume the conditions from Proposition 14 hold. Then, we have the
following results:

1. 1f 7 €[0, z,)all roots of (58) have negative real part. The equilibrium point

(p*, 0) of system (25) with 71 =79 =7 is locally asymptotically stable.
2. 1f t=rgand Gq(wg) # 0, then system (25) with 71 =79 =7 undergoes a
Hopf bifurcation at (p*, 0).

5. Numerical Simulation
For the numerical simulations we consider the parameters: a; =125, ap =2,

a=0.08, by =85, by =180, bz =12, and the functions: f (x) =2x+1, g(x):%.
+X

The equilibrium state of the price is p* =2.82921.
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System (24) is based on the demand function and
Do (t) =125 -2p(t) — (2 p(t) +1) p(t), and the supply function with the supply
85-+180 po(t)
12 + po(t)
Using formula (33) we obtainzp1 =0.7289 . For any 79 <0.7279, the equilibrium

point (2.82921, 0)is locally asymptotically stable. The orbits (t, p(t)) and
(t, g(t)) can be visualized in Figure 1.

price kernel Gy (t) = , Where po = ﬁoo Ko(t—s)p(s)ds.
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Figure 1: Trajectories of system (24) converge to the asymptotically stable
equilibrium point (2.82921, 0), when demand function is D, and supply

function is Go with supply price Dirac kernel, forzo =0.5.

From Theorem 4, 751 is a Hopf bifurcation. In this case, for 791 =0.7289 the orbit
of system (24) is periodically and we have Figure 2.
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Figure 2: Trajectories of system (24) are periodically, with demand function
D, and supply function G with supply price Dirac kernel, for 7o =751 =0.7289
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System (25) is based on the demand function with demand price kernel
Dy(t) =125-2py (t) - (2p(t) +1) p(t), where pyp = [*__kq (t—s) p(s)dsand the
85-+180py (1)

supply function with the supply price kernelG,(t)= o 0
+ P2

, Where

p2=J' ka(t-s)p(s)ds.

If we have the demand price weak kernel with kl(t)=0.2e_0'2t, and supply

price with weak kernel with k2(t):d2e_d2t. From Proposition 6, we find the
critical value of the parameterdy, dog=161.06. From Theorem 7, the
equilibrium point is locally asymptotically stable for any do <dog =161.06.
System (25) undergoes a Hopf bifurcation whendy =dog . For d1 =0.2, dp =0.8
the orbits of the price (t, p(t)) and (t, g(t)) are displayed in Figure 3.

.
28304 . . . . . . 10,22
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283 I |
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E |
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ait)
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2ol | [\
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2828 | |
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4

2

.A« 7 0
2

4

6

8

2.8286

0 1000 2000 3000 4000 5000 6000 7000 o 1000 2000 3000 4000 5000 6000 7000
t t

Figure 3: Trajectories of system (25) converge to the asymptotically stable
equilibrium point (2.82921, 0), where demand function D, has demand price

weak kernel and supply function G» has supply price weak kernel, for
d;=0.2,d>=0.38.

Now, we consider the demand price weak kernel with Kk, (t) =0.8e** and
supply price with Dirac kernel po(t)=p(t—72). From Theorem 9, the
equilibrium point is locally asymptotically stable for any 79 <79g =0.59 . System
(25) undergoes a Hopf bifurcation when 7o =750 . In this case, the orbits of the
price (t, p(t)) and (t, q(t)) are displayed in Figure 4.
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Figure 4: Trajectories of system (25) are periodically, where demand function
D has demand price weak kernel and supply function G» has supply price

Dirac kernel, for 79 =799 =0.59.

6. Conclusions

This paper deals with a single commodity market, where the price dynamics is
studied. Taking into account the current price, the supply past price and the
demand past price, four models are provided. The past prices are expressed with
the Dirac or weak kernel. Therefore, two mathematical models are investigated by
the stability analysis and the existence of the Hopf bifurcation.

For the first model, the current price and supply past price are considered. When
we have the supply price weak Kkernel, the equilibrium point is locally
asymptotically stable for some conditions of the parameters. In the case of the
supply Dirac kernel, a Hopf bifurcation occurs, when the delay passes through a
critical value.

For the second model, three subcases are analyzed: demand price weak kernel
and supply price weak kernel, demand price weak kernel and supply price Dirac
kernel, demand price Dirac kernel and supply price Dirac kernel. For different
values of the parameters there is a cyclic behavior of the system.

For the numerical simulations we have used Maple and Matlab and the obtained
figures verify the theoretical things.

A similar analysis can be carried out for the uniform distribution and the strong

kernel. As in [14], [15], [16] the stochastic approach will be taken into
consideration.
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