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Abstract: First order Adaptive Kalman Filter (AKF) were successful for 

market risk beta estimation to accommodate the adaptive parameters better in a 

time varying CAPM. This paper presents a new formulation of a noise covariance 

adaptation based second and third order AKF for joint estimation of alpha (risk-

free), co-incidental and cross market risks (betas) components of market returns in 

a “two factor” CAPM. Investigations reveal that the higher order AKFs perform 

as good as Kalman filter in spite of flexibility in the time varying noise covariance. 

Key Words: Adaptive Kalman Filter, Time Varying Alpha, Cross Market 

Beta Estimation, Higher Order Filtering, Indian Market. 

JEL Classification: C13, C32, C58, G13. 

1. Introduction 

This paper extends the first order Adaptive Kalman Filter (AKF) to second and 

third order (henceforth AKF2 and AKF3 respectively) for estimation of time 

varying parameters of CAPM. Though classical CAPM assumed that the driving 

parameters α (market independent part) and  (market sensitivity) are constant over 

time, sufficient evidences [1, 2, 5, 9] have been mentioned in the literature that the 

 parameter is time varying and α is constant through out the considered time 

interval. Again literature [1] shows that α may be assumed to be time varying but 

the rate of variations is low (slow) as compared to  variability. Since first order 

AKF filtering techniques are not competent enough to estimate both these time 

varying CAPM parameters jointly. But first order AKF may be extended to its 

second order successor which can estimate  variability while α could be presumed 

time varying. 

For the development of AKF2, necessary second order model is already 

empirically characterized in [5] for second order Kalman Filter (KF2). [5] used a 

second order state-space model (combining random walk model of state evolution 
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and market model for observation modelling) for CAPM parameters (α and ) 

estimation in Italian market. This paper presents the report on the investigations of 

estimating these two parameters by second order KF (KF2), where both the noise 

covariances (Q and R of process and observation models respectively) are assumed 

to be known a priori. [8] have shown that there are justifications to treat these noise 

covariances as time varying. [6] used a technique for estimating the unknown 

variance R by OLS residuals as an estimate of the error sequence rather than 

estimate as a constant variance for the observation equation. Then R was calculated 

using different time lengths, i.e., the variance at period t was based on the said 

residuals from the first to the t-th period. After that they look Q to be proportional 

to that of the observation equation and the factor (a constant) of proportionality 

was the ratio between the OLS estimate of the variance of the estimated  and the 

OLS residuals variance for the entire sample. [5] used maximum likelihood based 

techniques for estimation of the above mentioned considered model parameters. 

Present work, on the contrary, proposed to solve Q and R estimation problems 

using the techniques QAKF and RAKF (along with their corresponding modified 

methods) respectively introduced in [2]. 

A single  model may not be sufficient to explain the cross-section of returns while 

describing a large portion of the common variation in returns in spite of the 

CAPM’s popularity. According to [9] “the empirical deficiencies of the CAPM are 

most commonly explained by missing risk factors or by a mis-approximation of the 

total wealth portfolio”. These lead to multifactor pricing models as motivated by 

the Intertemporal Capital Asset Pricing Model (ICAPM) introduced by [10]. A two 

factor model (with two separate s say 1  and 2 ) may be considered for 

explaining the portfolio returns. One of the two factors identifies the sensitivity      

( 1 ) of the market where the instruments of the portfolio are traded and other one 

identifies a cross market sensitivity ( 2 ). Then a third order model may be 

constructed with states α, 1  and 2 . Present work also extended the proposed 

AKF2 techniques to third order AKF (AKF3) and applied the techniques for 

estimation of time varying α, 1  (as sensitivity of Nifty) and 2  (as sensitivity of 

Sensex) of four Indian sectoral portfolios (appeared as indices of Bank, Midcap, 

Defty and Junior) of NSE. 

Noise covariances adaptation based first order AKF methods have been 

characterized by [2] where either Q or R have been assumed to be and estimated  

during filtering. Q is adapted in first order QAKF (QAKF1) by a scaling method 

introduced by [3] and R is adapted in first order RAKF (RAKF1) by covariance 

matching principles introduced by [7]. This paper concentrates on characterizing 

second and third order QAKF (QAKF2 and QAKF3) along with second and third 

order RAKF (RAKF2 and RAKF3). R is assumed to be known a priori in the first 

case and Q is assumed to be known a priori in the last case. The QAKF2 and 

RAKF2 are characterized for α and  estimation with full synthetic dataset (where 
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itr  and mtr  both synthetic) and semi-synthetic dataset (where itr  is synthetic 

prepared with mtr  from market data). Empirical (where itr  and mtr  both from 

market data) characterization of QAKF2 and RAKF2 are also presented here. 

Moreover, QAKF3 and RAKF3 are only characterized for empirical α, 1  and 2  

estimation with Indian data in this work. 

The following sections of this paper are organized as follows. Section 2 presents 

the second and third order state space model used for the higher order filter 

characterization. Section 3 presents  the proposed AKF2 and AKF3. Section 4 

presents the results of the investigations with AKF2 and AKF3 for alpha and beta 

estimation. The paper is ended with a section on summarizing the conclusions and 

contributions.  

2. Background Theory 

2.1   Second Order State Space Model 

The relation between the portfolio returns and the market index returns can be 

expressed by the standard market model given by: itmtititit rr    (1) 

where itr  is the return for the portfolio i, mtr
 
is the return for the market index, it  

is the random variable that describe the slow varying component of the return for 

the portfolio i  which is independent to the market return (instead its time 

independent assumption), it  is the random disturbance vector all at time t such 

that: )( itE  =0 i , t ; )( T
jtitE  =0 i , j t , ji  ; )( T

iitE  =0 i , t ,  , 

t ; )( T
mtitrE  =0 i , t , ji  . Eq. (1) demonstrates that the return for the 

portfolio i ( itr ), at time instant t, depends on the return for the market index mtr  on 

the same time. Moreover, the relation between these two variables is linear. 

Coefficient  shows how portfolio returns vary with the market returns and is used 

to measure the portfolio’s systematic risk (or market risk). 

[5, 9] assumed that α and  follows a random walk (RW) model and [12] 

developed parametric statistical tests to verify if α and  follows this process. The 

RW model of α and  dynamics can be expressed as ititit u 1
 

and 

ititit   1 . We assume that random variables it , itu  and it  are Gaussians 

i.e., ),0(~ RNit , ),0(~ 1QNuit , ),0(~ 2QNit . Initial conditions are 

),(~ 01100 PN  , ),(~ 02200 PN  . It is supportive to represent the RW model in 

the state space framework before proceeding. 

Observation equation:
 

)()()()()()( tRtxtCtxtCty roott    (2) 
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Observation equation represents the market model with time-varying coefficients 

where matrix )(tC  has dimensions 2T  so that each row will represent the market 

realizations at certain point in time, has the following structure:  mtrtC |1)( 

and the values of )(tC  is assumed to be known. The state vector )(tx  has 

dimensions 12  and represents the α and  coefficients at time t:   itittx )( . 

The variance of it  is unknown, assumed finite and modelled by matrix 

RRroot  . 

State equation:
 

)()1()1()( tQtFxtFxtx roott      (3)  

The covariance matrix Q is assumed diagonal, finite and its elements are unknown. 

Matrix F is the identity matrix in the adopted model (RW) in this work. i.e., 











10

01
F while vector t  models the random part of the state vector: 

  ititut  )( . The covariance matrix of the state noise has the following 

structure  















2

1

0

0

Q

Q
Qroot

and T
rootrootQQQ  . Vector ),,( 212 QQR consisting 

of three stochastic parameters must be estimated 

2.2   Third Order State Space Model 

A possibly multidimensional set of common factors are mapped to the returns of a 

portfolio in “factor pricing model” [9] which are widely employed by investment 

professionals to characterize risk of a portfolio and hence obtain return predictions. 

Multifactor pricing models are called for instead of simple CAPM to improve the 

prediction quality of a portfolio returns with respect to distributed multi-market 

risk factors. For understanding risk based and non-risk based more justifications 

(like data-snooping biases, the existence of market frictions, transaction costs and 

liquidity effects) to think beyond CAPM the reader can refer to [9]. The present 

modeling approach (two factors pricing model) employed in this section has two 

aspects: sectorial portfolios of equities are used as dependent variables instead of 

single stocks and time-varying factor sensitivities are modelled as individual 

stochastic processes. A “two factors” pricing model (having two market factors) 

can characterize the return ( itr ) of a portfolio with respect to return ( tmr 1 ) of a 

market where the assets of that portfolio are traded together with the return ( tmr 2 ) 

of a parallel secondary or complementary market in which those assets are also 

traded and arbitrage is possible. Mathematically, these can be expressed as: 

ittmttmtitit rrr   2211  
      (4) 

where t1  and t2  are the sensitivities of the primary and cross (or secondary) 

markets returns respectively with respect to the portfolio returns. All other 
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assumptions corresponding to the eqn. 1 are assumed to be valid with the above eq. 

4 and also same assumptions are considered for both the market returns while 

considering a single market effect in eqn. 1.
 

In this case α, 1  and 2  assumed to follow a random walk model given by 

ititit u 1 , ttt 1111     and ttt 2122    . We assume that random 

variables it , itu , t1  and t2 are Gaussians i. e. ),0(~ RNit , ),0(~ 1QNuit , 

),0(~ 21 QNt  and ),0(~ 32 QNt . Initial conditions are ),(~ 01100 PN  , 

),(~ 0221010 PN  , ),(~ 0332020 PN  . It is again supportive (like second order 

model) to represent the RW model in the state space framework before proceeding. 

To do so, the observation and state equation can be taken as same as that stated in  

eqn. 2 and 3 respectively. This observation equation represents the market model 

with time-varying coefficients where matrix )(tC  has dimensions 3T  so that 

each row will represent the observations at certain point in time, has the following 

structure:  tmtm rrtC 21 ||1)( 
 
and is assumed to be known. The state vector 

)(tx  has dimensions 13  and represents the α and  coefficients at time t : 

  ttittx 21)(  . The variance of it  is unknown, assumed finite and 

modelled by matrix RRroot  . The process noise covariance matrix Q is assumed 

diagonal and finite. In the model (RW) adopted in the present work, matrix F is the 

identity matrix given by 



















100

010

001

F . while vector t  or )(t  models the 

random part of the state vector expressed as:   ttitut 21)(  The covariance 

matrix of the state noise has the following structure 


















3

2

1

00

00

00

Q

Q

Q

Qroot  

and T
rootrootQQQ  . 

Vector ),,,( 3213 QQQR
 

consisting of four stochastic 

parameters must be estimated in this case. 

3. Higher Order AKF 

Second order KF (KF2) were tried out systematically for the present application. 

This was necessary to confirm that the assumed structure of the covariance 

matrices and the unity system matrix assumptions are adequate. It was also 

necessary to establish the kind of accuracy one can expect in idealized situations. 

The simplest of cases to be tried out was with known 1Q , 2Q  and R and using 

synthetic data generated using the model given by state-space equations 4 and 8 
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with Gaussian noise and other system descriptions where 1Txmtr 1 . Note that this 

is the simplest case and no adaptation was involved. It is observed that the 

performances of joint α and β estimates are good for some true known combination 

like R =1e-8, 1Q  =1e-6 and 2Q =1e-7 (Case 1) with respect to RMSE. However, 

the performance of KF2 is not so good while some true known combination like 

R=1e-6, 1Q =1e-6 and 2Q =1e-3 (Case 2) is choosen. 

The next experiment was carried out with “semi-synthetic” data [4]. The semi-

synthetic data was generated by using the daily observed market returns mtr  (Nifty 

of NSE) instead of 1Txmtr 1 . It is observed that the performance of KF2 with semi-

synthetic data is better than Case 1 and Case 2 of full synthetic data for time 

varying joint α and β estimation as expected. Since we have realized a better 

performance of KF2, the next question is “can the performance be improved 

more?”. If so, then at what extent this performance can be enhanced. Or in other 

words, is there any optimal choice of these known parameters combinations. We 

have found out that the possible optimal (better) combination of the said 

parameters are R =1e-8, 1Q =1e-6 and 2Q =1e-7 (Case 3) as evident with the 

experiments with semi-synthetic data. This optimal combination is decided on the 

basis that the average RMSE became stable after the above combination while 

conducting Monte Carlo experiments. This can be claimed to be optimal 

combination if such stability is not due to the numerical limitations of the 

estimation software (Matlab in our case). It is also observed that the performance 

of KF2 with semi-synthetic data and parameters of Case 3 is much better than Case 

2 for time varying α and β estimation with respect to average RMSE of 1000 MC 

runs. 

3.1   AKF2 Methods and Simulations 

3.1.1   QAKF2 and MQAKF2 Algorithms 

The QAKF2 has been developed by extending the algorithm for second order KF 

with known Q and known R. QAKF2 assumed that the values of R is known to the 

filter but Q is unknown. The formula proposed by [3] for time varying Q 

estimation has been used in the following QAKF2 for time varying α and β (state) 

estimation here similar to the usage at first order QAKF. 

 

Algorithm 3.1: QAKF2 for joint α and β estimation with known R 

Step 1: Initialize )(ˆ tx , )(tP  and Q  and set m, )(tC , F, and known R  t. 

Step 2: Calculate optimal prediction of the state vector )1(ˆ)1|(ˆ  txFttx  

Step 3: Calculate prediction covariance matrix 

)ˆ,()ˆ,()()(  tQtQFtFPtP
T

rootroot
T

p   

Step 4: Calculate innovation )1|(ˆ)()()(  ttxtCtytv . 
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Step 5: Calculate filter gain   1
)ˆ()ˆ()()()()()()(


 
T

rootroot
T

p
T

p RRtCtPtCtCtPtK . 

Step 6: Calculate filter covariance )()]()([)( tPtCtKItP p  

Step 7: Calculate estimate of the state vector 

 )1|(ˆ)()()()1|(ˆ)(ˆ  ttxtCtytKttxtx  

Step 8: Check the value of t. 

Step 9: If t> m then carry out step 9 otherwise repeat step 2 to 8 with 

)()1( tQtQ rootroot  . 

Step 10: Update state noise covariance )()1( tQtQ rootroot   where 

)}()()({

)()(
1

0

1

tCtPtCtrace

Ritvitv

T
p

m

i

T

m
 





 . 

Step 11: Repeat steps 2 to 10 for all epochs. 

 

Both fully synthetic and semi-synthetic data were used first to characterize this 

QAKF2. It was noted that the diagonal elements of Q can be tracked adequately. 

As a few failure cases (λ negative) were encountered, it was decided to use 

Modified QAKF2 (MQAKF2), that is the modified form, presented below. 

 

Algorithm 3.2: MQAKF2 for α and β estimation with known R 

Step 1: Initialize )(ˆ tx , )(tP  and Q and set m, )(tC , F, and known R  t. 

Step 2: Repeat step 2 to 9 of algorithm 3.1 (QAKF2). 

Step 3: Update state noise covariance: )()1( tQtQ rootroot   where 

)}()()({

)()(
1

0

1

tCtPtCtrace

Ritvitv

T
p

m

i

T

m
 





 . 

Step 4: Repeat steps 2 and 3 for all epochs. 

 

It is observed that the performance of the MQAKF2 is comparable with KF2 

though the values of 1Q  and 2Q  are unknown in his case. 1Q  and 2Q  estimation 

performance is also observed to be acceptable for this modified AKF algorithm 

with full synthetic and semi-synthetic dataset. 

3.1.2   RAKF2 and MRAKF2 Algorithms 

The following algorithm RAKF2 has been developed by extending the algorithm  

for  second order KF where both Q and R are known. RAKF2 assumed that the 
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value of Q is known to the filter but R is unknown. The formula proposed by [3, 

11] for time varying Q estimation has been used for adaptive time varying α and β 

(states) estimation. 

 

Algorithm 3.3: RAKF2 for α and β estimation with known Q 

Step 1: Initialize )(ˆ tx , )(tP  and R and set  m, )(tC , F, and known Q  t. 

Step 2: Calculate optimal prediction of the state vector )1(ˆ)1|(ˆ  txFttx  

Step 3: Calculate prediction covariance matrix )ˆ()ˆ()()(  T
rootroot

T
p QQFtFPtP   

Step 4: Calculate innovation: )1|(ˆ)()()(  ttxtCtytv . 

Step 5: Calculate gain:   1
)ˆ,()ˆ,()()()()()()(


  tRtRtCtPtCtCtPtK T
rootroot

T
p

T
p  

Step 5: Calculate covariance: )()]()([)( tPtCtKItP p  

Step 7: Calculate state estimate:  )1|(ˆ)()()()1|(ˆ)(ˆ  ttxtCtytKttxtx  

Step 8: Check the value of t. 

Step 9: If t> m then carry out step 10 otherwise repeat step 2 to 8 with 

)()1( tRtR  . 

Step 10: Update observation noise covariance 

)()()()()()1(
1

0

1 tCtPtCitvitvtR T
p

m

i

T

m
 





. 

Step 11: Repeat steps 2 to 10 for all epochs. 

 

The RAKF2 failed with synthetic data when the true value of the parameters are 

R=1e-8, 1Q =1e-6 and 2Q =1e-7. The reason behind this failure was investigated 

and found that it is due to negativity occurance of R. The above numerical 

experiments indicated that a much less noisy estimation of β is possible provided 

suitable (small) values of noise covariances are chosen or initialized. The algorithm 

MRAKF2 is developed by modifying the RAKF2 where the R calculation formula 

has been changed by considering its absolute value so that negativity occurrences 

do not take place. 

 

Algorithm 3.4: MRAKF2 for α and β estimation with known Q 

Step 1: Initialize )(ˆ tx , )(tP  and R and set m, )(tC , F, and known Q  t. 

Step 2: Repeat step 2 to 9 of algorithm 3.3 (RAKF2). 

Step 3: Update observation noise covariance: 

)()()()()()1(
1

0

1 tCtPtCitvitvtR T
p

m

i

T

m
 





 

Step 4: Repeat steps 2 and 3 for all epochs. 
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It has been observed that the performance of MRAKF2 is comparable with that of 

KF with known R for time varying joint α and β estimation with full synthetic as 

well as semi-synthetic data. The performance of R estimation by MRAKF2 is also 

fairly acceptable. 

3.2   AKF3 Methods and Simulations 

3.2.1   QAKF3 and RAKF3 Algorithm 

Algorithms KF2, QAKF2 and RAKF2 are extended to KF3, QAKF3 and RAKF3 

respectively where dimension of state variable is increased from 2 to 3. However 

the filtering algorithms do not change except the said change (increase) in the 

dimension of x(t), Q, P, Pp from 2 to 3. QAKF3 and RAKF3 are modified to 

MQAKF3 and MRAKF3 respectively to take care of the negativity occurrences 

similar to the second order filtering cases. 

4. Results of Empirical Investigations  

4.1   Data Source and Preparations 

The stock indices data from National Stock Exchange (NSE) of India has been 

collected from NSE website. The daily closing data during 1st January, 2001 to 

31st, December, 2008, total of 2003 days data, are considered for the study. The 

stock market indices are reasonably representative of a mixture of industry sectors 

and trading activity mostly revolves around the stocks comprising the indices. The 

sectoral indices, suitably designed portfolios of equities from specific sector, are 

considered as representatives of portfolios and gross index Nifty (S&P CNX 

NIFTY) data are fair representative of the diversified market together. The 

considered sectoral indices are Bank (BANK NIFTY), Midcap (CNX MIDCAP), 

Defty (S&P CNX DEFTY) and Junior (CNX NIFTY JUNIOR). The literature on 

formation and composition of the selected indices are available on NSE websites. 

4.2   Results of AKF2 

This section presents and analyses the results of the empirical investigations for α 

and β estimation carried out with data set from Indian market. Empirical time 

varying daily α and β estimates of four sectoral Indian indices portfolios (viz. 

Bank, Midcap, Defty and Junior) by KF2 and AKF2 (QAKF2 and RAKF2) 

proposed and modified here. The gross index Nifty (of NSE of India) daily returns 

are used as market returns during the considered period. Fig. 1 and fig. 2 present 

daily estimates of α and β of four sectoral Indian portfolios respectively for the 

considered time duration by KF2, MQAKF2 and MRAKF2. We can compare the 

said estimates from the graphs of these figures. Fig. 3 presents the time varying 1Q  
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and 2Q  estimates by MQAKF2 and fig. 4 presents the time varying R estimates by 

MRAKF2. 

The assumed known or initial values of the parameters during applying the KF2, 

MQAKF and MRAKF are 1Q =1e-6, 2Q =1e-7 and R =1e-8. The initial values of 

α and β are 0.002 and 0.01 respectively where as initial values of P=[0.001 0; 0 

0.01] in all filters. However chosen suitable value of m is 300 in both the AKF2. 
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Figure 1: α estimates of the considered indices by KF2, MQAKF and MRAKF 

It is observed (Fig. 1) that all three filters emerge daily α estimates comparable 

irrespective of all the four portfolios. It is also noted that the range of α estimates is 

least for Defty and greatest for the Bank among the considered portfolios. The 

range of α estimates is comparatively similar for Midcap and Junior but in between 

Bank and Defty. Comparing the estimates of these three filters, we have found that 

KF2 shows greater variability in the estimates than the estimates by MAKF2 

variations. However, range of α estimates by MQAKF2 is revealed to be greater 

than that of MRAKF2. With the initializations and assumptions mentioned above, 

it is observed that negativity of R occurred in the case of Defty only and not in 

others portfolios and hence MRAKF2 called for. Above all, the assumption of 

constant α in CAPM can be challenged in view of the above results. 
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Figure 2: β estimates by KF2, MQAKF2 and MRAKF2 

It has been observed (fig.2) that the daily β estimates by KF2 and MQAKF2 are 

close to each other for all the considered portfolios. Daily β estimates by MRAKF2 

is comparable with that of KF2 and MQAKF2 for Junior only where as the nature 

of MRAKF2 β estimates are quite different than that emerged by KF2 and 

MQAKF2 for other three Indian portfolios. The variability of β estimates by 

MRAKF2 is very small compared to that provided by KF2 and MQAKF2. It is also 

noted that daily β estimates by KF2 and MQAKF2 are similar to that provided by 

first order KF and first order MQAKF. 

 
Figure 3: Time varying 1Q  and 2Q  estimates by MQAKF2 w.r.t. Nifty 

 
Figure 4: Time varying R estimates by MRAKF2 w.r.t. Nifty 
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It has been observed (fig 3 and 4) that the time varying 1Q , 2Q  and R estimates 

are analogous for Bank, Midcap and Junior but the estimates of these parameters 

for Defty is quite different from that of the other three portfolios. It is also 

interesting to note that the estimates of these parameters are quite close to each 

other for Midcap and Junior where as the estimates are different a little for Bank. 

4.3   Results of AKF3 

This section presents the empirical estimates of time varying α, 1  and 2  of the 

four sectoral portfolios. A two factor third order pricing model is appropriate to 

quantify the market risks of these portfolios since the assets in these portfolios are 

Indian equities and mostly traded in the NSE and BSE with arbitrage facilities. 

NSE should be the primary market for these portfolios since these portfolios are 

designed and maintained by NSE of India and hence Nifty returns are treated as 

primary market returns. Most of the assets under the considered portfolios are 

traded at BSE of India which is the oldest and having second market capitalization 

in India. It is also a matter of concern that many investors and traders take their 

risk decisions on the basis of the gross market index Sensex designed and 

maintained by BSE. Hence, Sensex returns have been considered as cross market 

returns in the above “two factor pricing model”. This section of the paper aims at 

analyzing the time-varying impact of market risks quantified by the market 

sensitivities parameters 1  and 2  together with the market independent part of 

the portfolio returns identified by α of four Indian portfolios using KF3 and AKF3. 

The fig. 5, 6 and 7 present daily estimates of α, 1  and 2   respectively for the 

said portfolios by KF3, MQAKF3 and MRAKF3. Fig. 8 presents the time varying 

1Q . Fig. 9 presents time varying 2Q  and 3Q  estimates by MQAKF3. Fig. 10 

presents the time varying R estimates by MRAKF2. The assumed known and 

initial values of the parameters during applying the above are 1Q =1e-6, 2Q =1e-7, 

3Q =1e-7 and R=1e-8. The initial values of α, 1  and 2  are 0.002, 0.01 and 0.01 

respectively whereas initial values of P=[0.001 0 0; 0 0.01 0; 0 0 0.01] in all filters. 

However chosen suitable value of m is 300 in both the AKF3. 
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Figure 5: α estimates of the considered indices by KF3, MQAKF3 and MRAKF3 

It is observed (fig. 5) that α estimates by second order and third order KF and AKF 

both are very akin to each others except for Midcap (though  comparable). 

 

 
Figure 6: 1  estimates of the considered indices by KF3, MQAKF3 and MRAKF3 
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Figure 7: 2  estimates of the considered indices by KF3, MQAKF3, and MRAKF3 

It is observed that 1  estimates by KF3 and AKF3 are comparable. But these 1  

estimates are different from β estimates by KF2 and AKF2 for all considered 

portfolios though both β and 1  indicate Nifty sensitivity one in absence of cross 

market factor and other in presence of the same. The trends of β and
 1  

estimates 

by second and third order filters are akin for all portfolios except for Bank. 2  

estimates by KF3 are comparable with 2  estimates by AKF3 where either Q or R 

is unknown. The trends of 1  and 2  
estimates are not alike for considered 

portfolios except minor likeness in trends for Defty. The trends of 1  and 2  

estimates are revealed to be reverse for Junior portfolio by both KF3 and AKF3. 

 
Figure 8: 1Q  estimates by MQAKF3 w.r.t. Nifty & Sensex 
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Figure 9: 1Q , 2Q  and 3Q  estimates by MQAKF3 w.r.t. Nifty & Sensex 

 
Figure 10: R estimates by MRAKF3 w.r.t. Nifty & Sensex 

The trends of 1Q  estimates by AKF2 are analogous to that by AKF3 for all 
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be equal to one with another for all considered individual portfolios also. However 

trends of 2Q
 
estimates by AKF2 are similar to the trends of 2Q  or 3Q  estimates 

by AKF3 for all considered portfolios individually too. Since 1Q  and 2Q  estimates 

by AKF2 and AKF3 are different from one to another individually, it may be 

argued that the modeling uncertainties are different for the considered portfolios. 

On the contrary, 2Q  and 3Q  estimates by AKF3 being equal implies that the 

modeling uncertainties are same for both the market sensitivity parameters viz. 1  

and 2 . 

The R estimates by AKF2 and AKF3 are equal individually for the considered 

portfolios as expected. However, R estimates ae different for all considered 

portfolios but trends are alike for all considered portfolios except for the Defty. 

5. Conclusions 

This paper explored the performance of second and third order AKF (with 

modifications to counter non-positive covariance) for estimation of CAPM 

parameters with Indian market data. Novelty of this work lies in applying second 

and third order AKFs. This work reconfirms the earlier findings that the CAPM 

parameters for Indian market should be considered as time varying. The novelty of 
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the proposed higher order AKFs is that these can jointly estimate the market 

independent part, primary and cross market sensitivity (all time varying) of a 

portfolio returns. Moreover, this work used AKF2 and AKF3 for estimation of 

process and observation noise covariances. Applications of second and third order 

AKF techniques for such estimation are new in financial literatures. 

The investigations reported here show that the estimated β’s  are comparable to 

earlier work in Indian market by first order KF and [5] in Italian market using KF2.  

Moreover, empirical β estimates by higher order AKFs do not suffer from 

“inadequate noise filtering” problem unlike first order AKFs. Even in case of 

RAKF2 and RAKF3, the time varying primary market sensitivity became smooth 

after some time iterations. These observation indicates that market sensitivity 

becomes constant (more or less) if market independent part α of portfolio return is 

assumed to be time varying (in case of higher order models) when observation 

noise covariance is not known beforehand. 

Time varying 1Q , 2Q  and R estimates by suitable second order AKFs show that 

their trends are alike for all considered portfolios except Defty. Moreover, 

individual 1Q , 2Q  and R estimates of Midcap and Junior are very close to each 

other. It is also noted that MRAKF2 is used only in the estimation of α and β of 

Defty among the four considered portfolios because of negativity occurrences in R. 

This work contributes to the knowledge corpus by exploring the empirical 

relevance of time-varying factor loadings in a multifactor pricing framework 

specially in Indian market. The qualititative comparison of the estimated of cross 

market factor sensitivities are presented which is at least novel in Indian market. 

Investigations may further be extended to understand the effect of other domestic 

and international factor sensitivities. Quantitative performance of the estimated 

parameters are evaluated through VaR backtesting, expected shortfall analysis and 

in-sample forecasting analysis, all of which confirmed that higher order filters 

perform at per with KF and AKFs. 
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