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Abstract. In this paper, we have focused on accurately volatility estimation 

due to its crucial importance in investment and risk management activities. Based on 

tick by tick data, provided by Thomson Reuters, we have realized a comparative study 

among different high-frequency volatility estimators for some of the most important 

three companies listed on Bucharest Stock Exchange. Our findings emphasize that the 

presence of jumps or microstructure noises affect the efficiency of realized volatility 

estimator. So, based on data architecture, we have used adequate estimators jump and 

noise robust. We concluded that for less liquid markets, the presence of more visible 

jumps leads to higher intra-day volatilities comparing with more liquid markets. 
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1. Introduction 

Although price process of financial instruments is generally observable, the 

volatility is always an unobservable variable, hence the necessity to be estimated. Over 

time, parametric models, like ARCH family models, Stochastic Volatility Model, 

Local Volatility Model etc., have been proposed to deal with this fundamental problem 

essential for practical applications as pricing financial assets, performance evaluation, 

risk management etc.  

Over the last decade, a new paradigm, related to high frequency trading and 

pricing risk, has been evolved. One popular application of high frequency data 

represents the estimation of the Integrated Variation (𝐼𝑉).A conventional estimator is 

Realized Variance (𝑅𝑉), defined as the sum of sampled squared returns. It is well 

known in financial econometrics that both jumps and microstructure noise are usually 
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met involved in high frequency time series. Unfortunately, when price series data is 

contaminated by microstructure noise or jumps,𝑅𝑉estimator is biased. In order to 

defeat this inconvenient,  Barndorff-Nielsen and Shepard(2004), Aït-Sahaliaet 

al.(2005), Zhang et al. (2005), Boudt and Zhang (2010) etc. proposed different kind of 

high-frequency unbiased variance estimators. 

Using three blue chips listed on Bucharest Stock Exchange (BSE), we have 

tested for the presence of jumps and microstructure noises in price series. Depending 

on the results obtained, we proposed adequate high-frequency variance estimators. In 

order to make a back-testing of our results, we provided connections between periods 

with high-volatility to market announcements .This approach is a new perspective in 

volatility estimation based on high frequency data from Bucharest Stock Exchange. 

The paper is organized as follows. Section 2 presents the most important tests 

for detecting the presence of jumps in price series data. In Section 3 we discuss about 

the implication of microstructure noises in quality of high-frequency variance 

estimators computation. Section 4 presents different type of high-frequency estimators 

for intra-day variance. In Section 5, estimation results are analyzed. Section 6 

concludes this research. 

 2. Tests for the presence of jumps in price series 

There are several important tests for detecting the presence of jumps in 

financial asset prices. For our purpose, we present here two of them: Barndorff-Nielsen 

and Shephard (2006), respectively Aït- Sahalia and Jacod (2009). 

Under the assumption of no arbitrage, price processes must follow a semi-

martingale(see, e.g., Delbaen and Schachermayer (1994)) on a filtered probability 

space (Ω, ℱ, (ℱ𝑡)𝑡≥0, ℙ).The basic mathematical framework underlying jump tests 

requires that the stochastic log-price process, denoted by(𝜂𝑡)0≤𝑡<∞, belongs to the 

class of semi-martingales, represented by an stochastic integral form: 

𝜂𝑡 = 𝜂0 + ∫ 𝑎𝑢𝑑𝑢 +

𝑡

0

∫ 𝜎𝑢𝑑𝐵𝑢 +

𝑡

0

𝑍𝑡 , (2.1) 

where(𝑎𝑢)0≤𝑢≤𝑡denotes the drift adapted càdlàg process,(𝜎𝑢)0≤𝑢≤𝑡is an adapted càdlàg 

volatility process associated with the instantaneous conditional mean and volatility of 

the corresponding return,(𝐵𝑢)0≤𝑢≤𝑡is a standard Brownian motion, and(𝑍𝑡)0≤𝑡<∞ is a 

jump process defined as 𝑍𝑡 = ∑ 𝑘𝑗
𝑁𝑡
𝑗=1 , where 𝑘𝑗are random variables with nonzero 

values, and (𝑁𝑡)0≤𝑡<∞ is a counting process (e.g., a Poisson stochastic process). 

Let us consider the time horizon𝑡, divided into 𝑀 sub-intervals of constant 

length and letℎ =
1

𝑀
. Let us define the 𝑖 − 𝑡ℎ intraday return on day𝑡 (denoted by 𝑟𝑡,𝑖) 

as: 
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𝑟𝑡,𝑖 ∶= 𝜂𝑡−1+𝑖ℎ − 𝜂𝑡−1+(𝑖−1)ℎ, (2.2) 

for every𝑖 ∈ {1,2, … , 𝑀}. 

 A standard measure of quadratic variation of process (2.1), introduced in  

Andersen and Bollerslev (1998), is realized variance(𝑅𝑉)1defined as: 

𝑅𝑉𝑡,𝑀 ∶= ∑ 𝑟𝑡,𝑖
2

𝑀

𝑖=1

. (2.3) 

They also proved that the variation of stochastic process (𝜂𝑡)0≤𝑡<∞can be, in this 

way,decomposed in two sources of variability, since the limit of 𝑅𝑉𝑡,𝑀(𝑀 →
∞),defined in (2.3), can be represented as: 

lim
𝑀→∞

𝑅𝑉𝑡,𝑀 = ∫ 𝜎𝑢
2𝑑𝑢

𝑡

0

+ ∑ 𝑘𝑗
2

𝑁𝑡

𝑗=1

∶= 𝐼𝑉𝑡 + 𝐽𝑉𝑡 , (2.4) 

where𝐼𝑉 and 𝐽𝑉denotethe integrated variance and jump variation, respectively. Hence, 

if it is possible to sample frequently enough, 𝐼𝑉𝑡can be estimated with minimal 

estimation error. 

 

2.1. Barndorff-Nielsen and Shepard test (BS test) 

 

Historically, the first statistical test to identify jumps in high-frequency time 

series was introduced by Barndorff-Nielsen and Shephard (2004, 2006).To estimate 

integrated variance (𝐼𝑉 estimator; see (2.4)) in presence of jumps, Barndorff-Nielsen 

and Shephard propose the realized bi-power variation (denoted by 𝐵𝑃𝑉), defined by: 

𝐵𝑃𝑉𝑡,𝑀 ∶= ∑|𝑟𝑡,(𝑖−1)| ∙ |𝑟𝑡,𝑖|

𝑀

𝑖=2

. (2.5) 

The main idea of using bi-power variation, as an𝐼𝑉estimator, is that the 

likelihood of observing presence of jumps in two consecutive returns approaches zero 

sufficiently fast as the sampling frequency increases. Thus, the jumps contribution is 

eliminated since the product of two arbitrary consecutive returns is influenced by the 

diffusion part only. 

Since the limit of realized volatility, for 𝑀 → ∞, converges to the sum of 

integrated variance and jump variation (see (2.4)), it follows that the difference 

𝑅𝑉𝑡,𝑀 − 𝐵𝑃𝑉𝑡,𝑀 captures the jump part only. Taking into account the joint Central 

Limit Theorem of 𝑅𝑉and𝐵𝑃𝑉, they proposed the following test statistics: 

                                                           
1In the literature it is often also called realized volatility though in a strict sense, the terminology 

“volatility” is typically used for𝜎𝑡 rather than for 𝜎𝑡
2. 
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𝐵𝑆𝑡,𝑀 ∶=
𝑅𝑉𝑡,𝑀 − 𝐵𝑃𝑉𝑡,𝑀

√𝜃2 ∙ ℎ ∙ 𝑄𝑃𝑄𝑡,𝑀

, (2.6) 

which converges to a standard normal distribution with appropriate scaling. In (2.6), 

𝑄𝑃𝑄𝑡,𝑀denotes the realized quad-power quarticity, given by: 

𝑄𝑃𝑄𝑡,𝑀 ∶= 𝑀 ∑|𝑟𝑡,(𝑖−3)| ∙ |𝑟𝑡,(𝑖−2)| ∙ |𝑟𝑡,(𝑖−1)| ∙ |𝑟𝑡,𝑖|

𝑀

𝑖=4

⟶ ∫ 𝜎𝑢
4𝑑𝑢

𝑡

0

. (2.7) 

Also, in (2.6) 𝜃𝑝 is given by: 

𝜃𝑝 ∶= 𝜇2 𝑝⁄
−2𝑝

∙ [𝜇4 𝑝⁄
𝑝

+ (1 − 2𝑝) ∙ 𝜇2 𝑝⁄
2𝑝

+ 2 ∙ ∑ 𝜇𝑝 4⁄
𝑝−𝑗

∙ 𝜇2 𝑝⁄
2𝑗

𝑝−1

𝑗=1

], (2.8) 

where𝜇𝑝 is a notation for the 𝑝 − 𝑡ℎabsolute moment of a standard normal random 

variable 𝑈~𝒩(0,1), defined by: 

𝜇𝑝 ∶= 𝔼[|𝑈|𝑝] =
1

√𝜋
2𝑝 2⁄ Γ (

𝑝 + 1

2
), (2.9) 

withΓ(∙) the Euler integral of the second kind (Gamma function). 

 2.2. Aït-Sahalia and Jacod test (AJ test) 

This test, based on the research of Aït-Sahalia and Jacod (2009), uses the 

convergence properties of power variation and its dependence on the time scale on 

which it is measured. 

The main idea is to compare the multi-power variation of returns recorded at 

equidistant time intervals at an infinitesimal scale (ℎ), denoted by 𝑟𝑡,𝑖, with those 

recorded at the slower time scale (𝑘ℎ), denoted by 𝑦𝑡,𝑖, for every 𝑖 ∈ {1,2, … , 𝑀 𝑘⁄ }. 

They found that the asymptotic value (obtained for 𝑀 → ∞) of the realized 

power variation(�̂�𝑡(𝑝, 𝑘, ℎ) introduced below) is invariant with respect to different 

sampling scales and that their value is 1in case of jumps and a known number in the 

absence of jumps (𝑘𝑝 2⁄ − 1, where 𝑝 is a positive number; see Aït-Sahalia and Jacod 

(2009) for details and numerical examples). 

Technically speaking, the statistic of an AJ test is: 

 

𝐴𝐽𝑡,𝑀 ∶=
�̂�𝑡(𝑝, 𝑘, ℎ) − 𝑘𝑝 2⁄ −1

√�̂�𝑡,𝑀

,          𝑝 > 2, 
(2.10) 
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where �̂�𝑡(𝑝, 𝑘, ℎ) ∶=
�̂�𝑡(𝑝,𝑘ℎ)

�̂�𝑡(𝑝,ℎ)
, and �̂�𝑡(𝑝, ℎ) ∶= ∑ |𝑟𝑡,𝑖|

𝑝𝑀
𝑖=1  denotes the usual power 

variation.�̂�𝑡,𝑀denotes the asymptotic variance of �̂�𝑡(𝑝, 𝑘, ℎ) and is defined by: 

�̂�𝑡,𝑀 ∶= ℎ
𝑁(𝑝, 𝑘) ∙ �̂�𝑡(2𝑝, ℎ)

[�̂�𝑡(𝑝, ℎ)]
2 , (2.11) 

where: 

𝑁(𝑝, 𝑘) ∶=
1

𝜇𝑝
2 [𝑘𝑝−2(𝑘 + 1)𝜇2𝑝 + 𝑘𝑝−2(𝑘 − 1)𝜇𝑝

2 − 2𝑘𝑝 2−1⁄ 𝜇𝑘,𝑝], (2.12a) 

�̂�𝑡(𝑝, ℎ) ∶=
ℎ1−𝑝 2⁄

𝜇𝑝
∑|𝑟𝑡,𝑖|

𝑝
𝜒{|𝑟𝑡,𝑖|≤𝛼ℎ𝜛}

𝑀

𝑖=1

, (2.12b) 

𝜇𝑘,𝑝 ∶= 𝔼 [|𝑈|𝑝|𝑈 + √𝑘 − 1𝑉|
𝑝

], (2.12c) 

with𝑝, 𝑘, 𝛼, 𝜛 parameters, and 𝑉~𝒩(0,1).𝜇𝑝was introduced in section 2.1, relation 

(2.9).𝜒{∙}denotes the indicator function. 

Consequently, the AJ test identifies the presence of jumps using the ratio of 

realized power variation sampled from two time scales. The null hypothesis of this test 

is that no jumps occurred. 

 

 3. Identifying the presence of microstructures noise in price process 
 

Let us denote by (�̃�𝑡)0≤𝑡<∞, the log-price process of some asset, for which its 

analytical representation can be modeled by an Itô process: 

�̃�𝑡 = �̃�0 + ∫ �̃�𝑢𝑑𝑢

𝑡

0

+ ∫ �̃�𝑢𝑑𝐵𝑢

𝑡

0

, (3.1) 

where (�̃�𝑢)0≤𝑢≤𝑡, respectively (�̃�𝑢)0≤𝑢≤𝑡 are stochastic processes and both fulfill 

regularity conditions. If we consider the observed log-price process (3.1), we can infer 

that the data series consist of the so-called “true” logarithmic price process, but it also 

contains noise. The consistency of the realized variance estimator builds on the 

hypothesis that prices can be modeled according to the semi-martingale (3.1) and can 

be sampled arbitrarily frequently. In practice, the sampling frequency is certainly 

limited by the transaction frequency or actual quotation. Moreover, transaction prices 

are subject to market microstructure effects, such as the bid-ask bounce effect. 
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Hence, instead of the Itô representation (3.1), it is more realistic to assume the 

observable price process to be given by: 

𝑠𝑡,𝑖 = �̃�𝑡,𝑖 + 𝜀𝑡,𝑖, (3.2) 

where(�̃�𝑡)0≤𝑡<∞ is the latent true, or so-called efficient, price that follows the semi-

martingale given in (3.1),and(𝜀𝑡)0≤𝑡<∞ is a zero mean error term interpreted as the 

market microstructure noise. In this case, the observed intraday return is given by: 

𝑟𝑡,𝑖 = �̃�𝑡,𝑖 + 𝑢𝑡,𝑖 , (3.3) 

where�̃�𝑡,𝑖 ∶= �̃�𝑡−1+𝑖ℎ − �̃�𝑡−1+(𝑖−1)ℎand the intraday noise increment is 𝑢𝑡,𝑖 =

𝜀𝑡−1+𝑖ℎ − 𝜀𝑡−1+(𝑖−1)ℎ. 

If 𝜀𝑡is assumed to be i.i.d.,with𝜎𝜀
2 ∶= 𝔼[𝜀𝑡

2] ∶= 𝜔2, then the observed high-

frequency returns follow an MA(1) process. Moreover, it can be proved that: 

𝔼[𝑅𝑉𝑡,𝑀] = 𝐼𝑉𝑡 + 2𝑀𝜔2. (3.4) 

Hence, as Hansen and Lunde (2006) proved in their research,𝑅𝑉is a biased estimator 

of integrated variance, with bias term 2𝑀𝜔2. Obviously, for 𝑀 → ∞, 𝑅𝑉𝑡,𝑀 diverges 

to infinity.Thus, the estimation is dominated by market microstructure noise. 

 Since it is beyond the aim of this article to provide an in-depth discussion of 

alternative integrated variance estimators, we only briefly present, in section 4,two of 

the most popular estimators accounting for the presence of noise used in section 5. It’s 

about the realized kernel estimator, introduced by Barndorff-Nielsen et al. (2008) and 

about the jump robust two scale realized variance, introduced by Zhang et al. (2010). 

Other usual estimators are the maximum likelihood estimator proposed by Aït-

Sahaliaet al. (2005) and the pre-averaging estimator suggested by Jacodet al. (2009). 

 

 4. High-frequency data estimators 
 

The object of interest in this kind of study is to estimate the continuous part of 

the quadratic variation, or the integrated variance (𝐼𝑉), defined in (2.4). 

 

4.1. Estimation techniques without microstructure noise  

Obviously, if in the considered series there are no jumps and no microstructure 

noise, then the most popular estimator is realized variance (see (2.3)).  

Andersenet al. (2012) have proposed a new set of estimators for 𝐼𝑉in the 

presence of jumps, but when no microstructure noise occurred. They are based on the 

minimum (named 𝑀𝑖𝑛𝑅𝑉𝑡,𝑀) and median (named 𝑀𝑒𝑑𝑅𝑉𝑡,𝑀), respectively of a 

number of consecutive absolute intraday returns, as follows: 

𝑀𝑖𝑛𝑅𝑉𝑡,𝑀 =
𝜋

𝜋 − 2
∙

𝑀

𝑀 − 1
∙ ∑ [min{|𝑟𝑡,𝑖|, |𝑟𝑡,(𝑖+1)|}]

2
𝑀−1

𝑖=1

, (4.1a) 
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𝑀𝑒𝑑𝑅𝑉𝑡,𝑀 =
𝜋

6 − 4√3 + 𝜋
∙

𝑀

𝑀 − 2
∙ ∑ [med{|𝑟𝑡,(𝑖−1)|, |𝑟𝑡,𝑖|, |𝑟𝑡,(𝑖+1)|}]

2
𝑀−1

𝑖=2

. (4.1b) 

The robustness of the 𝑀𝑖𝑛𝑅𝑉𝑡,𝑀 and𝑀𝑒𝑑𝑅𝑉𝑡,𝑀 estimators stems from the fact that 

returns influenced by a large jump in price series are eliminated by the min or med 

functions. That is, if a significant jump occurs within one of the two return terms for 

the (4.1a) estimator, the min function squares the adjacent diffusive return. 

 

4.2. Estimation techniques with noise induced 

 

 For the case when no jumps occurred, but microstructure noise can be 

identified, Barndorff-Nielsenet al. (2008) proposed a class of consistent kernel based 

estimators, realized kernels. This method extends the realized volatility literature, 

which has been shown –empirically–to significantly improve the ability to forecast 

volatility. The realized kernel estimator is defined by: 

𝐾𝑅𝑉𝑡,𝑀 = 𝛾𝑡,0(ℎ) + ∑ 𝑘 (
𝑖 − 1

𝐻
) {𝛾𝑡,𝑖(ℎ) − 𝛾𝑡,−𝑖(ℎ)}

𝐻

𝑖=1

, (4.2a) 

𝛾𝑡,𝑖(ℎ) = ∑(𝑠𝑡−1+𝑗ℎ − 𝑠𝑡−1+(𝑗−1)ℎ) ∙ (𝑠𝑡−1+(𝑗−𝑖)ℎ − 𝑠𝑡−1+(𝑗−𝑖−1)ℎ)

𝑀

𝑗=1

, (4.2b) 

where𝛾𝑡,𝑖(ℎ)denotes the 𝑖 − 𝑡ℎrealized auto-covariance function,𝐻denotesa parameter 

that controls the bandwidth, and𝑖 ∈ {−𝐻, … , −1,0,1, … , 𝐻}. In formulae (4.2a), 𝑘(𝑥) 

denotes the kernel function, i.e., a deterministic weight function depending on a 

bandwidth 𝐻, with 𝑥 ∈ [0,1].If 𝑘(0) = 1, 𝑘(1) = 0 and 𝐻 = 𝑐𝑀2 3⁄ , the resulting 

estimator is asymptotically mixed Gaussian and converges at rate𝑀1 6⁄ .Here, the 

constant 𝑐can be optimally chosenas a function of the kernel and the integrated 

quarticity, such that the asymptotic variance of the estimator is minimized. 

 In the following, we propose to briefly present a more elaborated procedure 

used for estimating𝐼𝑉, under specific jump and noise assumptions. The main idea is 

referring to averaging and sub-sampling. The sub-sampling methodology, originally 

proposed by Zhang et al. (2005),is based on the idea of averaging over various realized 

variances assembled by sampling sparsely over high-frequency sub-samples. 

For example, let us suppose that the intraday observations are assigned to 𝐾 

sub-samples. Using a systematic allocation, 5min. returns can be sampled at the time 

moments10:40, 10:45, 10:50,…,respectively at the time moments 10:41, 10:46, 

10:51and so on. 
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After partitioning the whole sample into 𝐾sub-samples, let us denote by 

𝑅𝑉̅̅ ̅̅
𝑡,𝐾the average𝐾sub-sampled realized variance as: 

𝑅𝑉̅̅ ̅̅
𝑡,𝐾 ∶=

1

𝐾
∑ [𝑠𝑡−1+(𝑖+𝐾)ℎ − 𝑠𝑡−1+𝑖ℎ]

𝑀−𝐾+1

𝑖=1

. (4.3) 

The 𝑅𝑉̅̅ ̅̅
𝑡,𝐾 estimator is still biased, but this property depends now on the average size 

of the sub-samples rather than on the entire volume of observations. Realized variance, 

constructed from all observations, as usual denoted by𝑅�̃�𝑡,𝑀 and defined similar as in 

relation (2.3) for returns introduced by (3.3), is used for bias correction, yielding the 

two time scales estimator: 

𝑇𝑆𝑅𝑉𝑡,(𝑀,𝐾) ∶= (1 −
�̅�

𝑀
)

−1

[𝑅𝑉̅̅ ̅̅
𝑡,𝐾 −

�̅�

𝑀
𝑅�̃�𝑡,𝑀] ,   with�̅� ∶=

𝑀 − 𝐾 + 1

𝐾
. (4.4) 

Taking the difference 𝑅𝑉̅̅ ̅̅
𝑡,𝐾 −

�̅�

𝑀
𝑅�̃�𝑡,𝑀cancels the effect of the microstructure noise. 

 Zhang et al. (2005) proved that if no jumps occur, 𝑇𝑆𝑅𝑉is a consistent 

estimator for the daily 𝐼𝑉, when spot prices are contaminated by noise. Under the 

hypothesis subject to jumps occur, 𝑇𝑆𝑅𝑉 estimates the 𝐼𝑉 plus the sum of squared 

intraday jumps. 

 Boudt and Zang (2010) proposed a jump robust version of two time scales 

estimator, named jump robust𝑇𝑆𝑅𝑉. It excludes from the estimator computation the 

returns that exceed a threshold of their distribution established under the hypothesis of 

no jumps. Under the semi-martingale model for log-prices (3.2), it follows: 

𝑠𝑡−1+(𝑖+𝐾)ℎ − 𝑠𝑡−1+𝑖ℎ

= ∫ �̃�𝑢𝑑𝑢

𝑡−1+(𝑖+𝐾)ℎ

𝑡−1+𝑖ℎ

+ ∫ �̃�𝑢𝑑𝐵𝑢

𝑡−1+(𝑖+𝐾)ℎ

𝑡−1+𝑖ℎ

+ 𝜀𝑡−1+(𝑖+𝐾)ℎ − 𝜀𝑡−1+𝑖ℎ. 

(4.5) 

If �̃�𝑢 = 0,ℙ − 𝑎. 𝑠., then: 

𝜁𝑖 ∶=
𝑠𝑡−1+(𝑖+𝐾)ℎ − 𝑠𝑡−1+𝑖ℎ

{∫ �̃�𝑢
2 𝑑𝑢

𝑡−1+(𝑖+𝐾)ℎ

𝑡−1+𝑖ℎ
+ 2𝜔2}

1
2⁄

⟶ 𝒩(0,1). 
(4.6) 

Having in mind this, let us define the following indicator function: 

𝕀𝐾(𝑖, 𝜉) = {
1, if 𝜁𝑖 ≤ 𝜉
0, otherwise

. (4.7) 

Applying the truncation in both components of 𝑇𝑆𝑅𝑉 (see (4.4)), we obtain: 
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ℛ𝒱̅̅ ̅̅
𝑡,𝐾 ∶=

𝑐𝜉

𝐾
∑ [𝑠𝑡−1+(𝑖+𝐾)ℎ − 𝑠𝑡−1+𝑖ℎ]

2
∙ 𝕀𝐾(𝑖, 𝜉)

𝑀−𝐾−1

𝑖=1

, (4.8a) 

ℛ�̃�𝑡,𝑀 ∶= 𝑐𝜉 ∑[𝑠𝑡−1+(𝑖+1)ℎ − 𝑠𝑡−1+𝑖ℎ]
2

∙ 𝕀1(𝑖, 𝜉)

𝑀

𝑖=1

, (4.8b) 

where the constant 𝑐𝜉
−1 ∶= 𝐹𝜒3

2(𝜉) adjusts the bias due to the thresholding, and 

𝐹𝜒𝑁
2 (∙)is the cumulative distribution function of chi-squared distribution with 𝑁 

degrees of freedom.One way to improve the stability of the estimator proposed bellow 

(see (4.10)) is to adjust it for the sub-sample of data we truncated in. In this order, let 

us introducing: 

ℛ𝒱̅̅ ̅̅
𝑡,𝐾
∗ ∶=

𝑐𝜉
∗

𝐾
∙

∑ [𝑠𝑡−1+(𝑖+𝐾)ℎ − 𝑠𝑡−1+𝑖ℎ]
2

∙ 𝕀𝐾(𝑖, 𝜉)𝑀−𝐾−1
𝑖=1

1

𝑀−𝐾−1
∑ 𝕀𝐾(𝑖, 𝜉)𝑀−𝐾−1

𝑖=1

, (4.9a) 

ℛ�̃�𝑡,𝑀
∗ ∶= 𝑐𝜉

∗ ∙
∑ [𝑠𝑡−1+(𝑖+1)ℎ − 𝑠𝑡−1+𝑖ℎ]

2
∙ 𝕀1(𝑖, 𝜉)𝑀

𝑖=1
1

𝑀
∑ 𝕀1(𝑖, 𝜉)𝑀

𝑖=1

, (4.9b) 

where 𝑐𝜉
∗ = 𝐹𝜒1

2(𝜉) 𝐹𝜒3
2(𝜉)⁄ . For example, if 𝜉 = 9, then 𝑐𝜉

∗ = 1.027. 

 Taking all above into account, the jump robust two time scales estimator 

(abbreviated by 𝐽𝑅𝑇𝑆𝑅𝑉) is defined by: 

𝐽𝑅𝑇𝑆𝑅𝑉𝑡,(𝑀,𝐾) ∶= (1 −
�̅�

𝑀
)

−1

[ℛ𝒱̅̅ ̅̅
𝑡,𝐾
∗ −

�̅�

𝑀
ℛ�̃�𝑡,𝑀

∗ ], (4.10) 

with�̅� introduced by (4.4). 

In order to compute the indicator function 𝕀𝐾(𝑖, 𝜉), we need to estimate 

∫ �̃�𝑢
2 𝑑𝑢

𝑡−1+(𝑖+𝐾)ℎ

𝑡−1+𝑖ℎ
 and the variance of noise. For the case when no jumps occur, 

Zhang et al. (2005) proved that: 

�̂�𝜀
2 =

1

2𝑛
∙ [𝑅�̃�𝑡,𝑀 − 𝑇𝑆𝑅𝑉]

ℙ
→ 𝜎𝜀

2. (4.11) 

This result also remains valid under the hypothesis of jumps, given that the terms 

𝑅�̃�𝑡,𝑀 and 𝑇𝑆𝑅𝑉 are equally influenced by jumps. For the estimation of the integral 

term, for relatively small values of 𝐾 (e.g., 𝐾 ≤ 300for 𝑀 = 23 400), we can use the 

approximation ∫ �̃�𝑢
2 𝑑𝑢

𝑡−1+(𝑖+𝐾)ℎ

𝑡−1+𝑖ℎ
≈

𝐾ℎ

𝑡
∙ ∫ �̃�𝑢

2𝑑𝑢
𝑡

0

̂
. For estimating the quantity∫ �̃�𝑢

2𝑑𝑢
𝑡

0
, 

an iterative approach can be used. 
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 5. Data and results 

In order to perform a comparison among the most known high-frequency 

estimators, we have selected three blue chips listed on Bucharest Stock Exchange 

(BSE):Banca Română pentru Dezvoltare (BRD), Fondul Proprietatea (FP) and OMV 

Petrom (SNP) during September 19, 2012 and April 30, 2013. The data has been 

provided by Thompson Reuters Eikon platform, consisting of prices recorded tick by 

tick. Descriptive statistics about trades and time interval between trades are presented 

in Table1. 

Table 1: Statistics of trades 

Stocks 

Average Time 

Interval 

(minutes) 

Average Trades 

per day 
MeanBid MeanAsk 

BRD 10.6 36 8.3100 8.3600 

FP 4.38 92 0.5882 0.5892 

SNP 6.93 57 0.4345 0.4361 

 

According to Table 1, FP has been the most traded stock, having an average of 

92 trades per day, followed by SNP with an average of 57 trades per day, and BRD 

with an average of 36 trades per day. The ratio 𝑠𝑝𝑟𝑒𝑎𝑑 𝑚𝑖𝑑 𝑞𝑜𝑢𝑡𝑒⁄ was 0.60% for 

BRD, 0.17% for FP and 0.37% for SNP. Therefore, we may conclude that the 

𝑠𝑝𝑟𝑒𝑎𝑑 𝑚𝑖𝑑 𝑞𝑜𝑢𝑡𝑒⁄  ratio, as an appraisal for trading costs, is strongly positively 

related to its liquidity. 

5.1. Jump detection in price series 

In order to select the best high-frequency estimator for intra-day price series, 

we need to study, first of all, the presence of jumps. In this respect, we perform two 

tests (AJ-test and BS-test, presented in section 2) for the presence of jumps, each day 

in the sample, at different time intervals. Once all estimations have been compiled, we 

have selected the days for which the null hypothesis (of no jumps) was accepted and 

we have computed the proportion of these days in the total sample. The results are 

presented in Table 2. 
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Table2: Jump tests at different frequencies (percentage of days) 

H(0): 

No 

jumps 

5 minute 

aggregation 

10 minutes 

aggregation 

15 minutes 

aggregation 

20 minutes 

aggregation 
Accept H(0) at 5% level 

B
R

D
 AJ 

Test 
15.38% 11.54% 8.46% 6.92% 

BS 

Test 
33.33% 44.19% 50.39% 63.56% 

F
P

 

AJ 

Test 
2.27% 1.52% 4.55% 0.00% 

BS 

Test 
67.18% 74.05% 77.10% 74.81% 

S
N

P
 AJ 

Test 
10.69% 4.58% 3.82% 5.34% 

BS 

Test 
50.39% 61.24% 70.54% 66.67% 

 

According to Table 2, some major differences between this two jump tests 

may be observed. AJ – test returns an average percentage of 10.58% for BRD, 2.09% 

for FP and 6.11% for SNP. In the case of BS – test, the average results are different: no 

jumps occurred in 47.87% of days for BRD price series, 73.29% for FP and 62.21% 

for SNP. 

An interesting aspect has been relieved from the results: AJ – test returns an 

average proportion of days with no jumps with a lower value if we have a liquid 

market, such as SNP’s and a bigger one in a less liquid market case, such as BRD’s. 

On the other side, BS – test returns an average proportion of days with no jumps with a 

higher value if we have a liquid market, such as SNP’s and a lower one in a less liquid 

market case, such as BRD’s. So, we may conclude that the absence of jumps 

undervalues the risk in the case of a liquid market if we use AJ-test and overvalues it in 

the same market if we use BS-test. In the next sub-sections, we are going to use the 

results returned by BS – test, considering them reliable on account of our data set 

architecture. Our first choice would be probably AJ – test if the ticks were 

considerably more frequently recorded. We accept null hypothesis for values of over 

50%, rejecting it otherwise. According to our previous results we cannot reject the null 

hypothesis for FP and SNP, but we do reject it for BRD. 

5.2. Microstructure noise 

Microstructure noise is a deviation from fundamental value of an asset that is 

induced by the characteristics of the market under considerations like bid-ask bounce, 

the discreteness of price change, latency, and traders with different degree of 



 
 
 
 
 
Virgil Damian, Cosmin-Octavian Cepoi 

___________________________________________________________________ 

258 

 
 
 

information. If microstructure noises are presented in some data series of prices some 

estimation techniques of realized variance, based on high-frequency data, would be 

unstable. One way to identify microstructure noises is to aggregate the data into bigger 

time intervals. If the microstructure noises are present, results would be quite different.  

 In Figures 1–3 are presented the realized variance measures for all three 

stocks, at ten, fifty and twenty minute aggregation, respectively. Big differences 

among these plots are visible in the case of BRD and partially for SNP. 

 
Figure 1. Daily realized variance at different frequencies – BRD (percentage) 

 

 
Figure 2. Daily realized variance at different frequencies – FP (percentage) 

 



 
 
 
 
 
Volatility Estimators with High-frequency Data from Bucharest Stock Exchange 

__________________________________________________________________ 

 

259 

 
 
 

 
Figure 3. Daily realized variance at different frequencies – SNP (percentage) 

In Figure 4 we plot average realized variance over different time intervals. In 

the case of BRD, the nature of data didn’t allow a higher level of aggregation, so we 

select five levels of aggregation. For FP and SNP we choose ten levels of aggregation. 

 
Figure 4.Variance signature plot for realized variance (percentage) 

The presence of microstructure noises is very visible for BRD, since it cannot 

be identified a stabilization level, so if one must estimate a model with intra-day data 

of BRD, the presence of microstructure noise shall be considered. For FP, the absence 

of microstructures noise is obvious. We may see a stabilization of realized variance for 

thirty minutes aggregation interval, although the differences in values are very small. 

Thus, we may eliminate the hypothesis of microstructure noises for FP. We shall not 

have the same approach for SNP, even for a realized variance stabilization ascertained 

by thirty minutes aggregation interval. The differences among these estimators are 

prominent, almost as significant as BRD’s realized variance value. 
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5.3. Volatility estimators 

 In this sub-section we are going to compute estimation for different high-

frequency estimators based on equities prices from BSE. From now, we accepted the 

hypothesis of jumps for BRD and reject it for SNP and FP. In the case of 

microstructure noises, we found that only price series that is not affected substantially 

by microstructure noises effect is only FP share. 

We selected 5 minutes and 10 minutes interval aggregation, mainly to gain the 

information contented in price series. If the prices were recorded at millisecond, an 

optimal aggregation interval would be, for example, 1 minute. In our case, considering 

a small number of trades per day, a higher level aggregation for volatility estimators is 

possible to undervalue the measure of risk. 

Table 3.Variance estimators for BRD, FP and SNP using high-frequency data 

Stocks 

Microstructure noise: No 

Jumps: No Jumps: Yes 
Estimator: 𝑹𝑽 Estimator: 𝑴𝒊𝒏𝑹𝑽 

5 min. aggregation 10 min. aggregation 5 min. aggregation 10 min. aggregation 

BRD 0.01434% 0.01517% 0.01149% 0.01406% 

FP 0.00784% 0.00708% 0.00691% 0.00649% 

SNP 0.01145% 0.01541% 0.00908% 0.01308% 

 

Stocks 

Microstructure noise: Yes 

Jumps: No Jumps: Yes 
Estimator: 𝑲𝑹𝑽 Estimator: 𝑱𝑹𝑻𝑺𝑹𝑽 

5 min. aggregation 10 min. aggregation 5 min. aggregation 10 min. aggregation 

BRD 0.02339% 0.02474% 0.0171% 0.0191% 

FP 0.00786% 0.00773% 0.0061% 0.0060% 

SNP 0.01920% 0.01585% 0.0154% 0.0178% 

 

In Table 3, a comparison between high-frequency estimates is presented. Some 

conclusions can be drawn: 

(a)In the case of BRD, presence of both noise and jumps must be considered. In this 

case, estimated variance is 0.0171% for five minutes aggregation and 0.0191% for ten 

minutes aggregation. If we eliminate jump restriction, we overestimate the risk. If we 

eliminate the microstructure noises restriction, risk is underestimated. If we eliminate 

both, risk is underestimated also. 

(b)In the case of FP we have no noises or jumps. In this case estimated variance is 

0.00784% for five minutes aggregation and 0.00708% for ten minutes aggregation. 
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Considering presence of microstructure noises for FP price series wouldn’t be a big 

mistake, having in mind the variance signature plot. In his case the results are the 

same, with small differences. If we are considering jumps for the price series of FP, the 

risk is underestimated. 

(c) In the case of SNP we have microstructures noises but there is no jump. In this case 

estimated variance is 0.01920% for five minutes aggregation and 0.01585% for ten 

minutes aggregation. If we accept the hypothesis of jumps, at five minutes aggregation, 

the risk is undervalued and at ten minutes aggregation, the risk is undervalued. In the 

case of SNP, having these contradictions based on interval aggregation, we must 

accept the fact that microstructures noises have a greater impact that we observed and 

a higher level of aggregation is recommended. 

In Table 4 we present the measure of risk in annualized terms, for the 

recommended estimators corresponding to five minutes aggregation data and ten 

minutes aggregation data.  

Table 4. Annualized risk measures for BRD, FP and SNP 

Stocks 
𝐽𝑅𝑇𝑆𝑅𝑉 𝑅𝑉 𝐾𝑅𝑉 

5 min. 

aggregation 

10 min. 

aggregation 

5 min. 

aggregation 

10 min. 

aggregation 

5 min. 

aggregation 

10 min. 

aggregation 

BRD 24.28% 24.97% – – – – 

FP – – 14.06% 13.36% – – 

SNP – – – – 22.00% 19.99% 

In general, even if there are no significant difference between average risk at 

five minutes aggregation and ten minutes aggregation, considering that a trade for any 

equity is taking place once at ten minutes, we recommend this aggregation time when 

making assumptions about (daily) volatility. 

5.4. Results interpretation 

BRD has manifested more daily volatility (1.3856% = √0.0191%) and an 

underperformance related to peers (e.g., Erste Bank) and market (BET-C and BET-FI) 

due to many reasons:(i)the European financial sector has suffered most in 2012 due to 

the European sovereign crisis increasing CDS swaps and loans portfolios 

deterioration;(ii)the Romanian financial sector has suffered most since 2009 because it 

was the moment when most of the underperforming loans had started to be 

provisioned, causing a loss for BRD of over 330 million RON by the end of 2012. The 

loss was in line with the general trend of the Romanian banking sector;(iii)BRD 

situation was even harsher due to predatory lending. By the end of October 

2012,competent Romanian authorities have made public the results of a fraud, causing 
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significant losses for the bank, the day of November 16, 2012 being the most volatile 

day (26%per year);(iv)moreover, BRD has not beneficiated of favorable price support 

from investors and insiders, SIF Muntenia being a major insider selling many stocks. 

Without favorable support from insiders or investment funds (like FP and SNP had), 

BRD stock prices had a less favorable trend than market, sector and peers. 

FP has had the best evolution of all companies analyzed, manifesting the least 

daily volatility (0.8414% = √0.00708%) and over-performance the market (BET-C, 

BET-FI), due to some factors briefly explained below: (i) a very strong price support 

from insiders and issuer. One of Elliot’s funds (Manchester Securities Corp.)has been a 

strong bidder during November 2012 and April 2013. Moreover, starting with April 

10, 2013, FP has started the second program of share repurchases, being a strong 

bidder as well. Their bidding support has smoothed significantly the FP’s price during 

the period analyzed, making it higher even in periods of overall market downside trend 

(April 2013);(ii) another reason for believing the major catalyst role of Elliot’s fund 

and FP in smoothening the price evolution between September 2012 and middle 

December 2012 was the instance when Elliot’s fund presence in the market was 

minimal. Moreover, January effect for FP was less strong than the rest of the market 

(first period of January), the evolution of the price being stronger only in March 

(contrary to the market) and April 2013 regardless of consistent positive financial 

results for the period analyzed. January 4th, 2013 has been the day with the highest 

high-frequency annualized volatility estimated (30% per year). This value maybe 

related to the effect of the first trading day of the year.  

SNP has manifested less daily volatility (1.2589% = √0.01585%) than BRD 

and mixed performance related to market and peers (BET-C, respectively OMV) due 

to many reasons: (i) upward (positive) trend for BRENT and WTI oil prices during the 

period analyzed has been a strong support for positive and consistent financial results; 

(ii) strong insiders price support due to committed stock acquisitions of Templeton 

Frontier Markets Fund. During November 2012 and April 2013. By the end of 2014, 

OMV Petrom has been the largest holding (4.61% percent of the 1 billion US total 

assets fund). This represents probably the main reason why SNP has strong support 

and over performance for most of the time related to BET-C and OMV; (iii) SNP had 

three main downtrend periods underperforming BET-C: first half of November (Q3 

results underestimates), one month period starting the half of January 2013 (2012 

financial results under estimates although positive and higher turnover and profit 

YOY) and another volatile period starting with 21 March. This last very volatile (50% 

per year volatility estimate in March 27, 2013)period may be the result of 10% lower 

dividend proposal comparing to the year before (0.0280 RON for 2012 comparing to 

0.0310 RON for 2011), corroborated with leaving the office of a member of the Board 

in charge with Exploration and Production. The dividend proposal has been a surprise 
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since the main financial indicators were all positive and higher comparing to the year 

before (turnover +18% YOY and profit +3% YOY). 

 6. Conclusions 

We have reviewed different ways to estimate the integrated variation based on 

high frequency data and used them for estimating the daily volatility of three 

representative stocks traded on BSE, respectively: BRD, FP and SNP. Above all, the 

presence and significant influence of both jumps and microstructure noise has been 

also empirically studied. We proposed adequate high-frequency variance estimators. 

In the period analyzed, SNP and FP, except for BRD, had an overall positive 

evolution, with a culminating favorable (upside) trend between middle December 2012 

to middle January 2013, confirming the theory of behavioral finance – January effect 

bias. Except for FP, both SNP and BRD have confirmed the overall trend of the BSE 

market (BET-C and BET-FI index evolution), BRD underperforming the market and 

SNP over performing it although the general trend being confirmed for the most 

period. For most of the time we confirm the inverse relationship between stock market 

evolution and EURRON exchange rate. 
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