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A HYBRID FORECASTING MODEL FOR STOCK MARKET 

PREDICTION 
 

Abstract. Stock market predictions have been studied by academics and 

practitioners. In this paper, a hybrid model is proposed to predict the stock market 

movement. We have combined the independent component analysis (ICA) and 

kernel methods. ICA is used to select the important indicators. After determining 

the inputs, kernel methods are employed to predict the direction of the stock 

market. We have used the Dow-Jones, Nasdaq and S&P500 indices for 

experiments. Technical indicators of the indices are used as input variables for the 

proposed model. According to the analysis of the experimental results, kernel 

methods are capable of producing satisfactory forecasting accuracies and gain 

rates for Dow-Jones, Nasdaq and S&P 500 indices. The trading experiment shows 

that the kernel methods obtain higher rate of returns than the other investment 

strategies. 

Keywords: Hybrid Model, Kernel Methods, Stock Market Forecasting, 

Support Vector Machines, Minimax Probability Machines. 

JEL Classification: C45, E37 

1. Introduction 

Prediction of stock price movement has been regarded as one of the most 

challenging problems since the stock market is a complex, dynamic, non-

stationary, and chaotic system in nature. Stock price movements are not random 

and highly non-linear . Therefore, several artificial intelligence and time series 

models have been proposed to predict the stock prices and returns (Ince and 

Trafalis 2006; Leigh, Purvis and Ragusa 2002). Developing an investment strategy 

based on fundamental indicators earns significant abnormal returns (Piotroski 

2000). In addition to this, technical indicators, also known as charting, have been 

used to explore the dynamics of stock price movement by analyzing the past 

sequence of stock prices. There are recurring patterns in the market behavior, 

which can be identified and predicted. Technical analysts have used number of 
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statistical parameters called technical indicators and charting patterns from 

historical data . 

Recently, researchers have proposed artificial intelligence (AI) techniques 

for stock price prediction. Most of the studies have focused on stock market index 

and individual stock prediction (Atsalakis and Valavanis 2009; Ince and Trafalis 

2006; Tay and Cao 2002). More recent studies have presented encouraging results 

on stock selection using kernel methods, support vector machines, neural networks, 

fuzzy logic, swarm intelligence and hybrid techniques (Chavarnakul and Enke 

2008; Ince and Trafalis 2006; Teoh, Chen, Cheng and Chu 2009). Noisy datasets 

may torture the prediction accuracy of the learning algorithms. This will decrease 

the generalization capability of the methods. In order to increase the generalization 

capability, feature selection (extraction) techniques have been used before training 

the classification/ forecasting training models. There are many well-known feature 

selection techniques, which are decision trees, data envelopment analysis (DEA), 

principal component analysis (PCA), fuzzy ranking analysis, independent 

component analysis (ICA) among others.  

Although some artificial intelligence techniques, such as independent 

component analysis, self-organizing map, genetic algorithms, and decision trees 

can be applied for selecting the representative features (Kao, Chiu, Lu and Yang 

2013; Wang, Wang, Zhang and Guo 2012), they are not widely considered in the 

business domain, especially for predicting the direction of the stock market. To 

increase the generalization capability, we propose an integrated approach by using 

ICA and kernel methods to predict the direction of stock market indices as well as 

individual stock prices. The ICA method is applied for selecting appropriate 

features and further improves the performance of the kernel methods. First, ICA is 

used to estimate the independent components and mixing matrix from the stock 

market data. The ICs are used to construct the forecasting variables. Then, kernel 

methods are applied the reconstructed forecasting variables to build the 

classification model. Nasdaq, S&P 500 and Dow-Jones indices are used to evaluate 

the performance of the proposed approach.  

The paper is organized as follows; in section 2 the basics of ICA is 

presented. Then in section 3 kernel methods are explained. Also a hybrid model is 

proposed for predicting the direction of stock market index. Experimental results 

are presented in section 4. Finally section 5 concludes the paper. 

2. Independent Component Analysis 

ICA is a feature extraction technique for extracting independent sources 

from observed data. The ICA aims to find independent sources from their mixtures 

that are mixtures of unknown sources without knowing any specific knowledge of 
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mixing mechanism (Lu, Lee and Chiu 2009). The nonlinear ICA assumes that the 

observed data are nonlinear combination of ICs. In many real applications, the data 

is a nonlinear mixture of latent signals. Thus, the nonlinear ICA technique is more 

practical. Several researchers proposed NLICA to solve problems in the machine 

learning literature (Kao, Chiu, Lu and Yang 2013; Wang, Wang, Zhang and Guo 

2012). . 

The ICA technique is defined in (Hyvarinen 1999), and assumes that m 

observed variables, X = [x1, x2, …, xm ] are the linear mixture of n statistically 

independent components, S = [ s1, s2, …, sn] 

ASX   (1) 

where A is the mixture matrix having a full rank and m ≥ n. The vector s represents 

independent components. The basic ICA aims to estimate the S and mixture matrix 

A from X. The ICA solution is obtained by finding the de-mixing matrix W such 

that 

WXY   (2) 

where Y =[y1, y2, .., yn]T called independent component vector, is the estimation of 

S, and W, de-mixing matrix, is an estimation of A-1. If the observed data are 

nonlinear combination of the latent sources, then this can be formulated as 

nonlinear ICA model as follows : 

F(s)x   (3) 

where x and s are the data and source  vector and F is an unknown nonlinear 

transformation function. The nonlinear ICA tries to find a map G: ℜn →ℜn under 

the assumption that the number of independent components equals to the number 

of mixtures. Then, the nonlinear ICA finds a mapping that yields components 

which are statistically independent. 

G(s)y   (4) 

In this study, Fast ICA (Hyvarinen and Oja 1997) algorithm is adopted to 

solve the independent components. It is a computationally efficient and robust 

fixed-point algorithm for independent component analysis.  

3. Kernel Methods 

Kernel methods transform or map an input x from the input space X into a 

higher dimensional feature space through a map : x → (x) so that the 

nonlinear problems can be solved linearly in the feature space  (Vapnik 2000). 

Kernel methods have become a popular tool for solving classification and 

prediction problems. They exhibit good generalization performance on many real- 

life datasets. Next, we explain the support vector machines (SVM), twin support 
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vector machines (TWSVM), minimax probability machines (MPM), and kernel 

fisher discriminant analysis(KFDA). 

3.1. Support Vector Machines 

Support vector machines are a novel approach for pattern classification. 

SVMs, based on statistical learning theory, are proposed by (Vapnik 2000) to solve 

classification problems. In a two-class classification problem, SVMs try to find a 

linear optimal hyperplane so that the margin of separation between two classes is 

maximized. In a non-linear separable, one may transform the input space via a non-

linear mapping into a higher dimension feature space so that linear hyperplane can 

be found in this space (Ince and Trafalis 2006). Kernel functions are used to 

transform the data set from input space to feature space. Since the training of a 

SVM is done by solving a linearly constrained quadratic problem, the solution is 

unique, optimal and global (Burges 1998; Vapnik 2000).  

 Given a training set  

represent the positive and negative classes respectively. Classification is to find an 

optimal separating hyperplane (decision function) f(x) to determine y according to 

x. That mean we find a rule to separate the point in n into two parts. When the 

training set is not linear separable, the slack variables 0i   are introduced to ith 

training example (xi,yi) and the corresponding constraint are relaxed to 

1)(  ii by i

T
xw . The objective is to maximize the margin and minimize the 

classification error 


l

i

iC
1

 .  This can be formulated as a QP problem as follows:  

.,...,2,1    ,1)( s.t.

2

1
min

1

2

,w

liby

C

ii

l

i

i
b



 






i

T
xw

w
 (5) 

where C > 0 is the regularization parameter that controls the trade-off between 

maximizing the margin and  minimizing the training error. For nonlinear 

classification case, SVM maps the training samples into a high dimensional feature 

space via kernel function. Once we choose the kernel function K(xi,xj), the 

hyperplane is determined by the dual of the problem (5). The dual problem is to 

maximize the objective function 
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In order to obtain good results, it is important to set the free parameters 

such as regularization parameter (C), kernel function and its parameter. Several 

studies have been conducted to determine the optimal kernel and regularization 

parameter (For example see (Chapelle, Vapnik, Bousquet and Mukherjee 2002)). 

3.2. Twin Support Vector Machines 

Jayadeva and Chandra(Jayadeva and Chandra 2007), proposed twin 

support vector machines (TWSVM) that is  a binary classifier that does 

classification using two non-parallel hyperplanes instead of a single hyperplane as 

in the case of pure SVM approach. The two nonparallel hyperplanes are obtained 

by solving two quadratic programming problems (QPPs) of smaller size compared 

to a single large QPP solved by conventional SVMs. The idea is to solve two QPPs 

with objective function corresponding to one class and constraints corresponding 

to the other class . Consider a two-class classification problem of classifying m1 

data points belonging to class +1 and m2 data points belonging to class -1 in the n 

dimensional real space n. Let matrix A in m1xn represents the data points in class 

+1 and matrix B in m2xn represent the data points in class -1.  Given the above 

stated binary classification problem, linear TSVM seeks two non-parallel 

hyperplanes in n by solving the following two pair QPPs (Jayadeva and Chandra 

2007):  

and ,   ,)(   ..
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where c1, c2 are regularization parameters, 1m
1e  and 2

2

m
e are vectors of 

ones.  

Using the Lagrangian for (8) and (9), and the Karush-Kuhn-Tucker 

(K.K.T) conditions, we obtain the Wolfe dual for (8) and (9) as follows: 
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where H=[A e1] and G = [B e2]. 
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where P=[A e1] and Q = [B e2]. 

 

According to (Jayadeva and Chandra 2007) , two hyperplanes are obtained 

for two classes, points are classified according to which hyperplane a given point is 

closest to. The non-parallel hyperplanes can be obtained from the solution of QPPS 

given in (10) and (11) as follows: 

T
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After computing u and v as shown in (12), separating hyperplanes 

0     and    0 )2()2()1()1(  bb TT
wxwx   (13) 

are obtained. A new data is assigned to class r (r =1,2), depending on which of the 

two planes given by (13) it lies to closest to, 

|,|min )()(

2,1

)()( llT

l

rrT bb 


wxwx   (14) 

where |.| is the perpendicular distance of point x from the plane 

.2,1,0)()(  lb llT wx  
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TWSVM can be extended to nonlinear classifier cases by considering the 

following two kernel-generated surfcases  
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where CT =[A B]T and K is the kernel function. According to (Jayadeva and 

Chandra 2007), linear classifier is a special case of (15) by using linear kernel 

function. Optimization problem is constructed for the hypersurfaces given in (15) 

as follows: 
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where c1, c2>0 are parameters.  

Using the Lagrangian for (16) and (17), and the Karush-Kuhn-Tucker 

(K.K.T) conditions, the Wolfe dual for (16) and (17) are obtained as follows: 
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where L = [K(A,CT) e1] and N = [K(B,CT) e2].  The augmented vectors z1 and z2 can 

be obtained as follows.  
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Once problem (18) and (19) are solved to  obtain the surfaces (15), a new 

data point 
nx  is assigned to class 1 or class -1 in a similar manner to the 

linear case. 

3.3. Kernel Fisher Discriminant Analysis 

Kernel Fisher discriminant analysis (Mika, Ratsch and Muller 2001), 

implements the well-known Fisher linear discriminant in a feature space induced 

by kernel functions, has been applied to many pattern recognition problems and 

demonstrates an impressive level of performance on a range of benchmark data 

sets (Cawley and Talbot 2003; Saadi, Talbot and Cawley 2007). KFDA’s basic 

idea can be described that through some nonlinear mapping the input space can be 

mapped implicitly into a high-dimensional kernel feature space where nonlinear 

pattern now appears linear. Note that in KFDA any explicit mapping is not 

necessary, because kernel trick is introduced (Mika, Ratsch and Muller 2001).  

Suppose we are given training set 

 represent 

the positive and negative classes respectively. Let 

}x,...,x,{xD 1

l

1

2

1

11 1
 and }x,...,x,{xD 2

l

2

2

2

12 2
 , (l = l1 + l2), be samples from 

two classes with class label +1 and -1. Then, linear discriminant analysis attempts 

to find a linear combination of input variables, xw  , that maximizes the average 

separation of the projections of points belonging to negative and positive classes, 

while minimizing the within class variance of the projections of those points. 

Fisher discriminant finds the vector w by maximizing  

wSw

wSw
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   (21) 

where SB is the between class scatter matrix  and SW the within class scatter matrix. 

The matrices SB and SW are given by  
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When the data is not linearly separable in input space, it can be mapped 

into feature space F by using the kernel functions. To find the Fisher’s linear 
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discriminant in the feature space F, equation (21) has to be formulated in terms of 

only dot products of the training data, )()( ji xx   , induced by a positive definite 

kernel  defining inner product )()( jiji )K( xxx,x    

(Cawley and Talbot 2003; Mika, Ratsch and Muller 2001; Saadi, Talbot and 

Cawley 2007). The kernel matrices for entire data set, K, and for each class, K1 and 

K2 is defined as follows: 

.)],([
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According to the theory of reproducing kernels, any solutions wF must 

line in the span of all training sample in F. So, w can be formulated by 

.)(
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
l
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xxw ii   (24) 

To find Fisher’s linear discriminant in F we need to maximize  
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iii KUIKN where I is the identity matrix and Ui is a matrix with all 

elements equal to .1

il The leading eigenvector of N-1M gives the coefficients, of 

equation (25). The problem with this setting is that N is likely to be singular, or ill-

conditioned. In order to avoid this, a regularized solution is obtained by 

substituting N= N + I, where  is a regularization constant. The kernel Fisher’s 

discriminant classifier can be written as  
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In addition to this approach, KFD classifier can be determined by solving the 

following systems of linear equations (Mika, Ratsch and Muller 2001): 
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This formulation shows the similarities between the Fisher’s discriminant analysis 

and least squares support vector machines.  

3.4. Minimax Probability Machines 

The MPM is a recently proposed binary classifier that tries to minimize the 

probability of misclassification for two-class classification problem. The MPM 

model minimizes the worst case probability of misclassification of future data 

points under all possible choices of class densities (Lanckriet, Ghaoui, 

Bhattacharyya and Jordan 2003).  

 

In order to formulate the MPM, training data, x and y, are assumed to be 

generated from two classes distributions with means and covariance matrices given 

by  xΣxx ,~  and  
yΣyy ,~ . Note that x and y also denotes the two classes. 

The objective is to determine the hyperplane  ,|),( bbH T  zwzw  

where  b}{n  and 0\w , which separates the two classes with maximum 

probability. The generalization error is minimized by finding the hyperplane for 

which the worst case probabilities  bT xwPr  and  bT ywPr  are minimized. 

This can be solved with the following optimization problem  
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The quantity (α) is an upper bound on the generalization error, which is 

called the worst-case misclassification probability. The optimization problem (28) 

can be transformed to a Second Order Cone Programming (SOCP) problem. 

According to (Ng, Zhong and Yang 2007), the optimization objective in 

MPM is not the optimal in the sense of minimizing the Bayes error. Therefore, an 

extension, minimum error minimax probability machine (MEMPM) was proposed 

and derived. Corresponding hyperplane,  ,|),( bbH T  zwzw  is obtained by 

minimizing the worst-case Bayes error as follows: 
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where α, β are the worst-case classification accuracies of future data for the class x 

and y, respectively. θ represents the prior probability of the class x and (1- θ) is the 

prior probability of the class y.  

The MPM and MEMPM models are formulated in input space and we 

assumed that two classes are linearly separable. The nonlinear classification 

problems can be solved by mapping the problem to a higher dimensional feature 

space by using the kernel functions that satisfy the Mercer's condition. The MPM 

and MEMPM can be extended to find a hyperplane in a feature space, which is 

nonlinear in input space (Ince and Trafalis 2006; Lanckriet, Ghaoui, Bhattacharyya 

and Jordan 2003; Ng, Zhong and Yang 2007). Also, the nonlinear decision 

function can be formulated for training samples as  
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(30) 

where wi is obtained by solving kernelized MPM and MEMPM models as in 

(Lanckriet, Ghaoui, Bhattacharyya and Jordan 2003), xi and yj are the training data 

for class x and class y, respectively; while K(.,.) is a kernel function. Since The 

MPM is formulated as second order cone program (SOCP) problem, general-

purpose programs such as SeDuMi, Mosek can be used efficiently to find optimal 

solution. 

 

3.5 A Hybrid Model for Stock Market Prediction 

 

Predicting the direction of the stock indices, and individual stock price can 

be formulated as a two-class classification problem. Several artificial intelligence 

techniques, namely kernel methods, neural networks, decision trees, swarm 

intelligence etc., have been developed and used successfully. 

Stock market prediction requires capturing and modeling actions of stock 

market players, while observing and evaluating historical data. Stock prices 

increase or decrease reacting to several factors including “inside” and publicly 

available information. The methodology considers historical stock prices as inputs 

(predictors) to create a prediction model that forecasts next day’s trend of a stock 

market index. Figure 1 shows the prediction model proposed in this paper. The 

proposed model consists of two main stages. In the first stage, the ICA technique is 
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used to estimate the independent components from the stock market data. Then 

these independent components were integrated into the kernel methods to build a 

stock market prediction model. The detail of the proposed approach is as follows: 

In step 1, we obtain the stock market index data (daily open, high, low, 

close, and volume). In step 2, technical indicators (see Table 1) are computed by 

using the stock market index data. Technical indicators can be used to estimate 

(predict) the possibility of current trend reversal and then making buy/sell decision. 

We have used 12  technical indicators as input in the proposed approach. 

Definitions of these indicators are given in Table 1. Step 3 is the data smoothing 

steps. The forecasting variables (technical indicators) have to be smoothed with a 

suitable preprocess (Atsalakis and Valavanis 2009). Then, ICA algorithm chooses 

the important indicators that can be used as input in the next stage. 

In the second stage (step 5), the ICs are used as input variables to construct 

kernel methods for predicting stock market direction. The dataset is divided into 

two groups, training and validation set. Kernel methods are applied to training 

dataset, and validation set is used to compute some performance statistics. Then, 

we use these statistics for comparison of kernel methods. 

 

Figure 1: Stock prediction model 

4 Experimental Results and Discussion 

4.1. Dataset and performance criteria 

For evaluating the performance of the proposed model, the daily Dow-

Jones, Nasdaq 100, and S&P500 indices are used in this study. Since we attempt to 
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forecast the direction of stock market indices, technical indicators are used as 

forecasting variables . Our goal is to predict the directions of daily change of the 

stock price index. The direction is defined as “1” or “-1”. If the next day’s index 

value is greater than today’s index value, then direction is defined as “1”, 

otherwise it is defined as “-1”. Dataset consists of 2037 trading days, from August 

3, 2007 to May 23, 2015. 80% of the data is used as training sample and 20% of 

the data is used for holdout sample. The number of the training sample is 1600 and 

that of the holdout sample is 437. The holdout sample is used to evaluate the 

prediction performance. The input data are normalized into the range of [−1:0; 

1:0]. The goal of scaling is to independently normalize each feature component to 

the specified range. 

Table 1: Initially selected technical indicators as input 

Technical Indicators  Formula 

Exponential Moving 

Average (EMA 10 and 

EMA 50) 

 
  

Stochastic Oscillator %K   

where LLt and HHt  are lowest low  

and highest high in the last t days, respectively 

Price Rate of Change 

 
Relative Strength Index 

(RSI) 
  

U = Total gain in the last  n days;  

D = Total Loss in last n days 

 

Accumulation Distribution 

Oscillator 
 

MACD 
 

Williams %R 

 
High Price Acceleration 

 
Disparity 5 

 
Disparity 10 
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Ct is the closing price at time t, Lt the low price at time t, Ht high price at time t, 

LLt-n lowest low in the last t-n days, HHt-n highest high in the last t-n days, MAt the 

simple moving average of t days. 

The prediction performance (hit ratio) is calculated as follows: 

 

(31) 

where Ri is the prediction result for ith trading day and defined by 

 

POi is the predicted output from the model for the ith trading day, AOi is the actual 

output for the ith trading day and n is the number of the examples. 

The Sharpe ratio is another criteria that is used as performance criteria. It 

can be defined as the mean return of the trading strategy by its standard deviation. 

Another words, The Sharpe ratio measures return to the risk taken; higher positive 

values are preferred. 

4.2. Prediction results 

ICA is first applied to filter out the noise contained in the dataset. The 

filtered data are then used in kernel methods (SVM, MPM, TSSVM, KFDA). 

When using ICA for de-noising, the basic ICA model is first utilized to the mixture 

matrix X of size m×n combined from m forecasting variables (xi) of size 1×n for 

estimating a demixing matrix (W) of size m×m and independent components (yi) of 

size 1×n. To find the ICs representing the noise, the Testing-and-Acceptance 

(TnA) method is used. Specifically, the Relative Hamming Distance (RHD) 

reconstruction error is adapted to order the ICs. The smaller the RHD value is the 

higher is the similarity between the data (see (Lu, Lee and Chiu 2009) for more 

information about RHD). After obtaining the de-noised data, we used them in 

building the prediction model. The performances of kernel methods are mainly 

affected by the setting of the parameters C and (Lu, Lee and Chiu 2009). In this 

study, we used a radial basis (RBF) kernel function. The grid search algorithm is 

used to determine the best C and for SVM, C1 , C2  and  for TWSM. Once these 

optimal parameters are determined, the whole training sample is trained again. 

It is also of interest to compare the performance of the hybrid kernel 

methods with that of the SVM, TWSVM, MPM, KFDA and random walk model. 

The random walk model assumes that the best forecast is equal to the most recently 
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observable observation. Thus, the prediction using the random walk model would 

be expressed as yt+1 = yt. 

After determining the parameters of each model, comparison of the 

performance among hybrid kernel methods, SVM, TWSVM, MPM, KFDA and 

random walk model is carried out. Table 2 shows the number of correct prediction 

and the hit ratio for DJIA, Nasdaq and S&P 500 indices. For Dow-Jones index, hit 

ratio is between 0.53 and 0.86 with a mean hit ratio 0.76.  For Nasdaq, the hit ratio 

changes between 0.50 and 0.73 with a mean ratio 0.65. Finally, the hit ratio is 

between 0.54 and 0.85 with a mean hit ratio 0.77 for S&P 500 index. The 

predictive effectiveness was tested by binomial test. The predictive effectiveness 

was evaluated by conducting a one-sided test of H0: p = 0.5 against Ha: p >0.50. 

Hit ratios with an asterisk(*) indicate that they are significantly different from 0.5 

at a 95% confidence level. This result confirms that the sign (direction) predicted 

by proposed models is better than random. Furthermore, it implies that the random 

walk model cannot be used to forecast the direction of stock index return. 

Table 2: Forecasting performance of different models 

 

DJIA NASDAQ S&P500 

Number Hit Ratio Number Hit Ratio Number Hit Ratio 

ICA-SVM 378 0.86* 321 0.73* 372 0.85* 

ICA-TWSVM 332 0.76* 297 0.68* 345 0.79* 

ICA-MPM 351 0.80* 316 0.72* 364 0.83* 

ICA- KFDA 372 0.85* 280 0.65* 368 0.84* 

SVM 315 0.72* 278 0.64* 330 0.76* 

TWSVM 275 0.63* 270 0.62* 315 0.72* 

MPM 302 0.69* 272 0.62* 320 0.73* 

KFDA 309 0.71* 265 0.61* 318 0.73* 

RW 232 0.53 219 0.50 236 0.54 
a The table shows the number of times a forecasting model correctly predict the 

direction of index return for holdout sample. A ratio marked with an asterisk(*) 

indicates that a 95% significance level based on a one side test of H0: p = 0.5 

against Ha: p >0.50. 

The trading performance of the proposed model is evaluated by simulation. 

Before we present the trading performance of the proposed model, we explain the 

operational details of the trading simulation. The trading simulation assumes that 

in the beginning of each period the investor makes an asset allocation decision of 

whether to shift assets stock index funds (Dow-Jones, Nasdaq and S&P 500 index 

fund) or stay in cash.  It should be noted that stock index fund depends on stock 
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index level. It is also assumed that the money that has been invested in stock index 

fund becomes illiquid and remains ‘locked up’ until the end of the period. In the 

beginning of each period the investor has to make a decision (to purchase stock 

index fund or stay in cash), based on the predictions generated by the forecasting 

models. This strategy implies full investment in either stock index fund or stay in 

cash for the whole period. Transaction cost, dividends, short selling, and 

leveraging are not allowed. Based on these assumptions, decision rules are given as 

follows: 

If (Ct+1 = +1), then invest in stock index fund and receive the stock return 

for period t+1 (Rt+1) 

Else if (Ct+1 = -1) then stay in cash for the period t+1 

where C is the sign of return predicted by the models. Using these decision rules, 

we can obtain the excess return over the simulation period for each forecasting 

models. Table 3 reports excess return and Sharpe Ratio of the forecasting models 

for each indices. For each index, excess return and Sharpe ratio are computed and 

given in Table 3. According to results, ICA-SVM method outperforms other 

forecasting methods for DJIA index. Excess return for DJIA index is 23.68% and 

corresponding Sharpe ratio is 0.94 which is the highest value among the other 

methods. For NASDAQ and S&P 500 indices, ICA-SVM has the highest excess 

return. The results demonstrate clearly that the return on investment and Sharpe 

ratio for the proposed forecasting models (hybrid models) outperform by far the 

pure forecasting models. 

Table 3: Trading performances of the techniques 

  

DJIA NASDAQ S&P500 

Return 

Sharpe 

Ratio Return Sharpe Ratio Return 

Sharpe 

Ratio 

ICA-SVM 23.68 0.94 22.93 0.91 25.61 0.81 

ICA-

TWSVM 
18.88 0.68 13.66 0.47 17.17 0.42 

ICA-MPM 22.65 0.81 19.09 0.93 18.28 0.79 

ICA- 

KFDA 
17.35 0.9 18.05 0.73 15.77 0.88 

SVM 14.32 0.35 10.78 0.25 15.53 0.43 

TWSVM 9.52 0.17 9.73 0.14 11.24 0.36 

MPM 13.25 0.28 9.25 0.08 13.75 0.28 

KFDA 12.5 0.23 9.38 0.09 8.32 0.13 

RW -2.25 -0.12 -1.35 -0.05 -3.26 -0.17 
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5. Conclusions  

With the inherent high volatility, complexity, and turbulence of stock 

markets, the prediction of stock market index is a challenging task. Also, the 

diversity and complexity of domain knowledge existing in the financial market 

makes it very difficult for investors to make the right decisions. This paper 

introduces a hybrid model that combines the ICA with kernel methods (SVM, 

TWSVM, MPM, and KFDA). In proposed model, the knowledge discovery 

process is mainly composed of feature representation by technical indicators, 

feature extraction by ICA, and modeling by kernel methods. According to the 

experimental results, ICA-SVM, ICA-TWSVM, ICA-MPM and ICA-KFDA 

methods are capable of producing satisfactory forecasting accuracies and excess 

returns for Dow-Jones, Nasdaq and S&P 500 indices. 

We showed that the prediction accuracy can be significantly enhanced by 

using the two-stage model in comparison with a single-stage model. Since 

financial time series are non-stationary and, the two-stage model can better capture 

the characteristics of the time series. The results suggest that the proposed 

prediction model provides a promising alternative for financial time series 

forecasting. 
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